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FULLY MODIFIED OLS FOR HETEROGENEOUS COINTEGRATED PANELS 

1. Introduction

In this paper we develop methods for estimating and testing hypotheses for cointegrating vectors

in dynamic time series panels.  In particular we propose methods based on fully modified OLS

principles which are able to accommodate considerable heterogeneity across individual members

of the panel.  Indeed, one important advantage to working with a cointegrated panel approach of

this type is that it allows researchers to selectively pool the long run information contained in the

panel while permitting the short run dynamics and fixed effects to be heterogeneous among

different members of the panel.   An important convenience of the fully modified approach that we

propose here is that in addition to producing asymptotically unbiased estimators, it also produces

nuisance parameter free standard normal distributions.  In this way, inferences can be made

regarding common long run relationships which are asymptotically invariant to the considerable

degree of short run heterogeneity that is prevalent in the dynamics typically associated with panels

that are composed of aggregate national data.   

1.1 Nonstationary panels and heterogeneity

Methods for nonstationary time series panels, including unit root and cointegration tests,

have been gaining increased acceptance in a number of areas of empirical research.   Early

examples include Canzoneri, Cumby and Diba (1996), Chinn and Johnson (1996), Chinn (1997),

Evans and Karras (1996), Neusser and Kugler (1998), Obstfeld and Taylor (1996), Oh (1996),

Papell (1998), Pedroni (1996b), Taylor (1996) and Wu (1996), with many more since.  These

studies have for the most part been limited to applications which simply ask whether or not

particular series appear to contain unit roots or are cointegrated.  In many applications, however,

it is also of interest to ask whether or not common cointegrating vectors take on particular values. 

In this case, it would be helpful to have a technique that allows one to test such hypothesis about
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the cointegrating vectors in a manner that is consistent with the very general degree of cross

sectional heterogeneity that is permitted in such panel unit root and panel cointegration tests.

In general, the extension of conventional nonstationary methods such as unit root and

cointegration tests to panels with both cross section and time series dimensions holds considerable

promise for empirical research considering the abundance of data which is available in this form. 

In particular, such methods provide an opportunity for researchers to exploit some of the

attractive theoretical properties of nonstationary regressions while addressing in a natural and

direct manner the small sample problems that have in the past often hindered the practical success

of these methods.  For example, it is well known that superconsistent rates of convergence

associated with many of these methods can provide empirical researchers with an opportunity to

circumvent more traditional exogeneity requirements in time series regressions.  Yet the low

power of many of the associated statistics has often impeded the ability to take full advantage of

these properties in small samples.  By allowing data to be pooled in the cross sectional dimension,

nonstationary panel methods have the potential to improve upon these small sample limitations. 

Conversely, the use of nonstationary time series asymptotics provides an opportunity to make

panel methods more amenable to pooling aggregate level data by allowing researchers to

selectively pool the long run information contained in the panel, while allowing the short run

dynamics to be heterogeneous among different members of the panel. 

Initial methodological work on nonstationary panels focused on testing for unit roots in

univariate panels.  Quah (1994) derived standard normal asymptotic distributions for testing unit

roots in homogeneous panels as both the time series and cross sectional dimensions grow large. 

Levin and Lin (1993) derived distributions under more general conditions that allow for

heterogeneous fixed effects and time trends.  More recently, Im, Pesaran and Shin (1995) study

the small sample properties of unit root tests in panels with heterogeneous dynamics and propose

alternative tests based on group mean statistics.  In practice however, empirical work often
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involves relationships within multi-variate systems.  Toward this end, Pedroni (1993, 1995)

studies the properties of spurious regressions and residual based tests for the null of no

cointegration in dynamic heterogeneous panels.  The present paper continues this line of research

by proposing a convenient method for estimating and testing hypotheses about common

cointegrating vectors in a manner that is consistent with the degree of heterogeneity permitted in

these panel unit root and panel cointegration studies.

In particular, we address here two key sources of cross member heterogeneity that are

particularly important in dealing with dynamic cointegrated panels.  One such source of

heterogeneity manifests itself in the familiar fixed effects form.  These reflect differences in mean

levels among the variables of different individual members of the panel and we model these by

including individual specific intercepts.  The second key source of heterogeneity in such panels

comes from differences in the way that individuals respond to short run deviations from

equilibrium cointegrating vectors that develop in response to stochastic disturbances.  In keeping

with earlier panel unit root and panel cointegration papers, we model this form of heterogeneity

by allowing the associated serial correlation properties of the error processes to vary across

individual members of the panel.

1.2  Related literature

Since the original version of this paper, Pedroni (1996a), many more papers have

contributed to our understanding of hypothesis testing in cointegrating panels.  For example, Kao

and Chiang (1997) extended their original paper on the least squares dummy variable model in

cointegrated panels, Kao and Chen (1995), to include a comparison of the small sample properties

of a dynamic OLS estimator with other estimators including a FMOLS estimator similar to

Pedroni (1996a).  Specifically, Kao and Chiang (1997) demonstrated that a panel dynamic OLS
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estimator has the same asymptotic distribution as the type of panel FMOLS estimator derived in

Pedroni (1996a) and showed that the small sample size distortions for such an estimator were

often smaller than certain forms of the panel FMOLS estimator.  The asymptotic theory in these

earlier papers were generally based on sequential limit arguments (allowing the sample sizes T and

N to grow large sequentially), whereas Phillips and Moon (1999) subsequently provided a

rigorous and more general study of the limit theory in nonstationary panel regressions under joint

convergence (allowing T and N to grow large concurrently).  Phillips and Moon (1999) also

provided a set of regularity conditions under which convergence in sequential limits  implies

convergence in joint limits, and considered these properties in the context of a FMOLS estimator,

although they do not specifically address the small sample properties of feasible versions of the

estimators.   More recently, Mark and Sul (1999) also study a similar form of the panel dynamic

OLS estimator first proposed by Kao and Chiang (1997).  They compare the small sample

properties of a weighted versus unweighted version of the estimator and find that the unweighted

version generally exhibits smaller size distortion than the weighted version.

In the current version of this paper we report new small sample results for the group mean

panel FMOLS estimator that was proposed in the original version.  An advantage of the group

mean estimator over the other pooled panel FMOLS estimators proposed in the original version is

that the t-statistic for this estimator allows for a more flexible alternative hypothesis.  This is

because the group mean estimator is based on the so called “between dimension” of the panel,

while the pooled estimators are based on the “within dimension” of the panel.  Accordingly, the

group mean panel FMOLS provides a consistent test of a common value for the cointegrating

vector under the null hypothesis against values of the cointegrating vector that need not be

common under the alternative hypothesis, while the pooled within dimension estimators do not. 

Furthermore, as Pesaran and Smith (1995) argue in the context of OLS regressions, when the true

slope coefficients are heterogeneous, group mean estimators provide consistent point estimates of
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the sample mean of the heterogeneous cointegrating vectors, while pooled within dimension

estimators do not.  Rather, as Phillips and Moon (1999) demonstrate, when the true cointegrating

vectors are heterogeneous, pooled within dimension estimators provide consistent point estimates

of the average regression coefficient, not the sample mean of the cointegrating vectors.  Both of

these features of the group mean estimator are often important in practical applications.

Finally, the implementation of the feasible form of the between dimension group mean

estimator also has advantages over the other estimators in the presence of heterogeneity of the

residual dynamics around the cointegrating vector.  As was demonstrated in the original version

of this paper, in the presence of such heterogeneity, the pooled panel FMOLS estimator requires a

correction term that depends on the true cointegrating vector.  For a specific null value for a

cointegrating vector, the t-statistic is well defined, but of course this is of little use per se when

one would like to estimate the cointegrating vector.  One solution is to obtain a preliminary

estimate of the cointegrating vector using OLS.   However, although the OLS estimator is

superconsistent, it is still contains a second order bias in the presence of endogeneity, which is not

eliminated asymptotically.  Accordingly, this bias leads to size distortion, which is not necessarily

eliminated even when the sample size grows large in the panel dimension.  Consequently, this type

of approach based on a first stage OLS estimate was not been recommended in the original

version of this paper, and it is not surprising that Monte Carlo simulations have shown large size

distortions for such estimators.   Even when the null hypothesis was imposed without using an

OLS estimator, the size distortions for this type of estimator were large as reported in the original

version of this paper.  Similarly, Kao and Chiang (1997) also found large size distortions for such

estimators when OLS estimates were used in the first stage for the correction term.  By contrast,

the feasible version of the between dimension group mean based estimator does not suffer from

these difficulties, even in the presence of heterogeneous dynamics.  As we will see, the size

distortions for this estimator are minimal, even in panels of relatively modest dimensions.
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The remainder of the paper is structured as follows.  In the next section, we introduce the

econometric models of interest for heterogeneous cointegrated panels.  We then present a number

of theoretical results for estimators designed to be asymptotically unbiased and to provide

nuisance parameter free asymptotic distributions which are standard normal when applied to

heterogeneous cointegrated panels and can be used to test hypotheses regarding common

cointegrating vectors in such panels.   In section 3 we study the small sample properties of these

estimators and propose feasible FMOLS statistics that performs relatively well in realistic panels

with heterogeneous dynamics.  In section 4 we offer conclusions and discuss a number of related

issues in the ongoing research on estimation and inference in cointegrated panels.

2.  Asymptotic Results for Fully Modified OLS in Heterogeneous Cointegrated Panels

In this section we study asymptotic properties of cointegrating regressions in dynamic panels with

common cointegrating vectors and suggest how a fully modified OLS estimator can be

constructed to deal with complications introduced by the presence of parameter heterogeneity in

the dynamics and fixed effects across individual members.  We begin, however, by discussing the

basic form of a cointegrating regression in such panels and the problems associated with

unmodified OLS estimators.

2.1 Cointegrating regressions in heterogeneous panels

Consider the following cointegrated system for a panel of   members,

where the vector error process   is stationary with asymptotic covariance matrix  . 
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 The computer program which accompanies this paper also allows one to implement these tests for1

any arbitrary number of regressors.

Thus, the variables  are said to cointegrate for each member of the panel, with cointegrating

vector  if   is integrated of order one.  The term  allows the cointegrating relationship to

include member specific fixed effects.  In keeping with the cointegration literature, we do not

require exogeneity of the regressors.  As usual,  can in general be an m dimensional vector of

regressors, which are not cointegrated with each other.  For simplicity and convenience of

notation, we will refer to  as univariate, although each of the results of this study generalize in

an obvious and straightforward manner to the vector case, unless otherwise indicated.1

In order to explore the asymptotic properties of estimators as both the cross sectional

dimension, N, and the time series dimension, T, grow large, we will make assumptions similar in

spirit to Pedroni (1995) regarding the degree of dependency across both these dimensions.  In

particular, for the time series dimension, we will assume that the conditions of the multi-variate

functional central limit theorems used in Phillips and Durlauf (1986) and Park and Phillips (1988),

hold for each member of the panel as the time series dimension grows large.  Thus, we have

Assumption 1.1 (invariance principle):  The process  satisfies a multi-variate functional

central limit theorem such that the convergence  as  for the partial sum  

holds for any given member, i, of the panel, where  is Brownian motion defined over the

real interval , with asymptotic covariance .

This assumption indicates that the multi-variate functional central limit theorem, or invariance

principle, holds over time for any given member of the panel.  This places very little restriction on

the temporal dependency and heterogeneity of the error process, and encompasses for example a

broad class of stationary ARMA processes.  It also allows the serial correlation structure to be

different for individual members of the panel.  Specifically, the asymptotic covariance matrix, 
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(2)

varies across individual members, and is given by  , which

can also be decomposed as  , where   is the contemporaneous covariance

and   is a weighted sum of autocovariances.  The off-diagonal terms of these individual  

matrices  capture the endogenous feedback effect between  and ,  which is also permitted to

vary across individual members of the panel.  For several of the estimators that we propose, it will

be convenient to work with a triangularization of this asymptotic covariance matrix.  Specifically,

we will refer to this lower triangular matrix of  as , whose elements are related as follows

Estimation of the asymptotic covariance matrix can be based on any one of a number of consistent

kernel estimators such as the Newey and West (1987) estimator. 

Next, for the cross sectional dimension, we will employ the standard panel data

assumption of independence.  Hence we have:

Assumption 1.2 (cross sectional independence):  The individual processes are assumed to be

independent cross sectionally, so that .  More generally, the asymptotic

covariance matrix for a panel of dimension NxT is block diagonal with the ith diagonal block

given by the asymptotic covariance for member i.

This type of assumption is typical of our panel data approach, and we will be using this condition

in the formal derivation of the asymptotic distribution of our panel cointegration statistics.  For

panels that exhibit common disturbances that are shared across individual members, it will be

convenient to capture this form of cross sectional dependency by the use of a common time

dummy, which is a fairly standard panel data technique.  For panels with even richer cross

sectional dependencies, one might think of estimating a full non-diagonal  matrix of  
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 See Phillips and Moon (1999) for a recent formal study of the regularity conditions required for the2

use of sequential limit theory in panel data and a set of conditions under which sequential limits imply joint
limits.  

elements, and then premultiplying the errors by this matrix in order to achieve cross sectional

independence.  This would require the time series dimension to grow much more quickly than the

cross sectional dimension, and in most cases one hopes that a common time dummy will suffice. 

While the derivation of most of the asymptotic results of this paper are relegated to the

mathematical appendix, it is worth discussing briefly here how we intend to make use of

assumptions 1.1 and 1.2 in providing asymptotic distributions for the panel statistics that we

consider in the next two subsections.  In particular, we will employ here simple and somewhat

informal sequential limit arguments by first evaluating the limits as the T dimension grows large

for each member of the panel in accordance with assumption 1.1 and then evaluating the sums of

these statistics as the N dimension grows large under the independence assumption of 1.2.    In2

this manner, as N grows large we obtain standard distributions as we average the random

functionals for each member that are obtained in the initial step as a consequence of letting T

grow large.  Consequently, we view the restriction that first  and then  as a relatively

strong restriction that ensures these conditions, and it is possible that in many circumstances a

weaker set of restrictions that allow N and T to grow large concurrently, but with restrictions on

the relative rates of growth might deliver similar results.  In general, for heterogeneous error

processes, such restrictions on the rate of growth of N  relative to T can be expected to depend in

part on the rate of convergence of the particular kernel estimators used to eliminate the nuisance

parameters, and we can expect that our iterative  and then  requirements proxy for the

fact that in practice our asymptotic approximations will be more accurate in panels with relatively

large T dimensions as compared to the N dimension.  Alternatively, under a more pragmatic

interpretation, one can simply think of letting  for fixed N reflect the fact that typically for
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the panels in which we are interested, it is the time series dimension which can be expected to

grow in actuality rather than the cross sectional dimension, which is in practice fixed.  Thus, 

is in a sense the true asymptotic feature in which we are interested, and this leads to statistics

which are characterized as sums of i.i.d. Brownian motion functionals.  For practical purposes,

however, we would like to be able to characterize these statistics for the general case in which N 

is large, and  in this case we take  as a convenient benchmark for which to characterize the

distribution, provided that we understand  to be the dominant asymptotic feature of the data.

2.2 Asymptotic properties of panel OLS

Next, we consider the properties of a number of statistics that might be used for a

cointegrated panel as described by (1) under assumptions 1.1 and 1.2 regarding the time series

and cross dimensional dependencies in the data.  The first statistic that we examine is a standard

panel OLS estimator of the cointegrating relationship.  It is well known that the conventional

single equation OLS estimator for the cointegrating vector is asymptotically biased and that its

standardized distribution is dependent on nuisance parameters associated with the serial

correlation structure of the data, and there is no reason to believe that this would be otherwise for

the panel OLS estimator.  The following proposition confirms this suspicion.

Proposition 1.1 (Asymptotic Bias of the Panel OLS Estimator).  Consider a standard panel

OLS estimator for the coefficient  of panel (1), under assumptions 1.1 and 1.2, given as

Then,  a) The estimator is asymptotically biased and its asymptotic distribution will be dependent

on nuisance parameters associated with the dynamics of the underlying processes.
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b) Only for the special case in which the regressors are strictly exogenous and the dynamics are

homogeneous across members of the panel can valid inferences be made from the standardized

distribution of  or its associated t-statistic.

As the proof of proposition 1.1 given in the appendix makes clear, the source of the problem

stems from the endogeneity of the regressors under the usual assumptions regarding cointegrated

systems.  While an exogeneity assumption is common in many treatments of cross sectional

panels, for dynamic cointegrated panels such strict exogeneity is by most standards not

acceptable.  It is stronger than the standard exogeneity assumption for static panels, as it implies

the absence of any dynamic feedback from the regressors at all frequencies.  Clearly, the problem

of asymptotic bias and data dependency from the endogenous feedback effect can no less be

expected to diminish in the context of such panels, and Kao and Chen (1995) document this bias

for a panel of cointegrated time series for the special case in which the dynamics are

homogeneous.  For the conventional time series case, a number of methods have been devised to

deal with the consequences of such endogenous feedback effects, and in what follows we develop

an approach for cointegrated panels based on fully modified OLS principles similar in spirit to

those used by Phillips and Hanson (1990).

2.3 Pooled fully modified OLS estimators for heterogeneous panels

Phillips and Hansen (1990) proposed a semi-parametric correction to the OLS estimator

which eliminates the second order bias induced by the endogeneity of the regressors.   The same

principle can also be applied to the panel OLS estimator that we have explored in the previous

subsection.  The key difference in constructing our estimator for the panel data case will be to

account for the heterogeneity that is present in the fixed effects as well as in the short run

dynamics.  These features lead us to modify the form of the standard single equation fully
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modified OLS estimator.  We will also find that the presence of fixed effects has the potential to

alter the asymptotic distributions in a nontrivial manner.  

The following proposition establishes an important preliminary result which facilitates

intuition for the role of heterogeneity and the consequences of dealing with both temporal and

cross sectional dimensions for fully modified OLS estimators.  

Proposition 1.2 (Asymptotic Distribution of the Pooled Panel FMOLS Estimator).  Consider a

panel FMOLS estimator for the coefficient  of panel (1) given by

        where        ,    

        and   is a lower triangular decomposition of   as defined in (2) above.     

Then, under assumptions 1.1 and 1.2, the estimator   converges to the true value at rate

, and is distributed as

as  and .

As the proposition indicates, when proper modifications are made to the estimator, the

corresponding asymptotic distribution will be free of the nuisance parameters associated with any

member specific serial correlation patterns in the data.  Notice also that this fully modified panel

OLS estimator is asymptotically unbiased for both the standard case without intercepts as well as

the fixed effects model with heterogeneous intercepts.  The only difference is in the size of the
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 A separate issue pertains to differences between the sample averages and the true population3

means.  Since we are treating the asymptotics sequentially, this difference goes to zero as T grows large prior
to averaging over N, and thus does not impact the limiting distribution.  Otherwise, more generally we would
require that the ratio  goes to zero as N and T grow large in order to ensure that these differences do not
impact the limiting distribution.  We return to this point in the discussion of the small sample properties in
section 3.2.

variance, which is equal to 2 in the standard case, and 6 in the case with heterogeneous intercepts,

both for  univariate.  More generally, when  is an m-dimensional vector, the specific values

for v will also be a function of the dimension m.  The associated t-statistics, however, will not

depend on the specific values for v, as we shall see.  

The fact that this estimator is distributed normally, rather than in terms of unit root

asymptotics as in Phillips and Hansen (1990), derives from the fact that these unit root

distributions are being averaged over the cross sectional dimension.   Specifically, this averaging

process produces normal distributions whose variance depend only on the moments of the

underlying Brownian motion functionals that describe the properties of the integrated variables. 

This is achieved by constructing the estimator in a way that isolates the idiosyncratic components

of the underlying Wiener processes to produce sums of standard and independently distributed

Brownian motion whose moments can be computed algebraically, as the proof of the proposition

makes clear.  The estimators    and   , which correspond to the long run standard errors of

conditional process , and the marginal process  respectively, act to purge the contribution

of these idiosyncratic elements to the endogenous feedback and serial correlation adjusted statistic 

.

 The fact that the variance is larger for the fixed effects model in which heterogeneous

intercepts are included stems from the fact that in the presence of unit roots, the variation from

the cross terms of the sample averages  and  grows large over time at the same rate T, so that

their effect is not eliminated asymptotically from the distribution of  .    However,3

since the contribution to the variance is computable analytically as in the proof of proposition 1.2,
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this in itself poses no difficulties for inference.  Nevertheless, upon consideration of these

expressions, it also becomes apparent that there should exist a metric which can directly adjust for

this effect in the distribution and consequently render the distribution standard normal.  In fact, as

the following proposition indicates, it is possible to construct a t-statistic from this fully modified

panel OLS estimator whose distribution will be invariant to this effect.

Corollary 1.2 (Asymptotic Distribution of the Pooled Panel FMOLS t-statistic).  Consider the

following t-statistic for the FMOLS panel estimator of  as defined in proposition 1.2 above. 

Then under the same assumptions as in proposition 1.2, the statistic is standard normal,

as  and  for both the standard model without intercepts as well as the fixed effects

model with heterogeneous estimated intercepts.

Again, as the derivation in the appendix makes apparent, because the numerator of the fully

modified estimator  is a sum of mixture normals with zero mean whose variance depends only

on the properties of the Brownian motion functionals associated with the quadratic ,

the t-statistic constructed using this expression will be asymptotically standard normal.  This is

regardless of the value of v associated with the distribution of   and so will also not

depend on the dimensionality of   in the general vector case.  

Notice, however, that in contrast to the conventional single equation case studied by

Phillips and Hansen (1990), in order to ensure that the distribution of this t-statistic is free of

nuisance parameters when applied to heterogeneous panels, the usual asymptotic variance

estimator of the denominator is replaced with the estimator .  By construction, this

corresponds to an estimator of the asymptotic variance of the differences for the regressors and
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can be estimated accordingly.  This is in contrast to the t-statistic for the conventional single

equation fully modified OLS, which uses an estimator for the conditional asymptotic variance

from the residuals of the cointegrating regression.  This distinction may appear puzzling at first,

but it stems from the fact that in heterogeneous panels the contribution from the conditional

variance of the residuals is idiosyncratic to the cross sectional member, and must be adjusted for

directly in the construction of the numerator of the  estimator itself before averaging over

cross sections.  Thus, the conditional variance has already been implicitly accounted for in the

construction of , and all that is required is that the variance from the marginal process  be

purged from the quadratic .  Finally, note that proposition 1.2 and its corollary 1.2

have been specified in terms of a transformation, , of the true residuals.  In section 3 we will

consider various strategies for specifying these statistics in terms of observables and consider the

small sample properties of the resulting feasible statistics.  

2.4  A group mean fully modified OLS t-statistic

Before preceding to the small sample properties, we first consider one additional

asymptotic result that will be of use.  Recently Im, Pesaran and Shin (1995) have proposed using

a group mean statistic to test for unit roots in panel data.  They note that under certain

circumstances, panel unit root tests may suffer from the fact that the pooled variance estimators

need not necessarily be asymptotically independent of the pooled numerator and denominator

terms of the fixed effects estimator. Notice, however, that the fully modified panel OLS statistics

in proposition 1.2 and corollary 1.2 here have been constructed without the use of a pooled

variance estimator.  Rather, the statistics of the numerator and denominator have been purged of

any influence from the nuisance parameters prior to summing over N.  Furthermore, since

asymptotically the distribution for the numerator is centered around zero, the covariance between

the summed terms of the numerator and denominator also do not play a role in the asymptotic
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T64 N64

16

distribution of    or   as they would otherwise.  

Nevertheless, it is also interesting to consider the possibility of a fully modified OLS group

mean statistic in the present context.  In particular, the group mean t-statistic is useful because it

allows one to entertain a somewhat broader class of hypotheses under the alternative. 

Specifically, we can think of the distinction as follows.  The t-statistic for the true panel estimator

as described in corollary 1.2 can be used to test the null hypothesis  for all i versus the

alternate hypothesis  for all i where  is the hypothesized common value for 

under the null, and  is some alternative value for  which is also common to all members of the

panel.   By contrast, the group mean fully modified t-statistic can be used to test the null

hypothesis  for all i versus the alternate hypothesis  for all i, so that the

values for  are not necessarily constrained to be homogeneous across different members under

the alternative hypothesis

The following proposition gives the precise form of the panel fully modified OLS t-

statistic that we propose and gives its asymptotic distributions.

Proposition 1.3 (Asymptotic Distribution of the Panel FMOLS Group Mean t-Statistic). 

Consider the following group mean FMOLS t-statistic for  of the cointegrated panel (1).  Then

under assumptions 1.1 and 1.2, the statistic is standard normal, and

       where   ,    

        and   is a lower triangular decomposition of   as defined in (2) above,     

as  and  for both the standard model without intercepts as well as the fixed effects

model with heterogeneous intercepts.
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Notice that the asymptotic distribution of this group mean statistic is also invariant to whether or

not the standard model without intercepts or the fixed effects model with heterogeneous

intercepts has been estimated.   Just as with the previous t-statistic of corollary 1.2, the

asymptotic distribution of this panel group mean t-statistic will also be independent of the

dimensionality of  for the more general vector case.  Thus, we have presented two different

types of t-statistics, a pooled panel OLS based fully modified t-statistic based on the “within”

dimension of the panel, and a group mean fully modified OLS t-statistic based on the “between”

dimension of the panel, both of which are asymptotically unbiased, free of nuisance parameters,

and invariant to whether or not idiosyncratic fixed effects have been estimated.  Furthermore, we

have characterized the asymptotic distribution of the fully modified panel OLS estimator itself,

which is also asymptotically unbiased and free of nuisance parameters, although in this case one

should be aware that while the distribution will be a centered normal, the variance will depend on

whether heterogeneous intercepts have been estimated and on the dimensionality of the vector of

regressors.  In the remainder of the paper we investigate the small sample properties of feasible

statistics associated with these asymptotic results and consider their application to the purchasing

power parity question.

3.  Small Sample Properties of Feasible Panel Fully Modified OLS Statistics

In this section we investigate the small sample properties of the pooled and group mean panel

FMOLS estimators that were developed in the previous section.  We discuss two alternative

feasible estimators associated with the panel FMOLS estimators of proposition 1.2 and its t-

statistic, which were defined only in terms of the true residuals.  While these estimators perform

reasonably well in idealized situations, more generally, size distortions for these estimators have

the potential to be fairly large in small samples, as was reported in the earlier version of this paper. 

By contrast, we find that the group mean test statistics do very well and exhibit relatively little
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size distortion even in relatively small panels even in the presence of substantial cross sectional

heterogeniety of the error process associated with the dynamics around the cointegrating vector. 

Consequently, after discussing some of the basic properties of the feasible versions of the pooled

estimators and the associated difficulties for small samples, we focus here on reporting the small

sample properties of the group mean test statistics, which are found to do extremely well provided

that the time series dimension is not smaller than the cross sectional dimension.

3.1 General properties of the feasible estimators

First, before reporting the results for the between dimension group mean test statistic, we

discuss the general properties of various feasible forms of the within dimension pooled panel fully

modified OLS and consider the consequences of these properties in small samples.   One obvious

candidate for a feasible estimator based on proposition 1.2 would be to simply construct the

statistic in terms of estimated residuals, which can be obtained from the initial N single equation

OLS regressions associated with the cointegrating regression for (1).  Since the single equation

OLS estimator is superconsistent, one might hope that this produces a reasonably well behaved

statistic for the panel FMOLS estimator.  The potential problem with this reasoning stems from

the fact that although the OLS regression is superconsistent it is also asymptotically biased in

general.  While this is a second order effect for the conventional single series estimator, for panels,

as N grows large, the effect has the potential to become first order.  

Another possibility might appear to be to construct the feasible panel FMOLS estimator

for proposition 1.2 in terms of the original data series   along the lines

of how it is often done for the conventional single series case.  However, this turns out to be

correct only in very specialized cases.  More generally, for heterogeneous panels, this will

introduce an asymptotic bias which depends on the true value of the cointegrating relationship and

the relative volatility of the series involved in the regression.  The following makes this
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relationship precise.

Proposition 2.1 (Regarding Feasible Pooled Panel FMOLS)  Under the conditions of

proposition 1.2 and corollary 1.2, consider the panel FMOLS estimator for the coefficient  of

panel (1) given by

where   

and  and  are defined as before.  Then the statistics   and    constructed

from this estimator are numerically equivalent to the ones defined in proposition 1.2 and

corollary 1.2 .

This proposition shows why it is difficult to construct a reliable point estimator based on the naive

FMOLS estimator simply by using a transformation of   analogous to the single equation case. 

Indeed, as the proposition makes explicit, such an estimator would in general depend on the true

value of the parameter that it is intended to estimate, except in very specialized cases, which we

discuss below.  On the other hand, this does not necessarily prohibit the usefulness of an estimator

based on proposition 2.1 for the purposes of testing a particular hypothesis about a cointegrating

relationship in heterogeneous panels.   By using the hypothesized null value for  in the

expression for , proposition 2.1 can at least in principle be employed to construct a feasible

FMOLS statistics to test the null hypothesis that  for all i .  However, as was reported in

the original version of this paper, even in this case the small sample performance of the statistic is

often subject to relatively large size distortion.

Proposition 2.1 also provides us with an opportunity to examine the consequences of

ignoring heterogeneity associated with the serial correlation dynamics for the error process for
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this type of estimator.  In particular, we notice that the modification involved in this estimator

relative to the convential time series fully modified OLS estimator differs in two respects.  First, it

includes the estimators  and  that premultiply the numerator and denominator terms to

control for the idiosyncratic serial correlation properties of individual cross sectional members

prior to summing over N.  Secondly, and more importantly, it includes in the transformation of the

dependent variable    an additional term .  This term is eliminated only in two

special cases: (1) The elements  and  are identical for all members of the panel, and do not

need to be indexed by i .  This corresponds to the case in which the serial correlation structure of

the data is homogeneous for all members of the panel.  (2) The elements  and  are perhaps

heterogeneous across members of the panel, but for each panel .  This corresponds to

the case in which asymptotic variances of the dependent and independent variables are the same. 

Conversely, the effect of this term increases as (1) the dynamics become more heterogeneous for

the panel, and (2) as the relative volatility becomes more different between the variables  and 

 for any individual members of the panel.  For most panels of interest, these are likely to be

important practical considerations.  On the other hand, if the data are known to be relatively

homogeneous or simple in its serial correlation structure, the imprecise estimation of these

elements will decrease the attractiveness of this type of estimator relative to one that implicitly

imposes these known restrictions.

3.2  Monte Carlo simulation results

We now study small sample properties in a series of Monte Carlo simulations.  Given the

difficulties associated with the feasible versions of the within dimension pooled panel fully

modified OLS estimators discussed in the previous subsection based on proposition 2.1, it is not

surprising that these tend to exhibit relatively large size distortions in certain scenarios, as

reported in the original version of this paper.   Kao and Chiang  (1997) subsequently also
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 Of course this is not to say that all within dimension estimators will necessarily suffer from this4

particular form of size distortion, and it is likely that some forms of the pooled FMOLS estimator will be
better behaved than others.  Nevertheless, given the other attractive features of the between dimension group
mean estimator, we focus here on reporting the very attractive small sample properties of this estimator.

confirmed the poor small sample properties of the within dimension pooled panel fully modified

estimator based on a version in which a first stage OLS estimate was used for the adjustment

term.  Indeed, such results should not be surprising given that the first stage OLS estimator

introduces a second order bias in the presence of endogeneity, which is not eliminated

asymptotically.  Consequently, this bias leads to size distortion for the panel which is not

necessarily eliminated even when the sample size grows large.  By contrast, the feasible version of

the between dimension group mean estimator does not require such an adjustment term even in

the presence of heterogeneous serial correlation dynamics, and does not suffer from the same size

distortion.    Consequently, we focus here on reporting the small sample Monte Carlo results for4

the between dimension group mean estimator and refer readers to the original version of the paper

for simulation results for the feasible versions of the within dimension pooled estimators.

To facilitate comparison with the conventional time series literature, we use as a starting

point a few Monte Carlo simulations analogous to the ones studied in Phillips and Loretan (1991)

and Phillips and Hansen (1990) based on their original work on FMOLS estimators for

conventional time series.   Following these studies, we model the errors for the data generating

process in terms of a vector MA(1) process and consider the consequences of varying certain key

parameters.  In particular, for the purposes of the Monte Carlo simulations, we model our data

generating process for the cointegrated panel (1) under assumptions 1.1 and 1.2 as

 ,    , for which we model the vector error process  in terms of
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(3)

a vector moving average process given by 

where  is a 2x2 coefficient matrix and  is a 2x2 contemporaneous covariance matrix.  In

order to accommodate the potentially heterogeneous nature of these dynamics among different

members of the panel, we have indexed these parameters by the subscript i.  We will then allow

these parameters to be drawn from uniform distributions according to the particular experiment.  

Likewise, for each of the experiments we draw the fixed effects   from a uniform distribution,

such that .

We consider first as a benchmark case an experiment which captures much of the richness

of the error process studied in Phillips and Loretan (1991) and yet also permits considerable

heterogeneity among individual members of the panel.  In their study, Phillips and Loretan (1991),

following Phillips and Hansen (1990), fix the following parameters , 

,   and then permit  and  to vary.  The coefficient   is

particularly interesting since a nonzero value for this parameter reflects an absence of even weak

exogeneity for the regressors in the cointegrating regression associated with (1), and is captured

by the term  in the panel FMOLS statistics.  For our heterogeneous panel, we therefore set

,  and draw the remaining parameters from uniform distributions which

are centered around the parameter values set by Phillips and Loretan (1991), but deviate by up to

0.4 in either direction for the elements of  and by up to 0.85 in either direction for .  

Thus, in our first experiment, the parameters are drawn as follows: ,

, ,  and .  This

specification achieves considerable heterogeneity across individual members and also allows the

key parameters  and  to span the set of values considered in Phillips and Loretan’s study. 

In this first experiment we restrict the values of  to span only the positive set of values
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considered in Phillips and Loretan for this parameter.  In several cases Phillips and Loretan found

negative values for  to be particularly problematic in terms of size distortion for many of the

conventional test statistics applied to pure time series, and in our subsequent experiments we also

consider the consequences of drawing negative values for this coefficient.   In each case, the

asymptotic covariances were estimated individually for each member i of the cross section using

the Newey-West (1987) estimator.  In setting the lag length for the band width, we employ the

data dependent scheme recommended in Newey and West (1994), which is to set the lag

truncation to the nearest integer given by  , where T is the number of sample

observations over time.   Since we consider small sample results for panels ranging in dimension

from T=10 to T=100 by increments of 10, this implies that the lag truncation ranges from 2 to 4.   

For the cross sectional dimension, we consider small sample results for N=10, N=20 and N=30

for each of these values of  T.

Results for the first experiment, with  are reported in table I of appendix

B.  The first column of results reports the bias of the point estimator and the second column

reports the associated standard error of the sampling distribution.   Clearly, the biases are small at 

-0.058 even in extreme cases when both the N and T dimensions are as small as N=10, T=10 and

become minuscule as the T dimension grows larger.  At N=10, T=30 the bias is already down to -

0.009, and at T=100 it goes to -0.001.   This should be anticipated, since the estimators are

superconsistent and converge at rate , so that even for relatively small dimensions the

estimators are extremely precise.  Furthermore, the Monte Carlo simulations confirm that the bias

is reduced more quickly with respect to growth in the T dimension than with respect to growth in

the N dimension.  For example, the biases are much smaller for T=30, N=10 than for T=10, N=30

for all of the experiments.   The standard errors in column two confirm that the sampling variance

around these biases are also very small.  Similar results continue to hold in subsequent

experiments with negative moving average coefficients, regardless of the data generating process
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for the serial correlation processes.   Consequently, the first thing to note is that these estimators

are extremely accurate even in panels with very heterogeneous serial correlation dynamics, fixed

effects and endogenous regressors.

Of course these findings on bias should not come as a surprise given the superconsistency

results presented in the previous section.  Instead, a more central concern for the purposes of

inference are the small sample properties of the associated t-statistic and the possibility for size

distortion.  For this, we consider the performance of the small sample sizes of the test under the

null hypothesis for various nominal sizes based on the asymptotic distribution.  Specifically, the

last two columns report the Monte Carlo small sample results for the nominal 5% and 10% p-

values respectively for a two sided test of the null hypothesis .  As a general rule, we find

that the size distortions in these small samples are remarkably small provided that the time series

dimension, T,  is not smaller than the cross sectional dimension, N.  The reason for this condition

stems primarily as a consequence of the estimation of the fixed effects.  The number of fixed

effects, , grows with the N dimension of the panel.  On the other hand, each of these N fixed

effects are estimated consistently as T grows large, so that  goes to zero only as T grows

large.  Accordingly, we require T to grow faster than N in order to eliminate this effect

asymptotically for the panel.  As a practical consequence, small sample size distortion tends to be

high when N is large relative to T, and decreases as T becomes large relative to N, which can be

anticipated in any fixed effects model.  As we can see from the results in table I, in cases when N

exceeds T, the size distortions are large, with actual sizes exceeding 30 and 40% when T=10 and

N grows from 10 to 20 and 30.  This represents an unattractive scenario, since in this case, the

tests are likely to report rejections of the null hypothesis when in fact it is not warranted. 

However, these represent extreme cases, as the techniques are designed to deal with the opposite

case, where the T dimension is reasonably large relative to the N dimension.  In these cases, even

when the T dimension is only slightly larger than the N dimension, and even in cases where it is
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comparable, we find that the size distortion is remarkably small.  For example, in the results

reported in Table I we find that with N=20, T=40 the size of the nominal 5% and 10% tests

becomes 4.5% and 9.3% respectively.   Similarly, for N=10, T=30 the sizes for the Monte Carlo

sample become 6.1% and 11% respectively, and for N=30, T=60, they become 4.7% and 9.6%.  

As the T dimension grows even larger for a fixed N dimension, the tests tend to become slightly

undersized, with the actual size becoming slightly smaller than the nominal size.  In this case the

small sample tests actually become slightly more conservative than one would anticipate based on

the asymptotic critical values.

Next, we consider the case in which the values for  span negative numbers, and for the

experiment reported in table II of appendix B we draw this coefficient from . 

Large negative values for moving average coefficients are well known to create size distortion for

such estimators, and we anticipate this to be a case in which we have higher small sample

distortion.  It is interesting to note that in this case the biases for the point estimate become

slightly positive, although as mentioned before, they continue to be very small.  The small sample

size distortions follow the same pattern in that they tend to be largest when T is small relative to

N and decrease as T grows larger.  In this case, as anticipated, they tend to be higher than for the

case in which  spans only positive values.  However, the values still fall within a fairly

reasonable range considering that we are dealing with all negative values for .  For example,

with N=10, T=100 we have values of 6.3% and 12% for the 5% and 10% nominal sizes

respectively.   For N=20, T=100 they become 9% and 15.6% respectively.  These are still

remarkably small compared to the size distortions reported in Phillips and Loretan (1991) for the

conventional time series case.

Finally, we ran a third experiment in which we allowed the values for  to span both

positive and negative values so that we draw the values from .  We consider

this to be a fairly realistic case, and this corresponds closely to the range of moving average
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coefficients that were estimated in the purchasing power parity study contained in the original

version of the paper.  We find the group mean estimator and test statistic to perform very well in

this situation.  The Monte Carlo simulation results for this case are reported in table III of

appendix B.  Whereas the biases for the case with large positive values of   in Table I were

negative, and for the case with large negative values in Table II were positive, here we find the

biases to be positive and often even smaller in absolute value than either of the first two cases. 

Most importantly, we find the size distortions for the t-statistic to be much smaller here than in

the case where we have exclusively negative values for .  For example, with N=30, and T as

small as T=60, we find the nominal 5% and 10% sizes to be 5.4% and 10.5%.   Again, generally

the small sample sizes for the test are quite close to the asymptotic nominal sizes provided that the

T dimension is not smaller than the N dimension.  Consequently, it appears to be the case that

even when some members of the panel exhibit negative moving average coefficients, as long as

other members exhibit positive values, the distortions tend to be averaged out so that the small

sample sizes for the group mean statistic stay very close to the asymptotic sizes.  Thus, we

conclude that in general when the T dimension is not smaller than the N dimension, the

asymptotic normality result appears to provide a very good benchmark for the sampling

distribution under the null hypothesis, even in relatively small samples with heterogeneous serial

correlation dynamics.

Finally, although power is generally not a concern for such panel tests, since the power is

generally quite high, it is worth mentioning the small sample power properties of the group mean

estimator.   Specifically, we experimented by checking the small sample power of the test against

the alternative hypothesis by generating the 10,000 draws for the DGP associated with case 3

above with .   For the test of the null hypothesis that  against the alternative

hypothesis that , we found that the power for the 10% p-value test reached 100% for

N=10 when T was 40 or more (or 98.2% when T=30) and reached 100% for N=20 when T was
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30 or more, and for N=30 the power reached 100% already when T was 20 or more.  

Consequently, considering the high power and the relatively small size distortion, we find the

small sample properties of the estimator and associated t-statistic to be extremely well behaved in

the cases for which it was designed.

4. Discussion of further research and concluding remarks 

We have explored in this paper methods for testing and making inferences about cointegrating

vectors in heterogeneous panels based on fully modified OLS principles.  When properly

constructed to take account of potential heterogeneity in the idiosyncratic dynamics and fixed

effects associated with such panels, the asymptotic distributions for these estimators can be made

to be centered around the true value and will be free of nuisance parameters.  Furthermore, based

on Monte Carlos simulations have shown that in particular the t-statistic constructed from the

between dimension group mean estimator performs very well in that in exhibits relatively little

small sample size distortion.  To date, the techniques developed in this study have been employed

successfully in a number of applications, and it will be interesting to see if the panel FMOLS

methods developed  in this paper fare equally well in other scenarios.

The area of research and application of nonstationary panel methods is rapidly expanding,

and we take this opportunity to remark on a few further issues of current and future research as

they relate to the subject of this paper.   As we have already discussed, the between dimension

group mean estimator has an advantage over the within dimension pooled estimators presented in

this paper in that it permits a more flexible alternative hypothesis that allows for heterogeneity of

the cointegrating vector.  In many cases it is not known a priori whether heterogeneity of the

cointegrating vector can be ruled out, and it would be particularly nice to test the null hypothesis

that the cointegrating vectors are heterogeneous in such panels with heterogeneous dynamics.  In

this context, Pedroni (1998) provides a technique that allows one to test such a null hypothesis
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against the alternative hypothesis that they are homogeneous and demonstrates how the technique

can be used to test whether convergence in the Solow growth model occurs to a distinct versus

common steady states for the Summers and Heston data set.

Another important issue that is often raised for these types of panels pertains to the

assumption of cross sectional independence as per assumption 1.2 in this paper.  The standard

approach is to use common time dummies, which in many cases is sufficient to deal with cross

sectional dependence.  However, in some cases, common time dummies may not be sufficient,

particularly when the cross sectional dependence is not limited to contemporaneous effects and is

dynamic in nature.  Pedroni (1997) proposes an asymptotic covariance weighted GLS approach to

deal with such dynamic cross sectional dependence for the case in which the time series dimension

is considerably larger than the cross sectional dimension, and applies the panel fully modified form

of the test to the purchasing power parity hypothesis using monthly OECD exchange rate data.  It

is interesting to note, however, that for this particular application, taking account of such cross

sectional dependencies does not appear to impact the conclusions and it is possible that in many

cases cross sectional dependence does not play as large a role as one might anticipate once

common time dummies have been included, although this remains an open question.

Another important issue is parameteric versus nonparametric estimation of nuisance

parameters.  Clearly, any of the estimators presented here can be implemented by taking care of

the nuisance parameter effects either nonparameterically using kernel estimators, or

parametrically, as for example using dynamic OLS corrections.  Generally speaking,

nonparametric estimation tends to be more robust, since one does not need to assume a specific

parametric form.  On the other hand, since nonparametric estimation relies on fewer assumptions,

it generally requires more data than parametric estimation.  Consequently, for conventional time

series tests, when data is limited it is often worth making specific parameteric assumptions.  For

panels, on the other hand, the greater abundance of data suggests an opportunity to take
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advantage of the greater robustness of nonparametric methods, though ultimately the choice may

simply be a matter of taste.  The Monte Carlo simulation results provided here demonstrate that

even in the presence of considerable heterogeneity, nonparametric correction methods do very

well for the group mean estimator and the corresponding t-statistic. 
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MATHEMATICAL APPENDIX

Proposition 1.1:  We establish notation here which will be used throughout the remainder of the

appendix.  Let   where .  Then by virtue of assumption 1.1 and the

functional central limit theorem, 

for all i, where   refers to the demeaned discrete time process and  is

demeaned vector Brownian motion with asymptotic covariance .   This vector can be

decomposed as where  is the lower triangular decomposition of 

and   is a vector of demeaned standard Brownian

motion, with  independent of .  Under the null hypothesis, the statistic can be written in

these terms as

Based on (A1), as , the bracketed term of the numerator converges to

the first term of which can be decomposed as
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(A6)

(A7)
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In order for the distribution of the estimator to be unbiased, it will be necessary that the expected

value of the expression in (A4) be zero.  But although the expected value of the first bracketed

term in (A5) is zero, the expected value of the second bracketed term is given as  

Thus, given that the asymptotic covariance matrix, , must have positive diagonals, the

expected value of the expression (A4) will be zero only if , which

corresponds to strict exogeneity of regressors for all members of the panel.  Finally, even if such

strict exogeneity does hold, the variance of the numerator will still be influenced by the

parameters   which reflect the idiosyncratic serial correlation patterns in the individual

cross sectional members.  Unless these are homogeneous across members of the panel, they will

lead to nontrivial data dependencies in the asymptotic distribution.

Proposition 1.2: Continuing with the same notation as above, the fully modified statistic can be

written under the null hypothesis as

Thus, based on (A1), as , the bracketed term of the numerator converges to

which can be decomposed into the elements of    such that
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where the index r has been omitted for notational simplicity.  Thus, if a consistent estimator of

 is employed, so that  and consequently  and , then

where the mean and variance of this expression are given by

respectively.  Now that this expression has been rendered void of any idiosyncratic components

associated with the original , then by virtue of assumption 1.2 and a standard central

limit theorem  argument, 

as .  Next, consider the bracketed term of the denominator of (A3), which based on (A1), as

, converges to
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(A15)

(A16)

(A17)

(A18)

Thus,  

which has finite variance, and a mean given by

Again, since this expression has been rendered void of any idiosyncratic components associated

with the original , then by virtue of assumption 1.2 and a standard law of large numbers

argument,

as .  Thus, by iterated weak convergence and an application of the continuous mapping

theorem,  for this case where heterogeneous intercepts have been

estimated.  Next, recognizing that   and  as , and

setting  for the case where   gives as a special case of  (A13) and

(A17) the results for the distribution in the case with no estimated intercepts. In this case the

mean given by (A12) remains zero, but the variance in (A13) become ½ and the mean in (A17)

also becomes  ½.  Thus,  for this case. 
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(A20)
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Corollary 1.2:  In terms of earlier notation, the statistic can be rewritten as:

where the numerator converges to the same expression as in proposition 1.2, and the root term

of the denominator converges to the same value as in proposition 1.2.  Since the distribution of

the numerator is centered around zero, the asymptotic distribution of   will simply be the

distribution of the numerator divided by the square root of this value from the denominator. 

Since 

by (A13) and (A17) regardless of whether or not  are set to zero, then 

irrespective of whether   are estimated or not.

Proposition 1.3:  Write the statistic as:

Then the first bracketed term converges to

by virtue of the independence of  and .  Since the second bracketed term

converges to 
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(A23)

  (A24)

then, taken together,  for  , (A21) becomes a standardized sum of i.i.d. standard normals

regardless of whether or not  are set to zero, and thus  by a standard

central limit theorem argument irrespective of whether   are estimated or not.

Proposition 2.1:  Insert the expression for  into the numerator and use

 to give

Since , the last term in (A24) reduces to , thereby giving the

desired result.



221i ~ U(0.0,0.8)

$ ' 2.0 "1i ~ U(2.0,4.0) Q11i ' Q22i ' 1.0 Q21i ~ U(&0.85,0.85)

211i ~ U(&0.1,0.7) 212i ~ U(0.0,0.8) 221i ~ U(0.0,0.8) 222i ~ U(0.2,1.0)

B.1

Table I.  Small Sample Performance of Group Mean Panel FMOLS
with Heterogeneous Dynamics

Case 1:  
  

     N      T                  bias           std error           5% size           10%size

10 10 -0.058 0.115 0.282 0.362
20 -0.018 0.047 0.084 0.145
30 -0.009 0.029 0.061 0.110
40 -0.006 0.020 0.035 0.076
50 -0.004 0.016 0.027 0.062
60 -0.003 0.012 0.020 0.049
70 -0.002 0.010 0.016 0.044
80 -0.002 0.009 0.014 0.040
90 -0.002 0.008 0.014 0.038

100 -0.001 0.007 0.014 0.037

20 10 -0.034 0.079 0.291 0.378
20 -0.012 0.033 0.100 0.166
30 -0.006 0.020 0.076 0.132
40 -0.004 0.014 0.045 0.093
50 -0.003 0.011 0.039 0.081
60 -0.003 0.009 0.028 0.066
70 -0.002 0.007 0.026 0.059
80 -0.002 0.006 0.021 0.055
90 -0.002 0.006 0.020 0.050

100 -0.001 0.005 0.018 0.052

30 10 -0.049 0.061 0.386 0.470
20 -0.017 0.025 0.156 0.234
30 -0.009 0.015 0.107 0.177
40 -0.006 0.011 0.072 0.133
50 -0.004 0.008 0.059 0.118
60 -0.003 0.007 0.047 0.096
70 -0.003 0.006 0.039 0.086
80 -0.002 0.005 0.035 0.073
90 -0.002 0.004 0.032 0.077

100 -0.002 0.004 0.030 0.076

Notes:  Based on 10,000 independent draws of the cointegrated system (1)-(3), 
with , , ,  and

, , , . 



221i ~ U(&0.8,0.0)

$ ' 2.0 "1i ~ U(2.0,4.0) Q11i ' Q22i ' 1.0 Q21i ~ U(&0.85,0.85)

211i ~ U(&0.1,0.7) 212i ~ U(&0.8,0.0) 221i ~ U(&0.8,0.0) 222i ~ U(0.2,1.0)

B.2

Table II.  Small Sample Performance of Group Mean Panel FMOLS
with Heterogeneous Dynamics

Case 2:  
  

     N      T                 bias           std error            5% size            10%size

10 10 0.082 0.132 0.422 0.498
20 0.041 0.058 0.234 0.324
30 0.025 0.037 0.187 0.268
40 0.016 0.027 0.137 0.213
50 0.012 0.021 0.115 0.185
60 0.009 0.017 0.091 0.155
70 0.007 0.014 0.087 0.151
80 0.006 0.012 0.078 0.140
90 0.005 0.011 0.072 0.135

100 0.005 0.010 0.063 0.120

20 10 0.093 0.092 0.581 0.648
20 0.043 0.042 0.352 0.447
30 0.026 0.027 0.265 0.361
40 0.017 0.020 0.205 0.294
50 0.012 0.015 0.158 0.242
60 0.009 0.012 0.130 0.211
70 0.007 0.010 0.117 0.194
80 0.006 0.009 0.109 0.181
90 0.005 0.008 0.103 0.170

100 0.004 0.007 0.090 0.156

30 10 0.070 0.071 0.563 0.630
20 0.033 0.032 0.339 0.433
30 0.020 0.020 0.259 0.352
40 0.013 0.015 0.196 0.289
50 0.009 0.011 0.152 0.236
60 0.007 0.009 0.131 0.211
70 0.006 0.008 0.113 0.190
80 0.005 0.007 0.103 0.175
90 0.004 0.006 0.096 0.164

100 0.003 0.005 0.087 0.156

   Notes:  Based on 10,000 independent draws of the cointegrated system (1)-(3), 

   with , , ,  and

   , , , . 



221i ~ U(&0.4,0.4)

$ ' 2.0 "1i ~ U(2.0,4.0) Q11i ' Q22i ' 1.0 Q21i ~ U(&0.85,0.85)

211i ~ U(&0.1,0.7) 212i ~ U(&0.4,0.4) 221i ~ U(&0.4,0.4) 222i ~ U(0.2,1.0)

B.3

Table III.  Small Sample Performance of Group Mean Panel FMOLS
with Heterogeneous Dynamics

Case 3:  
  

     N      T                  bias           std error           5% size           10%size

10 10 0.009 0.129 0.284 0.367
20 0.011 0.052 0.113 0.179
30 0.008 0.033 0.086 0.150
40 0.005 0.023 0.058 0.113
50 0.004 0.018 0.048 0.093
60 0.003 0.014 0.039 0.083
70 0.002 0.012 0.037 0.077
80 0.002 0.011 0.031 0.072
90 0.002 0.009 0.029 0.068

100 0.001 0.008 0.028 0.062

20 10 0.028 0.090 0.346 0.430
20 0.014 0.037 0.145 0.222
30 0.009 0.024 0.106 0.179
40 0.006 0.017 0.077 0.138
50 0.004 0.013 0.060 0.114
60 0.003 0.010 0.048 0.093
70 0.002 0.009 0.040 0.085
80 0.002 0.008 0.037 0.083
90 0.001 0.007 0.035 0.079

100 0.001 0.006 0.035 0.078

30 10 0.008 0.069 0.317 0.402
20 0.006 0.028 0.122 0.194
30 0.004 0.018 0.095 0.155
40 0.003 0.013 0.068 0.122
50 0.002 0.010 0.054 0.105
60 0.001 0.008 0.044 0.088
70 0.001 0.007 0.038 0.082
80 0.001 0.006 0.036 0.076
90 0.001 0.005 0.033 0.073

100 0.001 0.005 0.036 0.074

Notes:  Based on 10,000 independent draws of the cointegrated system (1)-(3), 
with , , ,  and

, , , . 


