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Abstract

Conventional wisdom emphasizes supply and demand shocks as the ma-
jor sources of the business cycle. Yet the most visible, most synchronized,
and most frequently encountered supply and demand shocks take place at
the seasons. The central question to be addressed in this paper is to what
extent impulses at the seasonal frequency are responsible for business cycles?
Despite strong empirical evidence suggesting that seasonal °uctuations and
business cycle °uctuations are closely related, questions like this are di±cult
to answer because of the lack of e®ective methods for identifying seasonal
versus non-seasonal shocks. Traditional methods of measurement and iden-
ti¯cation (such as the use of seasonal dummies to isolate the seasonal and
non-seasonal components) are inadequate and inappropriate because they
fail to take into account the possible interactions between seasonal °uctua-
tions and business-cycle °uctuations. In this paper, we develop a procedure
that allows us to identify seasonal shocks versus non-seasonal shocks. We
found that seasonal shocks account for the bulk of business-cycle °uctuations
in US output (roughly 50%). The ¯nding suggests that models relying heav-
ily on technology shocks to explain the business cycle are miss-specī ed, that
using seasonally adjusted data to evaluate business cycle models can lead to
incorrect conclusions, and that theories of the business cycle, as well as gov-
ernment policies concerning the business cycle ought to address seasonal
°uctuations seriously.

¤I thank Je® Miron, Karl Shell, and especially, Peter Pedroni, as well as seminar participants
at Cornell, Penn State and SUNY Albany for comments. I also thank Joseph Beaulieu for
providing the seasonally unadjusted data.



What shocks are responsible for economic °uctuations? Conventional wisdom
emphasizes supply and demand shocks as the major sources of the business cycle.
Yet the most visible, most synchronized, and most frequently encountered supply
and demand shocks take place at the seasons. Most research on the business
cycle, however, has worked only with seasonally adjusted data. Underlying this
practice is the view that business °uctuations are generated by a fundamentally
di®erent mechanism than seasonal °uctuations. Such views have been questioned
by a series of empirical studies (e.g., Barsky and Miron, 1989, Beaulieu, MacKie-
Mason, and Miron, 1992, Beaulieu and Miron, 1992, Miron, 1994, 1996, and 1998,

to name just a few). These authors documented that the two types of °uctuations
display striking similarities. In particular, with respect to most stylized facts
about the business cycle, the seasonal cycle displays the same characteristics as
the business cycle, in many cases even more dramatically than the business cycle.
Further more, countries and industries with large seasonal cycles also have large
business cycles.

An important distinction, however, must be made between two fundamen-
tal problems regarding the business cycle: the propagation mechanism and the
impulse mechanism. The propagation mechanism pertains to the endogenous
properties of the business cycle, while the impulse mechanism pertains to the ex-
ogenous properties of the business cycle. To trigger the business cycle, exogenous
impulses are needed to activate the economy's propagation mechanism so that
recurrent °uctuations at the macroeconomic level become visible. Two distinct
sets of questions, therefore, are involved in understanding the relationship be-
tween business cycle °uctuations and seasonal °uctuations. First, do they share

the same underling propagation mechanism? Second, do they share the same
sources of impulse? The primary interest of this paper is to address the second
question.

Business cycles have characteristic frequencies (e.g., the spectrum of US GDP
growth has maximum power centered around the 4-6 year cycle frequency).1 If
the economy is a dynamic system with endogenous propagation mechanism that
determines the characteristic frequencies of the business cycle, then any external
forces ought to be able to trigger dynamic responses from the system at those
characteristic frequencies determined by it's internal propagation mechanism.2

The seasonal impulses are simply one particular kind of those forces which regu-

1See Mark Watson (1993).
2The post-war US investment to output ratio provides one of the most striking evidence of

such kind of endogenous propagation mechanism that generates dampened oscillations (e.g., Y.
Wen, 1998).
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larly hit the economy with an exogenously determined frequency { the seasonal
frequency. Thus, we should expect that under the in°uence of seasonal impulses,
the economy may exhibit not only °uctuations at the exogenously determined
frequency (the seasonal frequency), but also °uctuations at the endogenously
determined frequency (the characteristic business cycle frequency).3

The intriguing and fundamental question to ask then is, to what extent im-
pulses at the seasonal frequency are responsible for the observed business cycles?
In other words, besides the conventional supply and demand shocks, what pro-
portion of the aggregate °uctuations at the business cycle frequency is due to

seasonal shocks? Questions like these are fundamental because if seasonal shocks
do cause business cycles, then theories that rely so heavily on technology shocks
to explain the business cycle are °awed. Further more, using seasonally adjusted
data to test or evaluate business cycle models may lead to incorrect conclusions
because seasonal adjustment does not handle the interaction between seasonal
°uctuations and business cycle °uctuations properly.

Unfortunately, despite strong empirical evidence suggesting that seasonal °uc-
tuations and business cycle °uctuations are closely related, questions like these
are di±cult to answer because of the lack of e®ective methods for identifying
seasonal versus non-seasonal shocks. Consequently, it is not possible to assess
the contributions of seasonal shocks to the business cycle. Traditional methods
of measurement and identi¯cation (such as the use of seasonal dummies to iso-
late the seasonal and non-seasonal components in a time series) are inadequate
and inappropriate because they fail to take into account the possible interactions
between seasonal °uctuations and business-cycle °uctuations.

This paper proposes a procedure to identify seasonal and non-seasonal shocks.
The method provides a more sensible way of measuring the seasonal components
of a time series than traditional methods, hence making it possible to correctly
assess the contributions of seasonal shocks to the business cycle. To illustrate,
suppose there are two types of aggregate impulses, one is seasonal and the other

3An example often encountered in engineering is a mechanical system with internal vibration
frequency (such as a spring). If the system is subject to an external vibrational force, then
oscillations at two di®erent frequencies will be observed. One is determined by the system's
internal structure, and the other determined by the external periodic force.
In the case of economic models, however, perfectly anticipated exogenous movements may

have very di®erent impact compared to unanticipated shocks. Seasonal impulses contain both
anticipated and unanticipated factors (e.g., the Christmas is an anticipated seasonal event, but
the magnitude of Christmas spending di®ers in each year in a random way). Seasonal shocks
pertain to the random component of seasonal impulses.
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non-seasonal,4 and that innovations in the two types of impulses are orthogonal
to each other. Identi¯cation can then be achieved by imposing the restriction that
the non-seasonal innovations have minimal contributions to seasonal °uctuations
in the time series. This identifying assumption is based on the understanding
that seasonal cycles are exogenous, and are caused primarily by impulses that
take place regularly at the seasons (such as the Christmas holiday or the win-
ter). Therefore, non-seasonal shocks (e.g., the conventional business cycle shocks)
should have little responsibility for the seasonal cycle. The orthogonality assump-
tion, on the other hand, is based on the understanding that most business cycle

shocks such as technological innovations, oil price crises, or unexpected monetary
policy changes are non-seasonal and are independent of the season.5

With these identifying assumptions, we can then uniquely decompose a time
series (seasonally unadjusted) into two components, one pertains to the seasonal
disturbances, the other pertains to the non-seasonal disturbances. By comparing
the partial spectra of the two components around the business-cycle frequency,
we can then answer the question of how important seasonal shocks are to the
business cycle.

Our econometric method is a generalized version of the method proposed by
Blanchard and Quah (B-Q, 1989). We generalize the B-Q method in the fre-
quency domain so that any identifying restrictions on dynamic impulse response
functions can be viewed as restrictions on spectral density functions at a partic-

4Here, seasonal impulses are de¯ned as stochastic processes with seasonal cycles. For example,
the following random variable St is one type of seasonal impulses:

St = ½1St¡1 + ½2St¡2 + ½3St¡3 + "t

where "t is an i:i:d innovation. The assumption that seasonalities can be modeled (or approxi-
mated) as indeterministic processes is a subtle one and may be controversial. But it simpli¯es
our analysis a lot, because deterministic processes do not have well-de¯ned spectral density
functions. Extending our method to allow for both deterministic and indeterministic seasonal
cycles is left to future researches.

5This does not exclude the possibility that monetary policy is seasonal. For example, since
1914, the Fed has adopted the policy of accommodating seasonal °uctuations in money demand
in order to smooth the nominal interest rates. Such kind of seasonality in money supply, however,
is an endogenous response to seasonal shocks, not the shocks themselves.
On the other hand, even if there are innovations in the monetary policy that are seasonal,

they should then be identi¯ed as seasonal shocks. Since the primary question of this paper is
to understand how important those seasonal shocks are to the business cycle, our identifying
assumptions serve as a benchmark for further investigations (relaxing the orthogonality assump-
tion is something worth pursuing in the future). Answers to the above question, hopefully, will
shed light on the legitimacy of using seasonally adjusted data to study the business cycle, as if
seasonal °uctuations are irrelevant to the business cycle.
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ular set of frequencies. For example, the long-run restriction imposed by B-Q to
identify the transitory demand shock is a restriction imposed on the spectrum
of output growth at frequency zero. Our generalized method, which renders the
B-Q method as a special case, identi¯es seasonal shocks and the business cycle
e®ects of seasonal shocks by imposing restrictions at the seasonal frequency.

Applying the procedure to the US economy, we found that seasonal shocks
have substantial contributions to the business cycle components of many US ag-
gregates. For example, about 50% of the variance of GDP growth at the business
cycle frequency is due to seasonal shocks. And similar results hold also for ag-

gregate consumption and aggregate investment. Such empirical ¯ndings explain
Cochrane's failure to ¯nd large, identi¯able, exogenous shocks in seasonally ad-
justed data to account for the bulk of business cycle °uctuations (J. Cochrane,
1994). They also suggest that theories of the business cycle, as well as govern-
ment policies concerning the business cycle ought to address the seasonal shocks
seriously.6

In what follows, we describe our identi¯cation method in Section 2. Section
3 shows how the method can be applied to studying the business cycle e®ects
of seasonal shocks. Section 4 provides an economic model that rationalizes the
identifying assumptions adopted in Section 3. Section 5 reports the estimated
business cycle e®ects of the seasonal shocks in the US economy. Finally, Section
6 concludes the paper.

1. A Generalized Identi¯cation Method

Let xt be a stationary time series with moving average representation:

xt = a1(L)"1t + a2(L)"2t; var(") = I; (1)

where a1(L) ´ P1
j=0 a1jL

j , a2(L) ´ P1
j=0 a2jL

j , and "1t and "2t are orthogonal
i:i:d structural shocks whose economic properties remain to be speci¯ed. We are
interested in recovering this presentation from the data.

Since xt is stationary, it has a Wold-moving average representation:

xt = b1(L)v1t + b2(L)v2t; var(v) = §; (2)

which can be uniquely estimated from the data using a bivariate VAR (we'll deal
with the choice of the second variable later). Since the covariance matrix § is not

6Chatterjee and Ravikumar (1992), and Braun and Evans (1995) evaluate equilibrium busi-
ness cycle models with regard to seasonal cycles.
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diagonal in general, in order to recover presentation (1) from the data, we need
to ¯nd a mapping:

v = A0";

(where A0 is a 2 £ 2 real matrix with full rank) so that (2) can be written as:

xt =
h

b1(L) b2(L)
i
A0

"
"1t
"2t

#
:

Given A0, the structural representation can be completely recovered from the
data under the identity,

h
a1(L) a2(L)

i
=

h
b1(L) b2(L)

i
A0;

and the identity
" = A¡10 v:

Economic data will impose the following identifying restrictions on A0:

A0A
0
0 = §: (3)

As was pointed out by Blanchard and Quah (1989), however, information in
§ is not su±cient for uniquely identifying the four elements of A0 (since § is
symmetric). We need one extra assumption regarding the properties of A0 in
order to exactly identify it.

The assumption is often made with regard to the dynamic e®ects of the struc-
tural shocks. Blanchard and Quah (1989) assumes that shock 1 ("1) has no

long-run e®ect on x:

h
b1(1) b2(1)

i
A0

"
"1t
0

#
= 0: (4)

This implies:
[A0]11 b1(1)+ [A0]21 b2(1) = 0; (5)

where [A0]ij indicates the ijth element in A0. Obviously, conditions (5) and (3)
uniquely determine A0.

From the point of view of spectral analysis, what identifying restriction (4)
amounts to is to assert that shock 1 ("1) has minimum contribution to the variance
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of x at frequency zero. To see what this implies in general, consider the spectral
representation of speci¯cation (1) (the power spectrum of x)7:

f(e¡i!) =
h

a1(e
¡i!) a2(e

¡i!)
i h

a1(e
i!) a2(e

i!)
i0

(6)

=
¯̄
¯a1(ei!)

¯̄
¯
2
+

¯̄
¯a2(e¡i!)

¯̄
¯
2
;

where ja(e¡i!)j2 ´ a(e¡i!)a(ei!): This shows that the power spectrum of x can
be decomposed into two components at each frequency !, the ¯rst one measures
the independent contribution of "1 to the power spectrum of x, and the second
one measures the independent contribution of "2 to the power spectrum of x.

Similarly, the spectral representation of the data (equation 2) is given by:

f(e¡i!) =
h

b1(e¡i!) b2(e¡i!)
i
§

h
b1(ei!) b2(ei!)

i0
(7)

=
h

b1(e¡i!) b2(e¡i!)
i
A0A

0
0

h
b1(ei!) b2(ei!)

i0
;

in which the partial spectrum with respect to shock 1 ("1) is given by:

f11(e
¡i!) =

¯̄
¯[A0]11 b1(e

¡i!) + [A0]21 b2(e
¡i!)

¯̄
¯
2
:

A general method of identifying A0 in the frequency domain is to impose
restrictions on the dynamic properties of "1 at a set of particular frequencies,
f!1; !2; :::;!ng 2 [0; ¼]; such that the partial spectrum of x with respect to "1
over the domain  = f!1;!2; :::; !ng is minimized. Namely, we choose [A0]11 to
solve:8

min
Z



¯̄
¯[A0]11 b1(e

¡i!) + [A0]21 b2(e
¡i!)

¯̄
¯
2
d!;

7The power spectrum (spectral density function) decomposes the total variance of a stationary
time series into \variance density distribution" across frequencies. The power at each frequency
measures the contribution of cycles at that frequency to the total variance.

8The spectrum is always non-negative at each frequency !, hence the quadratic function,

f(®11; ®21) =j ®11b1(e¡i!) + ®21b2(e¡i!) j2

is always convex with respect to ®ij. Therefore, the extra identifying restriction can be obtained
by choosing ®11 (or ®21) to minimize f(¢). Notice that the minimized spectral density may not
necessarily be zero. It is zero, for example, at the zero frequency. Because when ! = 0, we
have e¡i! = 1, hence ®11b1(e¡i!) + ®21b2(e¡i! ) and its conjugate are both real. Consequently,
the minimum can be found simply by setting

p
f = ®11b1(1) + ®21b2(1) = 0. When ! 6= 0, the

expression, ®11b1(e
¡i! ) + ®21b2(e

¡i! ), is generally a complex quantity. And the only way to
ensure a zero value for f(¢) at arbitrary frequency ! is to have ®11 = ®21 = 0, which results in
overidenti¯cation.
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which gives

[A0]11 = ¡ [A0]21

ÃR


£
b1(e

¡i!)b2(ei!) + b2(e
¡i!)b1(ei!)

¤
d!

2
R
 jb1(e¡i!)j2d!

!
: (8)

This relationship (equation 8), together with the condition AA0 = §; uniquely
determines the matrix A0. Hence, we are able to recover representation (1) along
with the identi¯cation of two structural shocks ("1 and "2) from the data, the
¯rst of which has minimal e®ect on the power spectrum of x over the frequency
set .9 In the special case of  = 0 (namely, ! = 0 is the only frequency at which
the identifying restriction is imposed), equation (8) simpli¯es to

[A0]11 = ¡ [A0]21
b2(1)

b1(1)
;

which is identical to (5). Therefore, the B-Q (1989) identifying scheme is just a
special case of our general method.

2. Application

In this section, we show how the general method can be applied to identifying the
business cycle e®ects of seasonal shocks for the US economy. As in B-Q (1989),
we must choose a second variable as an instrument to help accomplishing the
identi¯cation task in a bivariate VAR system. Since our identifying restriction
requires that the non-seasonal shocks have minimum e®ect on the variance of
a time series at the seasonal frequency, a sensible instrument is a seasonally
unadjusted variable that has little seasonal component in it. Empirical studies

found that the US interest rates have very little seasonal component (e.g., see
Miron, 1996), we choose the 3-month T bill rate as our instrument variable.10

Let Y denote the logarithm of a seasonally unadjusted aggregate US time
series (e.g., the real GDP), and r denote the instrument variable (e.g., the 3-month
T bill rate). And let "s and "n be the seasonal and non-seasonal disturbances (s
= seasonal, n = non-seasonal). In addition, let X be the vector (¢Y; ¢r)0 and
" be the vector ("n; "s)

0. The stationarity assumption of X implies the moving

9When the set  contains discrete points of frequencies, we can replace the integral
R


by summation
P

 . Note that [A0]11 is always real valued as b2(e
¡i!)b1(ei!) is the complex

conjugate of b1(e¡i!)b2(ei!).
10The results are generally robust to the choice of di®erent interest rates series.
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average representation:11

Xt =
³
A0 +A1L +A2L

2 + :::
´

"t = A(L)"t;

whereL is the lag operator, var(") = I (¾n = ¾s = 1), and A(L) =

"
a11(L) a12(L)
a21(L) a22(L)

#

with aij(L) =
P1
k=0 aij(k)Lk for i; j = 1;2. The corresponding spectral density

function is given by

Fx(e
¡i!) =

¯̄
¯A(e¡i!)

¯̄
¯
2
;

where the upper left-hand entry (the spectrum of output growth) is given by

F11(e
¡i!) = ¾2n

¯̄
¯a11(e¡i!)

¯̄
¯
2

+¾2s

¯̄
¯a12(e¡i!)

¯̄
¯
2
; (9)

and the partial spectrum of ¢Y with respect to the non-seasonal shock "n is
given by the ¯rst term in F11(e

¡i!). The identifying assumption that "n has

minimum contributions to seasonal cycles in ¢Y implies that
¯̄
a11(e

¡i!)
¯̄2

attains
its minimum at the seasonal frequency ! = ¼

2 .
12

To recover representation (9) from the data, let the Wold-moving average

representation of X be given by

Xt =
³
I + B1L + B2L

2 + :::
´

"t = B(L)vt; (10)

where B(L) =

"
b11(L) b12(L)
b21(L) b22(L)

#
, and var(v) = §: This representation can be

obtained by ¯rst estimating and then inverting the vector autoregressive rep-
resentation of X in the usual way. Taking the Fourier transform of (10), the
corresponding spectral representation is given by:

Fx(e
¡i!) = B(e¡i!)A0A00B(ei!);

where A0A00 = §: The spectrum of output growth ¢Y is given by the upper
left-hand entry:
¯̄
¯[A0]11 b11(e

¡i!) + [A0]21 b12(e
¡i!)

¯̄
¯
2
+

¯̄
¯[A0]12 b11(e

¡i!) + [A0]22 b12(e
¡i!)

¯̄
¯
2
; (11)

11We assume that seasonalities can be modeled (or be approximated) as indeterministic pro-
cesses so that the seasonal patter can be captured by a VAR. This assumption may not be 100%
realistic, but it can nevertheless serve as a benchmark for further investigations.
12If there exist seasonal cycles at harmonic frequencies as well, then the identifying assump-

tion requires that
¯̄
a11(e¡i!)

¯̄
attains minima at both the fundamental frequency and harmonic

frequencies.
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in which the ¯rst term is the partial spectrum of ¢Y with respect to the non-
seasonal innovation "n; and the second term is the partial spectrum of ¢Y with
respect to the seasonal innovation "s. Choosing [A0]11 to minimize the ¯rst term
in (11) at the seasonal frequency ! = ¼

2 (for quarterly data) gives

[A0]11 = ¡ [A0]21

0
B@

b11(e
¡ ¼
2
i)b12(e

¼
2
i) + b12(e

¡¼
2
i)b11(e

¼
2
i)

2
¯̄
¯b11(e¡

¼
2 i)

¯̄
¯
2

1
CA : (12)

The system of equations that can be solved for the four elements in A0 is then
given by the identifying restriction (12) and the relation A0A00 = §.13

With the knowledge of A0, we can then examine the business-cycle e®ects of
seasonal shocks using representation (11), which decomposes the total spectrum
of ¢Y into two parts: the part due to non-seasonal shocks and the part due to
seasonal shocks. If seasonal shocks are important for triggering business-cycle
°uctuations in the US economy, then the partial spectrum of ¢Y with respect to
seasonal shocks should constitute a signi¯cant fraction of the total spectrum of

¢Y at the business cycle frequency.

3. Interpretation

Our interpretation of disturbances with minimal e®ects at the seasonal frequency
as non-seasonal shocks (i.e., as conventional business cycle shocks), and of dis-

turbances with maximum e®ects at the seasonal frequency as seasonal shocks
that may also have e®ects at the business cycle frequency is motivated by a tra-
ditional multiplier-accelerator model of the business cycle (P. Samuelson, 1939,
and J. Hicks, 1950).14 The model has three equations:

Yt = Ct + It + Gt; (A)

13When seasonal cycles also exist at harmonic frequencies, the identifying restriction (12)
becomes:

[A0]11 = ¡ [A0]21

0
@

P
j

h
b11(e¡

2¼j
4 i )b12(e¡

2¼j
4 i) + b12(e¡

2¼j
4 i)b11(e¡

2¼j
4 i)

i

2
P

j

h
j b11(e¡

2¼j
4 i) j2

i ;

1
A

where j = 1; 2; indicating that nonseasonal shocks have minimal e®ect at both the fundamental
frequency, ¼2 ; and the harmonic frequency, ¼.
14For simplicity, we have adopted an ad hoc model. But the structural equations in the

model can be interpreted as reduced-form equilibrium decision rules derived from a rational
expectations general equilibrium model with fully speci¯ed preferences and technologies.
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Ct = ®0 +®Yt¡1+ St; (B)

It = ¯(Ct ¡ Ct¡1): (C)

The variable Y; C;I;G denote output, consumption, investment, and government
spending respectively. The time period is assumed to be one quarter. Equation
(A) is the goods market equilibrium condition with Gt as the aggregate demand

shock (the non-seasonal business cycle shock). Equation (B) is a simple consump-
tion function where ®0 > 0 is autonomous consumption, ® 2 (0;1) is the marginal
propensity to consume, and St is a seasonal forcing variable that impacts con-
sumption demand (e.g., the Christmas e®ect). Equation (C) describes investment
behavior as responding primarily to changes in aggregate consumption demand
with the accelerator coe±cient ¯ > 0.

To close the model, we need to specify how Gt and St evolve. As an illustra-
tion, we assume that:

Gt = "gt;

St = ¡½ (St¡1 +St¡2 +St¡3) + "st; 0 < ½ � 1; (13)

where "g and "s are the serially uncorrelated, orthogonal innovations to the non-

seasonal and seasonal impulses respectively.15 Solving for output in the above
system gives:

Yt = ®(1 +¯)Yt¡1 ¡®¯Yt¡2+ Gt + St;

or
(1 ¡ ¸1L)(1 ¡¸2L)Yt = Gt + St; (14)

where L is the lag operator, and ¸1 and ¸2 are the characteristic roots of equation
(14) satisfying

¸1+ ¸2 = ®(1 + ¯);

¸1¸2 = ®¯:

It is well known that for reasonable values of ® and ¯; the above system exhibits
dampened endogenous business cycles (i.e., the characteristic roots ¸1 and ¸2

15There are many di®erent ways to model seasonalities. An alternative model for the seasonal
variable is St = ½St¡4 + "st ; 0 < ½ � 1: For our analysis, which model to choose does not
matter, but the indeterministic model in equation (13) seems to capture the seasonalities in the
US data quite well. Our identifying procedure as well as the empirical results obtained in this
paper, however, do not require knowledge about the true model of the seasonalities, except the
assumptions that St possesses stochastic cycles at the seasonal frequency and has well-de¯ned
spectrum.
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form a complex conjugate pair, a§ bi). For example, when ® = ¯ = 0:9; we have
¸ = 0:855 § 0:281i; implying dampened oscillations at frequency

! = cos¡1
µ

0:855p
0:8552+ 0:2812

¶
= 0:05 (cycle per quarter);

or periodicity (average cycle length) of 20 quarters per cycle.
Let the structural parameters ® and ¯ be such that the characteristic roots of

the model are a § bi. To see how business cycle °uctuations in output Y depend
on the non-seasonal and seasonal shocks, we rewrite equation (9) as

Yt =
1

(1 ¡ ¸1L)(1 ¡ ¸2L)
"gt + (15)

1

(1 ¡ ¸1L)(1 ¡ ¸2L) (1 + ½L + ½L2+ ½L3)
"st

´ B(L)"gt +B(L)S(L)"st;

where B(L) ´ [(1 ¡¸1L)(1 ¡¸2L)]¡1 represents the endogenous propagation

mechanism, S(L) ´ ¡
1 + ½L + ½L2 + ½L3

¢¡1
represents the exogenous propaga-

tion mechanism that transmits the impact of seasonal innovations ("s) in a manner
that mimics seasonal cycles.

The corresponding power spectrum of Y is given by

Fy(e
¡i!) =

¾2g

j(1 ¡ ¸1e¡i!)(1 ¡ ¸2e¡i!)j2
+ (16)

¾2s

j(1 ¡ ¸1e¡i!)(1 ¡ ¸2e¡i!)j2 j1 + ½e¡i! + ½e¡2i! + ½e¡3i!j2

´ B(e¡i!)¾2g + B(e¡i!)S(e¡i!)¾2s ;

where

B(e¡i!) ´ 1

j(1 ¡¸1e¡i!)(1 ¡ ¸2e¡i!)j2
;

and

S(e¡i!) ´ 1

j1 + ½e¡i! + ½e¡2i! + ½e¡3i!j2
:

Equation (15) is the moving-average, time-domain representation of the dy-
namics of output, with the ¯rst component showing the dynamic e®ects of the
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non-seasonal shock on Y , and the second component showing the dynamic e®ects
of the seasonal shock on Y . Equation (16) is the frequency-domain analogue of
the decomposition.

Both representations clearly indicate that °uctuations in output at the char-

acteristic business cycle frequency ! = cos¡1
³

ap
a2+b2

´
are determined by the

model's endogenous propagation mechanism (i.e., by the business cycle polyno-

mial B(¢)), and that °uctuations in output at the seasonal frequency are de-
termined by the exogenous propagation mechanism (i.e., by the seasonal cycle
polynomial S(¢)). Hence, the power spectrum of Y has two maxima (spectral

peaks). One of them centers at the business cycle frequency ! = cos¡1
³

ap
a2+b2

´
;

at which the function, B(e¡i!) = 1=
¯̄
(1 ¡¸1e¡i!)(1 ¡ ¸2e¡i!)

¯̄2
; attains its max-

imum; and the other one centers at the seasonal frequency, ! = ¼
2 ; at which the

function, S(e¡i!) = 1=
¯̄
1 + ½e¡i! + ½e¡2i! + ½e¡3i!

¯̄2
; attains its maximum.16

Equations (15) and (16) also indicate clearly that the dynamic impact of the
non-seasonal innovation ("g) is not propagated by the seasonal factor S(¢), while
the dynamic impact of the seasonal innovation ("s) is propagated both by the
seasonal factor S(¢) and by the business cycle factor B(¢). In other words, the
non-seasonal disturbance ("g) can generate °uctuations in Y only through the

endogenous propagation mechanism, B(¢). But the seasonal disturbance ("s) can
generate °uctuations in Y through two di®erent propagation mechanisms, B(¢)
and S(¢); the ¯rst of which generates stochastic business cycles, and the second
generates stochastic seasonal cycles.

Consequently, compared with "s, the non-seasonal innovation ("g) has little
contribution to the spectrum of output at the seasonal frequency. In fact, the
ratio of the partial spectrum of Y with respect to "g and that with respect to "s
is given by:

1

S(e¡i!)
¾2g
¾2s

=
¯̄
¯1 + ½e¡i! + ½e¡2i! + ½e¡3i!

¯̄
¯
2 ¾2g

¾2s
;

which attains a minimum at the seasonal frequency ! = ¼
2 .
17

16Since the power spectrum decomposes the total variance of a stationary time series into con-
tributions across frequencies, if a stochastic time series contains characteristic cycles at frequency
!, then its spectrum will exhibit a peak (concentration of power) at frequency !, indicating large
contributions from the characteristic cycle to the total variance of that time series.
17This is so because S(e¡i!) attains its maximum at the seasonal frequency !

2 . Note that
we do not require the minimum to be necessarily zero in our identifying scheme. In empirical
applications, the actual value of the minimum is in°uenced by the data. Hence "g may still
have positive contribution to the variance of Y at the seasonal cycle frequency, although that
contribution is minimized under our identifying assumptions.
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On the other hand, the seasonal innovation "st not only has maximum contri-
butions to the spectrum of Y at the seasonal frequency, but also has a potentially
very large contribution to the spectrum of Y at the business cycle frequency. This
is so because the partial spectrum of Y with respect to "s,

B(e¡i!)S
³
e¡i!

´
¾2s ;

has one maximum at the seasonal frequency ! = ¼
2 (at which the seasonal factor

S(e¡i!) attains its maximum), and another maximum at the characteristic busi-

ness cycle frequency ! = cos¡1
³

ap
a2+b2

´
(at which the spectral function B(e¡i!)

attains its maximum).
Hence, the economic model as represented by equation (16) clearly satis̄ es the

identifying restrictions of the previous section. The dynamic implications of (16)
can be better appreciated in a graphic illustration. Figure 1 plots the spectrum
and partial spectrum of output Y de¯ned in (16) using the parameterization:
® = ¯ = ½ = 0:9; and ¾g = 1

4¾s = 1. It shows that the spectrum of output
(dashed lines) has two peaks, one centering at the seasonal frequency (! = 0:25
quarters per cycle), another centering at the business cycle frequency (! = 0:05
quarters per cycle). This means that cyclical °uctuations at these frequencies are
the two major contributors to the variance of output. The crucial thing to notice,

however, is that the partial spectrum of output with respect to seasonal shocks
(solid line) is most responsible for the shape of the total spectrum (i.e., the two
spectral peaks), indicating that seasonal shocks generate not only seasonal cycles,
but also business cycles. In the ¯gure, seasonal shocks explain not only virtually
all of the variance in output around the seasonal frequency, but also a substantial
fraction of the variance of output around the business cycle frequency, leaving
non-seasonal shocks to explain only a very limited portion of the business cycle
in output.

4. Estimation

This section reports the estimated business cycle e®ects of seasonal shocks for
some post war US aggregates using our identifying procedure outlined in section
2 (we use the seasonally unadjusted 3 month treasury bill rate as the instrument
variable). Since the US housing construction sector is most volatile both at the
business cycle frequency and at the seasonal cycle frequency, and many related
variables are quite stationary (see Figure 2), we ¯rst report our estimation results
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for housing starts for the US economy (1947:1 - 1996:2).18

Figure 3 shows the estimated dynamic responses of housing starts to innova-
tions in the non-seasonal and seasonal impulses (the time period is a quarter).
The left window shows the response of housing starts to a non-seasonal inno-
vation. It exhibits the typical hump-shaped pattern, re°ecting the endogenous
business cycle propagation mechanism. The right window shows the response of
housing starts to a seasonal innovation. It exhibits large seasonalities, re°ecting
the anticipated calender e®ect of the seasonal-cycle propagation mechanism of
the data, which has been modeled as indeterministic processes.19

At the impact period, the magnitude of the response to a seasonal innovation
is about 80 times larger than the response to a non-seasonal innovation, indicating
that housing starts are extremely sensitive to seasonal disturbances and relatively
not very sensitive to non-seasonal disturbances. Both type of responses show
hump-shaped transition patterns in returning to the steady state. The maximum
e®ect of non-seasonal shocks, however, is reached only 5 quarters after the impact.
For seasonal shocks, the low-frequency e®ect decays gradually (interrupted by
seasonal cycles) with the trough being reached only after 10 quarters, indicating
that seasonal shocks also have a strong business-cycle e®ect.

Figure 4 shows the time-series decomposition for housing starts. The top
window shows the time series representation of housing starts in the absence of
seasonal disturbances. The bottom window shows the time series representation
of housing starts due to seasonal disturbances. It is clear from the top window
that housing starts would have been much less volatile if the seasonal shocks
were absent. But the business cycle would still be present in housing starts even

without the non-seasonal business cycle shocks (see the bottom window).
To better appreciate the business cycle e®ect of seasonal shocks, Figure 5

presents the spectral decomposition of the total variance of housing starts across
frequencies. The total spectrum (dashed lines) has two peaks: one at the seasonal
frequency (0:25 cycles per quarter or 4 quarters per cycle) and another at the busi-

18We use stationary data r̄st to conduct our analyses, as it is well known that pre- l̄tering
using either the ¯rst di®erence ¯lter or the HP ¯lter may cause distortional results. All variables
are logged and 8 lags are used in the estimation.
19An indeterministic model of seasonality implies that the seasonal cycle can be observed

only when the economy is subject to random shocks at the seasons. A deterministic model of
seasonality, on the other hand, implies that the seasonal cycle can be observed in the steady state
even without seasonal shocks. We have adopted the indeterministic approach in our identifying
procedure. Consequently, the de¯nition for \seasonal shocks" is given by shocks that can trigger
the seasonal propagation mechanism, and that for \nonseasonal shocks" is given by shocks that
do not trigger the seasonal propagation mechanism.
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ness cycle frequency (0:035 cycles per quarter or 28 quarters per cycle). Looking
at the partial spectrum with respect to seasonal shocks (solid line), it is inter-
esting to see how much the seasonal shocks can contribute to the business cycle
movement in housing stars: an exceptionally large fraction of power around the
business cycle frequency is due to seasonal shocks. Across all frequencies, seasonal
shocks explain 81% of the total variance in housing starts. Around the business
cycle frequencies (6-40 quarters per cycle), at which the conventional business
cycle shocks are expected to dominate, seasonal shocks still explain about 69%
of the total variance of housing starts.

Let's now turn to the case of real GDP, consumption and investment.20 Figure
6 shows the real GDP growth for the US economy (1947:1 - 1987:4). Figures 7 and
8 show its decomposition in time and in frequency respectively.21 In particular,
the top window in ¯gure 7 shows the time-series representation of GDP growth in
the absence of seasonal innovations. The variance is only about 6% of the original
series shown in Figure 6, indicating that GDP growth would have been much
smoother if the seasonal disturbances had been absent from the US economy.
The bottom window in ¯gure 7 shows the time series of GDP due to seasonal
disturbances. The variance is about 94% of the total variance of GDP. Clearly,
seasonal movements are the most important source of °uctuations in GDP.

Figure 8 shows the e®ects of seasonal shocks across frequencies. There we
see similar pictures to that of housing stars. Namely, the largest contributor
to the total spectrum of GDP growth is the seasonal disturbance (solid line).22

Conventional business-cycle disturbances explain only 6% of the total spectrum
of GDP growth. Around the business cycle frequency (6-40 quarters per cycle),

seasonal disturbances still explain about 48% of the variance in GDP growth,
leaving the non-seasonal shocks to explain only about half of the business cycle
in GDP. In addition, spectral decomposition at zero frequency indicates that
seasonal disturbances have the dominant long-run e®ect on output.

The results are very similar for the case of consumption and investment. They
are summarized in Table 1. For the ¯rst-di®erenced data, seasonal shocks explain
about 94% of total variances in growth in consumption and investment across

20The price index used for deriving real quantities is seasonally unadjusted CPI. All variables
(including the instrument) are logged before the ¯rst-di®erence ¯lter or the HP ¯lter was applied
in deriving the growth rates. Six lags are included in the VARs.
21Figure 8 shows that the growth rate of GDP also has substantial power at the two-period

cycle frequency. It turns out that minimizing the impact of nonseasonal shocks at the seasonal
frequency is su±cient to induce a partial spectrum that also has minimal e®ect at the two-period
cycle frequency.
22The spectral peak at ! = 0:5 indicates harmonic cycles.
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all frequencies, and explain about 50% of variances around the business cycle
frequencies (6-40 quarters per cycle). For the HP ¯ltered data, seasonal shocks
explain about 70% or more of total variances in consumption and investment
across all frequencies, and about 45% of variances around the business cycle
frequencies.23

Table 1: Contributions of Seasonal Shocks to Variance (%)

variable all frequencies business cycle frequencies

¯rst di®erence

y 0.94 0.48
c 0.94 0.53
i 0.95 0.53

HP ¯lter

y 0.70 0.45
c 0.78 0.42
i 0.73 0.46

Despite the limited number of data series examined, we found consistent em-
pirical results suggesting that seasonal shocks have surprisingly large contribu-
tions to the business cycle in the US economy. These results are generally robust
to the instrument variable used. For example, if the GDP price index is used as
the instrument variable instead, we ¯nd even larger contributions to the business
cycle by seasonal shocks.

These empirical ¯ndings perhaps seem both astonishing and puzzling at ¯rst
glance. But, pondering them in light of the economic model provided in section 3

makes it obvious that seasonal shocks ought to have large e®ects on the business
cycle. This is so because no matter what measure we use, seasonal disturbances
are by far the most frequent, most regular, most synchronized, and on average
the severest shocks among all. What kind of endogenous propagation mechanism
can possibly escape from the impact of such strikes?

23Because the HP ¯lter puts more weight on business cycle frequencies and less weight on the
high seasonal frequencies, the relative importance of seasonal °uctuations in the total variance
is reduced.
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5. Conclusions

What shocks are responsible for the business cycle? After careful examination us-
ing seasonally adjusted data, Cochrane (1994) concludes that none of the popular

candidates for observable shocks accounts for the bulk of business-cycle °uctu-
ations in output. The possible role for seasonal shocks, however, is excluded a
priori. We developed an econometric procedure that allows us to identify sea-
sonal shocks versus non-seasonal shocks, and the business cycle e®ects of seasonal
shocks. Applying the procedure to the US data, we found that seasonal shocks
account for the bulk of business-cycle °uctuations in output (roughly 50%), and
that in general the larger the seasonal shocks are, the larger the business cycle
is.24 These ¯ndings suggest that models that rely heavily on technology shocks to
explain the business cycle are missspeci¯ed, that using seasonally adjusted data
to test or evaluate business cycle models may lead to incorrect conclusions, and
that theories of the business cycle, as well as government policies concerning the
business cycle ought to address seasonal °uctuations seriously.

While we ¯nd this simple exercise to have been worthwhile, we also believe
that further work is needed, especially to validate and to re¯ne our de¯nition of
seasonal shocks.25 We have in mind three speci¯c extensions. The ¯rst is to model

seasonalities as a mixture of both deterministic and indeterministic processes,
so as to allow a further decomposition of the business-cycle e®ects of seasonal
impulses into two parts: that due to the deterministic aspects of seasonalities,
and that due to the stochastic aspects of seasonalities. We believe that both
aspects of seasonalities can generate business cycles, but the mechanisms may be

24According to the economic model presented in Section 3, the relative contributions of sea-
sonal shocks to the business cycle depends on the variance ratio of seasonal disturbances and

nonseasonal disturbances, ¾2
s
¾2

g
. So for larger ¾2s , not only is the business cycle larger, but also

the fraction of the business cycle due to seasonal shocks.
A good empirical example is the comparison of housing starts and GDP. In terms of growth

rates, the volatility of housing starts is 43 times that of GDP. Although for both series, seasonal
movements account for about 95% of the total variance, the contribution of seasonal shocks
to business cycle °uctuations is 70 percent for housing starts, and 48 percent for GDP. This
suggests that housing starts would have been substantially less volatile not just at the seasonal
frequency, but even more so at the business cycle frequency if the seasonal disturbances driving
housing starts were not as severe.
These results are consistent with the empirical ¯ndings as well as theoretical conjectures of

existing literature on seasonal cycles (e.g., Barsky and Miron, 1989, Beaulieu, MacKie-Mason
and Miron, 1992, Miron 1996).
25In the paper, seasonal shocks are de¯ned as shocks that trigger °uctuations at the seasonal

frequency, and non-seasonal shocks are de¯ned as shocks that do not trigger the seasonal cycles.
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quite di®erent. The second extension is to ¯nd a way to identify the demand-
side seasonal shocks (e.g., the \Christmas" e®ect) and the supply-side seasonal
shocks (e.g., the weather e®ect). Research along this line can help address welfare
questions regarding the issue of smoothing seasonal cycles. If seasonal cycles are
largely demand driven, then clearly the welfare gains from smoothing them are
very di®erent from that when they are largely supply driven. The third extension
is to relax the orthogonality assumption with regard to seasonal and non-seasonal
shocks. Although seasonal innovations (such as unusual weather conditions in
each winter) and conventional business cycle innovations (such as a technological

break through) may well be orthogonal, they may also be correlated. Extension
along this line would also allow examination of seasonal monetary policies from
an alternative perspective, as in Barsky, Mankiw, Miron, and Weil (1988).
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Figure 1: Spectral Decomposition of Output in the Theoretical Business Cycle
Model. Dashed line represents the total spectrum under both shocks. Solid line

represents the partial spectrum under the seasonal shock only.
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Figure 2: US Housing Starts (1947:1 { 1996:2). Source: CITIBASE.
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Figure 3: Impulse Responses of Housing Starts to Di®erent Shocks.
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Figure 4: Time Series Decomposition of Housing Starts. Top: Fluctuations

absent seasonal shocks. Bottom: Fluctuations due to seasonal shocks.
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Figure 5: Spectral Decomposition of Housing Starts. Dashed lines represent the

total spectrum. Solid lines represent partial spectrum with respect to seasonal
shocks. Dotted lines represent partial spectrum with respect to nonseasonal

shocks.
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Figure 6: Real GDP Growth (1947:1 - 1987:4)
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Figure 7: Time Series Decomposition of GDP growth. Top: Fluctuations absent

seasonal shocks. Bottom: Fluctuations due to seasonal shocks.
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Figure 8: Spectral Decomposition of GDP growth (bottom window: room-in).

Dashed lines represent the total spectrum. Solid lines represent partial
spectrum with respect to seasonal shocks. Dotted lines represent partial

spectrum with respect to nonseasonal shocks.
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