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Abstract

We study the underlying structure of the two-dimensional dynamical system generated
by a class of dynamic optimization models, which allow for intertemporal complementarity
between adjacent periods, but which preserve the time additively separable framework
of Ramsey models. Specifically, we identify conditions under which the results of the
traditional Ramsey type theory are preserved even when the intertemporal independence
assumption is relaxed. Local analysis of this theme has been presented by Samuelson
(1971). We establish global convergence results and relate them to the local analysis, by
using the mathematical theory of two-dimensional dynamical systems. We also relate the
local stability property of the stationary optimal stock to the differentiability of the optimal
policy function near the stationary optimal stock, by using the Stable Manifold Theorem.
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1 Introduction

The theory of optimal intertemporal allocation has been developed primarily for the case in
which the objective function of the planner or representative agent can be written as:

Co, C1.. Z5t Ct (1-1)

where ¢; represents consumption at date ¢, w the period felicity function, and ¢ € (0, 1) a discount
factor, representing the time preference of the agent.

An objective function like (1.1) leads naturally to the study of dynamic optimization problems
of the following “reduced form?”:

Mazximize Z(S u(zy, Tig1)

= (1.2)
subject to (x4, xt+1)eﬂ forte{0,1,2,...}

To=2

where ¢ €(0,1) is the discount factor, X is a compact set (representing the state space), Q C
X x X is a transition possibility set, u : 2 — R is a utility function, and z e X is the initial
state of the system.

The restrictive form of the objective function (1.1) has often been criticized, and alternative
forms have been suggested. Since imposing no structure on U(cy, ¢1,...) will yield very little
useful information about the nature of optimal programs, the alternative formulations involve
some restrictions, of course, and these basically take one of two forms.

First, one can dispense with the time-additively separable nature of (1.1), by following Koop-
mans (1960) and Koopmans, Diamond and Williamson (1964), and postulate that there is an
aggregator function, A, such that

U(co, ¢1,...) = Alco, Uley, ca,...)) (1.3)

A nice feature of (1.3) is that it preserves the recursive nature of the problem inherent in Ramsey-
type problems based on (1.1). The restriction is that the independence of tastes between periods
that was present in (1.1) is also implicit in (1.2). Optimal growth problems with (1.3) as the
objective function have been investigated quite extensively, starting with Iwai (1972); a useful
reference for this literature is Becker and Boyd (1997).

Second, one can preserve the time-additive separable form, but explicitly model the intertem-
poral dependence of tastes by postulating that the felicity derived by the agent in period ¢ depends
on consumption in period ¢(c;), but the felicity function itself is (endogenously) determined by
past consumption (¢;—1). [The fact that “past consumption” is reflected completely in ¢;—; is a
mathematical simplification; consumption in several previous periods can clearly be allowed for
at the expense of cumbersome notation and significantly more tedious algebraic manipulations].



This formulation leads to the objective function':

Ulco, c1,...) = Z Sw(cy, cpr) (1.4)
t=0

Models of optimal growth with intertemporal dependence in tastes, in which the objective func-
tion is similar to (1.4), have been examined by several authors.? To the best of our knowledge,
the specific form (1.4) was first used by Samuelson (1971), to capture the essential features of
such intertemporal dependence of tastes.

An objective function like (1.4) leads to the study of dynamic optimization problems of the
following “reduced form”:

Mazimize > 50, 8'u(me, Tys1, Tepo)
Subjectto (zy, Tiy1, Teyn)e N for tef{0,1,2,...} (1.5)
(w07 l'1> = (SC,y)

where 6 € (0, 1) is the discount factor, X is a compact set, 2 C X x X is a transition possibility
set, A = {(z,9,2) : (z,y)eQ and (y,2)eQ}, u: A — R is a utility function, and (x,y) e is the
initial state of the system.

Notice that even under intertemporal dependence in tastes, we have a recursive structure in
the dynamic optimization problem (1.5) very much like in (1.2) [and in optimization problems
involving (1.3) as the objective function|. The difference is that in dealing with a one capital
good model (like the standard one or two-sector models of neoclassical growth theory), the state
space is X in problem (1.2), while it is a subset of X? in problem (1.5). Thus, for problem (1.2),
(optimal) value and policy functions are defined on X, and for problem (1.5), these functions
are defined on Q@ C X2. In terms of examining the dynamic behavior of optimal programs,
we are therefore dealing with a one-dimensional dynamical system for problem (1.2) and a two-
dimensional dynamical system for problem (1.5).

The structure of recursive problems like (1.5) are not as well understood as that of (1.2),
and we feel that it is worthy of a systematic study. Specifically, one might explore two themes:
(i) identifying the conditions under which the results of the traditional Ramsey-type theory
are preserved even when the intertemporal independence assumption is relaxed; (ii) examining
alternative scenarios in which the asymptotic behavior of an optimal program is qualitatively
different (from its traditional Ramsey counterpart) because of the presence of intertemporal
complementarity. Local analysis of the first theme has been presented by Samuelson (1971),
and of the second by Boyer (1978), and others. Our principal interest in this paper is in
establishing global results on the first theme, and in relating them to the local results, by using

! This objective function also arises in a somewhat different class of models, which study economic growth with
altruistic preferences. For this literature, see, for example, Dasgupta (1974), Kohlberg (1976), Lane and Mitra
(1981), and Bernheim and Ray (1987). The focus of this literature is however not on the socially optimal solution,
but the intergenerational Nash equilibrium solutions.

2The earlier literature on this topic includes, among others, Chakravarty and Manne (1968), and Wan
(1970). Heal and Ryder (1973) present a continuous-time model which accommodates a more general depen-
dence structure.



the mathematical theory of two-dimensional dynamical systems.?

The plan of the paper is as follows. After describing the model in Section 2, we develop
the basic properties of the (optimal) value function, V', and the (optimal) policy function, A, in
Section 3. A useful tool for our study is the ¢-policy function, defined on X, by

o(z) = h(z, x) for xeX (1.6)

It is introduced in Section 3, and the circumstances under which it satisfies a “single-crossing
condition” are examined.

Section 4 might be considered as providing the global analytical counterpart to Samuelson’s
(1971) local analysis of “turnpike behavior” in this model. We show that when the (reduced-
form) utility function, w, is supermodular on its domain, A, then the optimal policy function
is monotone increasing in both arguments. This property, together with the “single-crossing
condition” on ¢ allows us to establish global asymptotic stability of optimal programs with respect
to the (unique) stationary optimal stock, by using an interesting stability result for second-order
difference schemes.

In Section 5, we provide an analysis of the local dynamics of optimal solutions. To this end, we
study the fourth order difference equation, which represents the linearized version of the Ramsey-
Euler equations near the stationary optimal stock. This equation yields four characteristic roots
and we show how two of them are selected by the optimal solution (assuming that the optimal
policy function is continuously differentiable in a neighborhood of the stationary optimal stock).
The roots selected by the optimal solution provide information about the speed of convergence
of non-stationary optimal trajectories to the stationary optimal stock.

The theory linking the derivative of the optimal policy function to the “dominated” charac-
teristic root associated with the Ramsey-Euler equation, for the optimization problem (1.2) is,
of course, well-known. To our knowledge, the corresponding theory for problem (1.5) has not
been developed in the literature.

In subsection 5.3, the optimal policy function is shown to be continuously differentiable in
a neighborhood of the stationary optimal stock, by using the Stable Manifold Theorem.? This
validates the conclusions which are reached in Sections 5.1 and 5.2, by assuming this property.

2 Preliminaries

2.1 The Model

Our framework is specified by a transition possibility set, 2, a (reduced form) wutility function, u,
and a discount factor, 6. We describe each of these objects in turn.

A state space (underlying the transition possibilities) is specified as an interval X = [0, B],
where 0 < B < co. The transition possibility set, €, is a subset of X2, satisfying

3The second theme is explored in detail in Mitra and Nishimura (2001).

4The global differentiability of the optimal policy function for problem (1.2) has been studied by Araujo (1991),
Santos (1991) and Montrucchio (1998). The relation of the characteristic roots associated with the optimal policy
function to those associated with the Ramsey-Euler equation at the steady state has been studied for problem
(1.2) by Araujo and Scheinkman (1977) and Santos (1991).



(A1) (0,0) and (B, B) are in €; if (0,y) €2 then y = 0.

(A.2) 2 is closed and convex.

(A.3) If (z,y)eQand x <2’ < B, 0 <y <y, then (2/,y) Q.
(A4) There is (Z,y) €2 with g > Z.

Notice that for all x€[0, B], we have (z,z)e€). Associated with 2 is the correspondence
U: X — X, given by U(z) ={y: (z,y) eQ}. Define the set:

A={(z,y,2): (z,y)eQ and (y,z) e}

The utility function, u, is a map from A to R. It is assumed to satisfy:

(A.5) u is continuous and concave on ), and strictly concave in the third argument.

(A.6) u is non-decreasing in the first argument, and non-increasing in the third argument.

In what follows, we will normalize «(0,0,0) = 0; also, we will denote ( ma§<A lu(x,y,2)| by B.
T,Y,2)€

The discount factor, 6, reflects how future utilities are evaluated compared to current ones.

We assume:
(A7) 0<o<1

2.2 Programs

The initial condition (which should be considered to be historically given) is specified by a pair
(z,y) in Q. A program (x;) from (z,y) is a sequence satisfying

ro =2, 1 =Y, (x4, 441) €Q for t >1 (2.1)

Thus, in specifying a program, the period 0 and period 1 states are historically given. Choice
of future states starts from ¢ = 2. Notice that for a program (z;) from (z,y) e, we have
(x4, Tip1, Teyo) € A for ¢ > 0.

An optimal program (Z;) from (x,y) e Q is a program from (z,y) satisfying

Z 5tu(l'ta Tty 1’t+2) < Z(Stu(it, Tyt i’t+2) (2-2)
t=0 t=0

for every program (z;) from (z,y).

Under our assumptions, a standard argument suffices to ensure the existence of an optimal
program from every initial condition (z,y) €. Using Assumptions (A.2) and (A.5), it can also
be shown that this optimal program is unique.

2.3 Value and Policy Functions
We can define a value function, V : 0 — R by

V(z,y) =Y 6'u(Ty, T, Trso) (2.3)

t=0

where (Z;) is the optimal program from (z,y). Then, V is concave and continuous on §2.



It can be shown that for each (z,y) €€, the Bellman equation

V@w%jg%W@wwﬂﬁVm@] (2.4)

holds. Also, V is the unique continuous function on €2, which solves the functional equation
(2.4).

For each (z,y) €, we denote by h(x,y) the value of z which maximizes [u(z,y, z) + 6V (y, 2)]
among all z satisfying (y,z) €. Then, a program (z;) from (x,y)e(Q is an optimal program
from (x,y) if and only if

V(xy, Tpy1) = u(xs, Tpp1, Tega) + 0V (21, Tiio) fort>0 (2.5)
This, in turn, holds if and only if
Tpro = h(xy, Tei1) fort>0 (2.6)

We will call h the (optimal) policy function. It can be shown by using standard arguments that
h is continuous on §2.

2.4 An Example

The leading example of the framework we have just described is a model of neoclassical optimal
growth theory in which tastes are intertemporally dependent. Such a model can be described
in terms of a production function, f, a welfare function, w, and a discount factor, 6.

Let X = [0, B] be the state space with 0 < B < co. The production, f, is a function from
X to itself which satisfies:

() f(0) = 0,f(B) = B; f is increasing, concave and continuous on X. The welfare
function, w, is a function from X? to R, which satisfies

(w) w is continuous and concave on X2, and strictly concave in the second argument; it
is non-decreasing in both arguments.

(d) The discount factor, ¢, is as usual assumed to satisfy 0 < 6 < 1.

A program, in this framework, is described by a sequence (k:, ¢;), where k; denotes the capital
stock and ¢; the consumption in period ¢. The initial condition is specified by (k,c) > 0, where
k+c<B.

Formally, a program (k;, ¢;) from (k, c¢) is a sequence satisfying

(klv (31):(]{7,(3), kt-l—l:f(kt)_ct-l-l fOT’tZ 1 27
0 <ciy1 < f(ke) fort>1 (2.7)

An optimal program from (k, c) is a program (k,, ¢) satisfying

Z 6tUJ(Ct, Ct-i—l) S Z 6t1U((_3t, Et-i—l) (28)
t=0

t=0

for every program (k;, ¢;) from (k, c).



The example (which follows Samuelson (1971) closely) captures the feature that tastes be-
tween periods are not necessarily “independent”.

To reduce the optimality exercise in (2.8) to the one in (2.2), we can proceed as follows.
First, the transition possibility set, €2, can be defined as:

Q={(z,y):zeX, 0<y < f(z)}
Second, the reduced form utility function can be defined, for (z,y, z) in A as:

u(,y,z) = w(f(x) =y, fy) - 2)

Finally, the initial condition (k,c) in the example, translates to the initial condition in the
framework of Section 2.2 as (z,y) = (f~*(k1+c1), k1). That is, x is the capital stock (in period
0) which produced the output (k; + ¢1) in period 1, that was split up between consumption (c;)
and capital stock (k1) in period 1; y is the capital stock in period 1. The choice of consumption
decisions, ¢, starts from ¢ > 2; correspondingly, the state variable, z;, is determined for t > 2
by the following equation:

Tir1 = k’t+1 = f(k't> — Ct4+1 fOT t Z 1 (29)

3 Basic Properties of Value and Policy Functions

In this section, we examine some basic properties of the value and policy functions. These
properties will be useful in conducting the analysis in the following sections.

3.1 Value Function

We proceed under the following additional assumptions:

(A.8)  There is & in (0, B), such that (&, /6, 2/6%)eA, and 0 = u(, 2/6, £/6%) >
1(0,0,0) = 0.

Assumption (A.8) is a é-productivity assumption jointly on (A, u,6). It is analogous to the
O-productivity assumption in the usual reduced-form model, where it is used to establish the
existence of a non-trivial stationary optimal stock.

(A.9) Thereis A > 0, such that for all (x,y, 2), (¢, ¥/, 2’) in A, |u(x,y, 2) —u(z’, ¥/, 2')| <
A ||(£U,y, Z) - (wla yla Zl)” :

Assumption (A.9) is a bounded-steepness assumption on the utility function, and this is
ensured by making u Lipschitz-continuous, with Lipschitz constant A. The norm used in (A.9)
is the sum-norm; that is, ||(z,y, 2)|| = |z| + |y| + |2| for (z,y,2) in R3. [In the usual reduced-
form model, a condition like (A.9) was introduced by Gale (1967), to establish shadow-prices
supporting optimal programs].

Lemma 1 Let N > 2 be a given positive integer. Defining x = 6™ &, we have (z, 2/8) €2, and

Viz, 2/6) > [(N — 1)0/i]z (3.1)



(

servation, the sequence (z;) = (z, (2/6), (z/6%), ..., (z/6™), (x/6V11), 0,0,...) is a program from
(z, (2/6)). Note that (z/6") = 2, (/6" ') = (£/6), and since (&, 2/6, £/6%) e A by (A.8), we
have (&, /6, 0)e A by (A.3), and u(z, 2/6, 0) > wu(, £/6, £/6%) > 0. Also ((2/6), 0)eQ
and (0,0)eQ imply that (z/6, 0,0)eA, and u(z/6,0,0) > u(0,0,0) [by (A.6)] = 0. For
0 <t <N —2 ulmy v, Tro) = u(x/8, 2/6™ 2/62) = w(@s™t, 26N, 26N 172) >
N tu(z, /6, 2/6%) + (1 — 6V Hu(0,0,0). Thus, for 0 < t < N — 2, §'u(xy, Top1, Tr2) >
N u(z, 2/6, £/6%), and we have

Proof. Since (z, 2/6) € and (0,0) € 2, we have (6"z, 6"(2/6)) e for n > 1. Using this ob-
T

Viz, x/6) > S'u(zy, Toy1, Tag) > (N —1)6V0 = [(N — 1)0/1]x

t

=2
I\

I
o

which establishes the Lemma. =

Proposition 1 The value function, V', satisfies the property:
V(z, x/6)/z] — o0 ast —0 (3.2)

Proof. For (z, x/6)eQ,and 0 < A < 1, we have V( Az, Az/6) > AV (x, x/§)+(1-N)V(0,0) =
AV (z, /6). Using Lemma 1, and defining the sequence {z(N)} by: z(N) = 6"z for N =
2,3,..., we have [V(z(N), z(N)/6)/x(N)] — oo as N — oo. Then, (3.2) follows since for
ze[oVN e, N2, Vx, x/6)/x > V(6N z, 6V (2/6)) /67 2]. m

Proposition 2 The value function, V', satisfies the property:
[V(z,z)/x] — o0 as t —0 (3.3)

Proof. For 0 < z < %, we have (z, x/6) e, and (z,0) e, so (6x + (1 —8)z, 6(x/6) + (1 —
6).0) €Q; that is (x,z) Q. By concavity of V', we have

Viz,z) = V(bzx+ (1—206)x, 6(x/6)+ (1—46).0)
oVi(x, z/6)+ (1 —06)V(x,0)

>
> 6V (z, z/0)

Thus [V (z,z)/x] — oo as x — 0 by Proposition 1. m

3.2 Policy Function
A useful tool, related to the policy function, is the ¢-policy function defined for x e X by:
o(z) = h(z, x) for reX

That is, ¢ gives us the optimal policy when the arguments in h happen to take on identical
values.

In the standard reduced-form model, if z; were constant for two successive periods along an
optimal program, the constant value would have to be a stationary optimal stock. Here, given

8



1 =x; = x in X, ¢(x) is not necessarily equal to x; in fact, it will typically be different from
z. If ¢(x) = z, then = would be a stationary optimal stock in the present framework.

Proposition 3 There is a > 0 such that for z€(0,a), ¢(z) > z.

Proof. Suppose, on the contrary, there is a sequence (z*), such that z® — 0 as s — 0o, and
z® >0, ¢(z*) < z* for all s.
Using Proposition 2, we can find a; > 0, such that for z € (0, a1), we have

[V (z,2)/2] > 44/(1 — 6) (3.4)

Since x* — 0, we can find s large enough for which 0 < x®* < a;. Pick such an x® and call it
xz. Then z€(0, a1) and ¢(x) < z. Denote ¢(z) by y, and h(z,y) by z.

Since y < z, and (y, 2) e, we have (z,2) e, and (x,y, 2)eA, and V(z,z) > u(x,x,z) +
OV (x,z) > u(z,x,2) + 6V (y,2) = [u(z,x, 2) —u(z,y, 2)] + 6V (y, 2) + u(z,y, 2) = [u(z,x,2) —
u(z,y, 2)|+V(z,y) > V(z,y)—Az [by (A.9)]. We can now write V (z,z) = u(z, z,y)+6V (z,y) <
u(z,z,y) + 6V (z,x) + 6 Az, so that V(z,z) < [u(z,z,y)/(1 — )] + 6Ax/(1 —6) < [A(2z +y) +
6Ax]/(1 — ) [using (A.9) again]. Thus, using y < z, [V (z,2)/z] < (34 §)A/(1 — ) which
contradicts (3.4). m

We now introduce an additional assumption for our next result.

(A.10) u(B,B, B) < u(0,0,0) = 0.

Proposition 4 The ¢-policy function satisfies
»(B) < B (3.5)

Proof. Suppose, on the contrary, ¢(B) > B. Then, ¢(B) = B; that is h(B, B) = B.

Note that for z in (A.8), u(z, 2, ) = u(62+ (1 —-06)z, 6(2/6)+(1—10).0, 6(z/6) + ( 6).0) >
du(z, (2/6), (£/6)) + (1 — &)u(z,0,0) > du(s, 2/6, &/8) [by (A.6)] > du(z, #/8, 2/6%) [by (A.6)
again| = 66.

The sequence (B, B,,,,...) is a program from (B, B), and the discounted utility sum on
this program is

u(B, B,%) + 6u(B,2,2) + [6%/(1 — §)]u(z, &, 2)
> w(B,B,B) +6u(z,,2) + [6*/(1 — §)]u(z, 2, )
> w(B,B,B) +[6/(1—6)]60
> w(B,B,B)+[6/(1 —&)]|u(B, B, B)

Thus (B, B, B, ....) could not be an optimal program starting from (B, B), and this contradiction
establishes (3.5). =

Proposition 5 There is some x* € (0, B), such that x* is a stationary optimal stock; that is,
h(z*,z") =z~ (3.6)

Proof. By Proposition 4, ¢(B) < B. By Proposition 3, we can find x € (0, B), such that
¢(z) > x. By continuity of ¢, there is z* € (0, B) such that ¢(z*) = z*. =

9



3.3 A Single Crossing Condition

In the following sections, we will find it useful to assume that the ¢-policy function (introduced
in Section 3.2) has the following “single-crossing property”:

There is 0 < z* < B, such that } (SC)

d(z*) =252 < p(x) for 0 < z < 252 > ¢(x) for x > x*

If u is C' on A, then (SC) is satisfied if there is a unique solution z* in (0, B) to the Ramsey-
Euler equation:
us(x, x, ) + dus(z, z, ) 4+ 6%uy (z,,2) =0 (3.7)

In the example discussed in Section 2.4, with w and f both C!, w; > 0 and wy > 0 and f
strictly concave, condition (3.7) is satisfied only if 6 f'(x) = 1. So, with f strictly concave, (3.7)
has a unique solution.

If u is C? on A, then (3.7) has a unique solution if the function

H(x) = us(z,2, ) + duy(w, v, 2) + 6%uy (v, 2, 7) (3.8)
has a negative derivative, wherever it has a zero. This amounts to the condition:
[621141 + 6UQ2 + Ugg} + (62 + 1>U13 + 6(6 + 1>U12 + (6 + 1)u23 <0 (39)

being satisfied at any z [the derivatives being evaluated at (z,z,z)] at which H(z) = 0. For
6 ~ 1, (3.9) is clearly satisfied if u has a negative-definite Hessian.

4 Turnpike Behavior

In this section, we will provide sufficient conditions under which one can establish global asymp-
totic stability of the stationary optimal stock (turnpike property). This demonstrates that “one
can relax the independence assumption somewhat and still derive the usual known results”, a
point indicated earlier by Samuelson (1971), using local analysis around the turnpike. A crucial
role in our global analysis is played by the assumption of supermodularity of the utility function
in its three variables, a concept we define below analogously to the two variable case.

4.1 Supermodularity of the Utility Function

The standard definition of supermodularity deals with two variables, and it can be written as
follows. A function G : Q — R is supermodular if whenever (x,y), (2/,y') e Q with (z/,y') >
(x,y), we have

Gz,y) + G’ y) = G2’ y) + G(z,y)

provided (z’,y) and (z,y")eQ. If G is C? on Q, then it is well-known that G is supermodular
on 2 if and only if G2 > 0 on 2 (see Ross (1983), Benhabib and Nishimura (1985)).

In our case, the utility function, u : A — R is a function of three variables, and we may define
it analogously as follows. In the C? case, we would now like to have all the three cross-partials

10



of u to be non-negative; that is wujs, u13 and uss > 0 on A. In the general (not necessarily
differentiable) case, this translates to the following definition.

The utility function v : A — R is called supermodular on A if whenever (z,vy, 2), (',y/,2") e A
with (2/,y,2") > (z,y, 2), we have

(i) u(z,y, z) +ul@,y,2") > ul,y, z) +u(z,y’, 2") provided (2, y, z) and (z,y', 2") e A

(ii) w(z,y,z) +ulz,y, 2") >ulz,y, 2) +u(a',y, 2’) provided (z,y, z) and (', y,2") eA

(iii) w(z,y,z) +ula,y, 2") > u(z,y,2") +u(z’,y, z) provided (z,y, z') and (z',y',z) e A

If uis C? on A with s, ujz and ugz > 0 on A, then (i) can be verified as follows: A =
[u(z',y', 2') — u(z,y, 2")] — [u(2',y, 2) — u(z,y, 2)] = ff/ ui(t,y, 2')dt — ff/ ui(t,y, 2)dt. Now
ur(t,y',2") — ui(t,y,2) > 0 for all tex,2'], since u;s > 0 and w3 > 0, (¥ —y) > 0 and
(2/ —2z) > 0. Thus, we get A > 0, establishing (i). Conditions (ii) and (iii) can be verified
similarly.

4.2 An Example

Consider the example discussed in Section 2.4 with the production function, f, defined by
f(z) =pz—qz*  forxel0, (p—1)/q] =0, B]
(where 1 < p < 2 and ¢ > 0), and the welfare function, w, defined by
w(c,d) = ac—bc> +ad —Bd*> —0cd  for (c,d)eX?

where a > 0,6 >0, >0, > 0and 6 > 0.
For this example, we can calculate the first-order partial derivatives of u as follows:

u(z,y,2) = wi(f(z) —y, f(y) —2)f'(z)
us(z,y,2) = wy(f(z) —y, fly) —2)f'(y) —wi(f(z) -y, fly) — 2)
uz(r,y,2) = wa(f(z) =y, fly) —2)

Similarly, the second-order cross partial derivatives of u can be calculated as follows:

w2, y,2) = [wia(f(x) =y, fy) —2)f(y) —wnlf(@) =y, fly) = 2)]f (z)
ug(x,y,2) = —f()wa(f(z) -y, fly) —2)
uss(w,y,2) = wi(f(x) —y, fly) —2) —wu(f(@) —y, fy) —2)f (y)

Note that at z = B = (p—1)/q, [f(z)/2] = p—qv = p—q[(p—1)/q] = 1. Also, f'(z) = p—2qz
for all ze X, so f'(0) = p and f'(B) =p—2q[(p —1)/q] =2 —p. Since 1 < p < 2, we have
f(0)>1> f(B) > 0.

To ensure that w is increasing in both components of consumption, we impose the following
restrictions:

a—(0+20)B>0; a—(0+26)B>0 (R1)

These restrictions ensure that u,(z,y, z) > 0 and uz(x,y, z) < 0 on A, since f'(z) > 0 on X.
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Notice that w; = —2b < 0 and wyy = —20 < 0, so, to ensure concavity of w, we can assume
0% < 4bp3 (R2)

This ensures that u is concave on A, since f is concave on X. Further, since uss(z,y,2) =
wae(f(z) —y, fly) — 2z) = —20 < 0, u is strictly concave in its third argument.
We have wis = —0 < 0 so that u;3 > 0 on A. To ensure that us3 > 0 on A, we assume that
(—w22>f,(B> > (—w12>; that is
26(2—p) >0 (R3)

Finally, to ensure that u;; > 0 on A, we assume that (—wi;) > (—wq2)f'(0); that is,
2b > Op (R4)

Thus, under the restrictions (R1) - (R4), assumptions (w), (f) are satisfied, and so are As-
sumptions (A.1) - (A.6). Further, u is supermodular on A.

For specific numerical values of the parameters, ensuring that all the above restrictions are
simultaneously satisfied, take p = (3/2), ¢ = (1/2), so that B = 1 and X = [0,1]. Choosing
b=pF=1a=3,a=05,and § = (1/2), it is easy to check that the restrictions (R1) - (R4) are
satisfied.

4.3 Monotonicity of the Policy Function

The principal result (Theorem 1) of this subsection is that if the utility function is supermodular
then the (optimal) policy function is monotone non-decreasing in each component.

In the case usually treated, where the reduced form utility function is a function of two
variables, if the utility function is supermodular, then the policy function is monotone non-
decreasing, and this can be established by ensuring that the value function (a function of a single
variable) is monotone non-decreasing. This property of the value function is straightforward,
given the free-disposal property of the transition possibility set and the fact that the utility
function is monotone non-decreasing in its first argument.

In the present context, the value function is a function of two variables, and we need to
show that the value function is supermodular in these two variables (Proposition 8), when the
utility function is supermodular in its three variables. To obtain the supermodularity of the
value function from the supermodularity of the utility function, the natural route suggested is to
establish supermodularity for each finite-horizon value function, and then obtain this property
for the infinite horizon value function as a limit of the finite-horizon ones. The first part of this
two-step procedure follows from the general result of Topkis (1968), but we provide a proof of
the relevant technical result in our case, to keep our presentation self-contained (Lemma 2).

Lemma 2 Let G : Q) — R be a concave, continuous and supermodular function on 2. If u is
supermodular on A, then the function H : Q) — R given by

H(z,y) = max[u(z,y, 2) + 6G(y, 2)] (P)

ze¥ (y)

is well-defined, and is a concave, continuous and supermodular function on §2.
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Proof. Clearly, H is well-defined, since there exists a solution to the associated maximization
problem (P). Concavity is easy to check, and continuity follows from the maximum theorem,
after noting that U is a continuous correspondence. We now verify that H is supermodular.

Let (z,y) and (2/,y') e Q with (2,y’) > (z,y). Further, suppose that (z,y’) and (z’,y) € Q.

Let Z solve the maximization problem: max [u(z,y’,z) + 6G(y', 2)] and let 2 solve the maxi-

mization problem: max [u(z,y, z) + 0G(y, z)]. Further, let max (Z,2) = Z, min (2,2) = 2. We

zeW(y)
have

H(z,y") =u(z,y', 2) + 6G(Y, 2)

and
H(z',y) =u(z',y,2) + 6G(y, £)

Since (y, 2) €2, we have (y,z) €. Also, since (y,2)eQ and 3y > y, we have (v, 2) e Q.

(v, 2) e, so (y',2) Q. We then have
H(z,y) = u(z,y,2) +6G(y, 2)

and
H' y') > w2y, 2) + 6G(Y, 2)

Using (4.3) and (4.4), we get
H(z,y)+ H(',y') = [u(z,y, 2) + u(z',y, 2)]| + 6[G(y, 2) + G, 2)]
Now, if z = 2 (and so z = Z), then
u(z,y, z) +u(e,y, 2) =u(z,y, 2) +u@, v, 2) >u(@,y, 2) +u(z, v, 2)

And, we also have
Gly,2) + Gy, 2) =Gy, 2) + G, %)

Using (4.6) and (4.7) in (4.5), we get
H(z,y) + H(z',y) = [u(z',y, 2) +ulz, ¢, )] + 6[G(y, £) + Gy, 2)]
Using (4.1), (4.2) and (4.8) we conclude
H(z,y) + H(z',y) = H(z,y') + H(z',y)
On the other hand, if z = Z (and so Z = 2), then
u(z,y, z) +u(d,y, 2) = u(z,y, 2) +ul2', v, 2) > u(z,y, 2) + u(@,y, 2)
And, we also have

Gy, 2) +G(y,2) = G(y,2) + Gy, 2) > G(y,2) + G(Y, 2)
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Using (4.9) and (4.10) in (4.5), we get
H(z,y) + H(',y') = [u(z,y', 2) +u(@',y, )| + 6[G(y, 2) + Gy, 2)] (4.11)
Using (4.1) and (4.2) in (4.11), we conclude
H(z,y)+ H(',y") = H(z,y") + H(2', y)
This completes our proof of supermodularity of H. m
Proposition 6 If u is supermodular on A, then V is supermodular on €.

Proof. Define a sequence of functions, V' : Q — R given by

VO(z,y) = u(z,y,0) and V'™ (2,y) = max [u(z,y, 2) + 6V (y, 2)]

ze¥(y)

Then V? is a concave, continuous and supermodular function on ). Using Lemma 2, V? is
a concave, continuous and supermodular function on €2 for each ¢t > 0.

Since |u(z,y,2)] < B on A, we have |Vi(x,y)| < B/(1—6) on Q for all t > 0. To see this,
note that it is clearly true for t = 0. Assuming this is true for ¢t =T > 0, we have

VT (@,y)| < B+68[B/(1-6)] = B/(1-6)

Thus [Vi(z,y)| < B/(1 —6) on Q for all t > 0 by induction.
We now proceed to show that Vit (z,y) > Vi(xz,y) for t > 0, for all (z,y)e. For t =0, we
have

Viz,y) = max[u(x,y,z)+ 6V (y,2)]

ze¥ (y)
> u(z,y,0)+6V°(y,0)
= u(z,y,0) + du(y,0,0)
> u(z,y,0) = V'(z,y)
since u is non-decreasing in its first argument and (0, 0,0) = 0.

Suppose Vi (x,y) > Vi(x,y) fort =0,...,T where T > 0. We now show that the inequality
must hold for t =T + 1 as well. Let Z be the solution of the maximization problem

max [u(z,y, z) + 6V (y, 2)]
2w (y)

given (z,y) €. Then, by definition of VT+2 we have

VI (z,y) u(z,y,z) + 6V (y, z)
u(z,y,z) + V7 (y, 2)

= V' (z,y)

>
>

This completes the induction proof.

14



For each (z,y) €€, define )
V(z,y) = limVi(z,y)

Then V is well-defined and is a concave, continuous and supermodular function on €.
Given (z,y) €9, let 2 be the solution to the maximization problem:

max [u(z,y, z) + 6V (y, 2)]
zew(y)

Then, we have
Vi (@, y) = u(e,y, 2") + 8V (y, 2")

The sequence {z'} is bounded, and has a convergent subsequence, converging to some Z; clearly
Ze¥(y). For the subsequence on which z* converges to Z, taking limits we have

V(z,y) = u(z,y,2) +6V(y,2) (4.12)
Also, for all z e U(y), we have
V& (@,y) = ulz,y, 2) + 6V (y, 2)

and so

Viz,y) = u(z,y,2) +6V(y,2) (4.13)
Using (4.12) and (4.13) we have

V(z,y) = max[u(z,y,z) + 6V (y, 2)]

ze¥(y)
Thus, V is the value function, V, of problem (2.4), and V is supermodular on . m
Theorem 1 If u is supermodular on A, then h is non-decreasing in each component.

Proof. Let (z,y) and (2',y') e Q with (2/,y’) > (z,y). Define z = h(x,y) and 2’ = h(z',y’).
We claim that 2z’ > z. Suppose, on the contrary, that z’ < z. We know that

Viz,y) = ulz,y,2)+0V(y,2)
V(',y) = u@,y,2)+6V(y,2)

Since (y,2) e and 2’ < z, (y,2") €€, and
V(z,y) > u(z,y,2) +6V(y,2')
Since (y,2)eQ and 3’ >y, (v, 2) e, and

V(' y) >u,y,2) + 6V (Y, 2)
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Thus, we get
[w(z,y,z) +u(z',y, )] +6[V(y, z) + V(V, 2')] (4.14)
> [ulz,y,2) +ul@’y, 2)] +6[V(y, 2) + V(Y 2)]
Since w is supermodular on A, and (2/,y’) > (z,y) and z > 2/,
w(x,y,2') +ul@,y, 2) >ulz,y, 2) +ul@,y, 2) (4.15)
Since V is supermodular on §2, and 3’ > y and z > 2/,
0[V(y,2) +V(y,2)] 2 6[V(y,2) + V(y', 2)] (4.16)

Adding (4.15) and (4.16), we contradict (4.14). m

4.4 Global Dynamics

In this section we study the global dynamics of the two-dimensional dynamical system, (£2,T")
where I" is a map from €2 to ) given by

[(z,y) = (y, h(x,y))

For (z,y) e Q, we have h(x,y) e ¥(y), and so (y, h(z,y)) e 2.
We maintain the assumption that v is supermodular on A, and so A is non-decreasing in both
its arguments. We also maintain the single-crossing condition on ¢, introduced in Section 3c.
The principal result of this subsection (Theorem 2) is that if (z;) is an optimal program from
(x,y), where (z,y) e Q and (z,y) >> 0, then x; converges to x* as t — oo, thus exhibiting global
asymptotic stability (“turnpike property”).

Theorem 2 Let (x;) be an optimal program from (x,y) € Q with (z,y) >> 0. Then tlim Ty = z*.
Proof. Define m = min{zg, z;, z*} and M = max{xg, x1, *}, where z* is given by the
single-crossing condition (SC).
We show that z; > m for all ¢ > 0. This is clear for ¢ = 0,1. Suppose z; > m for
t=20,1,.. T, where T' > 1, then

xpy = h(xp_q, x7) > h(m,m) >m (4.17)

The first inequality in (4.17) follows from the monotonicity of A in both arguments, the definition
of m, and the fact that xr_; and z are at least as large as m. The second inequality follows
from the fact that m < z*and condition (SC). This establishes by induction that z; > m for
t>0.

We show that x; < M for all £ > 0. This being clear for ¢ = 0,1, suppose z; < M for
t=0,1,...,T, were T > 1. Then

Tr41 = h(l'T_l, l’T> S h(M, M) S M (418)
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The first inequality in (4.18) follows from the monotonicity of A in both arguments, the definition

of M, and the facts that z7_y < M, x7 < M by hypothesis. The second inequality follows from

the fact that M > z* and condition (SC). This establishes by induction that z; < M for ¢t > 0.
We also note that

Ty = h(xi-1, 2,) < h(B, B) = ¢(B) (4.19)

Define a = lim inf z;. We claim that a > x*. Otherwise, if a < z*, then using a > m > 0,

t—o0

we have ¢(a) > a and so we can find € > 0 such that (a —¢) > 0 and ¢(a —¢) > a+¢e. By
definition of a, we can find N such that for ¢t > N, 2; > (a —¢). Thus, for t > N,

Tyro = h(zy, 441) > hla—e,a—¢e)=¢la—¢e) >a+e

But this means that lim inf x; > a + €, a contradiction. Thus, we must have a > x*.

t—o0
Define A = lim supz;. We claim that A < z*. Suppose, on the contrary, A > z*. We know

t—o0

that A < ¢(B) [by (4.19)]<B [by Proposition 4]. Using condition (SC) we have ¢(A) < A, and
so we can find € > 0 such that (A+¢) < B, and ¢(A+¢) < (A —¢). By definition of A, we can
find N such that for t > N, x; < (A +¢). Thus fort > N,

Topo = h(xy, 401) < h(A+e, A+e)=¢(A+e) < A—c¢

But this means that lim supx; < A — ¢, a contradiction. Thus, we must have A < z*.
t—o0

Since A > a, we have
*>A>a> 2" (4.20)

which proves that a = A = z*, and so (z;) converges and tlim =2z M
—00

Remark 1 The style of proof is similar to that used in Hautus and Bolis (1979), but since the
domain of definition of h and ¢ are different in our framework from theirs, we cannot appeal
directly to their result.

5 Local Dynamics

In this section, we provide an analysis of the local dynamics of optimal solutions. To this end, we
study the behavior of the optimal policy function and obtain restrictions on the two characteristic
roots associated with the linearized version of it near the stationary optimal stock. We then
show that each of these characteristic roots must also be a characteristic root of the linearized
version of the Ramsey-FEuler equation near the stationary optimal stock. Finally, we examine
the fourth order difference equation, which represents the linearized version of the Ramsey-Euler
equations near the stationary optimal stock, and we show which two of them are selected by
the optimal solution. The roots selected by the optimal solution provide information about the
speed of convergence of non-stationary optimal trajectories to the stationary optimal stock.
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5.1 Characteristic Roots Associated with the Optimal Policy Func-
tion

We proceed with our local analysis of the optimal policy function by making strong smoothness
assumptions.

We assume that there is ¢ > 0 such that the utility function is C? in a neighborhood N = @3
of (z*,x*,z*), [where Q = (z* —e,2* 4+ ¢) | with u; > 0, u3 < 0 and w3 > 0, and a negative-
definite Hessian on N. Further, we assume that there is a neighborhood M’ of (z*, 2*) on which
V is C% and h is C*'. Clearly, we can choose a smaller neighborhood M of M’ such that for all
(z,y) in M, (z,y,h(z,y)) is in N and (y,h(z,y)) is in M.

In terms of the example of Section 2.4, the restriction w3 > 0 is satisfied if w is C? with
w2 < 0 [and f is C*, with f’ > 0]. This restriction is quite important: it implies that the policy
function is monotone increasing in the first argument on M.

Proposition 7 The policy function, h, satisfies hy(z,y) > 0 for (x,y)e M.
Proof. Let (z,y)e M. Then h(x,y) solves the maximization problem:

Maz [u(z,y, z) + 6V (y, 2)]
(y,2)eQ

Since (y, h(z,y)) e M" and (z,y, h(z,y)) is in N,
us(z, y, Mz, y)) + 6Valy, h(z,y)) = 0 (5.1)
This is an identity in (x,y) e M, and so, differentiating with respect to z,
usy (2,4, Wz, y)) + uss(x, y, h(z, y))ha (2, y) + 6Var (y, h(z, y)) (2, y) = 0

We have V5 < 0 [by concavity of V], and ugz < 0 [since the Hessian of u is negative definite];
thus uss(z,y, h(x,y)) + 6Vaa(y, h(z,y)) <0, and so hy(z,y) > 0. =
Another useful property of the optimal policy function is that hy(z*, z*) + he(z*,2*) < 1

Proposition 8 Suppose x* is the unique stationary optimal stock. Then

hy(z*, %) + ho(z*,2%) < 1

Proof. Since [h(z,z) — 2] > 0 for 0 < 2 < z*, and [h(z* 2*) — 2*] = 0, we must have
[h(z,z) — x] minimized at x = z* among all z € [0, 2*]. Thus,

hi(z*, x*) + ha(z*,2*) =1 <0

which establishes the result. m
Given the non-linear difference equation

Tiy1 = h(l't, l’t+1)
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the linear difference equation associated with it (near the stationary optimal stock, z*) is given
by
Q2 = qa¢ + Paiiq (5.2)

where ¢ denotes hy(z*,2*) and p denotes ho(z*, z*), and a; is to be interpreted as (z; — z*) for
t>0.
The characteristic equation associated with the equation (5.2) is

N =q+pA (5.3)

Denoting by A; and A, the roots of (5.3), we observe that

Al+X=p
and Ay = —q } (5-4)

These are explicity given by the formula:

A= [p%/p?+4q]/2 (5.5)

Under our assumptions we have the information that
¢>0,p>0,p+q<1 (5.6)

Since ¢ > 0, we can use (5.4) to infer that the roots A;, Ay are real and they are of opposite signs.
Without loss of generality, let us denote the positive root by A; and the negative root by As.
Using (5.4), (5.6), we have

I1>p+g=M+X— M= A+ (1-A)\

so that
(1 —=X1) > (1 —=A1)Ae (5.7)

Now, if A; > 1, then we would get (1—X\;) < 0, and (1—X;)A2 > 0 (since Ay < 0) contradicting
(5.7). Thus, we can conclude that
0<\ <1 (5.8)

Now, using (5.4), we have (—A2) = Ay —p < A\ < 1. Thus, neither characteristic root can
exceed 1 in absolute value.

5.2 Characteristic Roots Associated with the Ramsey-Euler Equa-
tion

Consider the Ramsey-Euler equation:

Us (T, Typ1, Topo) + OUs(Typ1, Topo, Teps) + 62Uy (Typa, Teys, Tyys) =0 (5.9)
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In particular, of course, x;,, = z* for s =0, 1,2, 3, 4 satisfies (5.9):
ug(z*, 2%, %) + dug(x*, %, %) 4 6%uy (z*, 2%, 2*) = 0 (5.10)

If we use the Mean-Value theorem around (z*,z*,z*) to evaluate the difference between
the left-hand sides of (5.9) and (5.10), but ignore the second-order terms (so that one obtains a
“first-order” or “linear” approximation to the difference) we get (dropping the point of evaulation
(x*,x*, x*) to ease the writing) the expression:

62 uiserpa + (8%ury + Suos)erys + (6%urr + Ougy + uss)erra + (Susy + usp)er + Uiy

If we substitute 8'° for g;,,(s = 0,1,2,3,4), and equate the resulting expression to zero, we
get the characteristic equation associated with the Ramsey-Euler equation (5.9):

62UJ1364 + (621142 + 6u23)ﬁ3 + (621141 + 6UQ2 —+ UJ33>62 —+ (6UQ1 + Ugg)ﬂ —+ Uz = 0 (511)

The idea is that the roots of this characteristic equation will reflect local behavior around the
stationary optimal stock, x*, of solutions to Ramsey-Euler equations.

We now show that the characteristic roots associated with the optimal policy function, which
we analyzed in Section 5.1, must be solutions to the characteristic equation (5.11). By continuity
of the optimal policy function, we can choose a neighborhood M of (z*, z*) such that for all (z,y)
in M, (y,h(z,y)), (h(z,y), h(y,h(z,y))) and (h(y, h(z,y)), h(h(z,y), h(y, h(z,y))) are in M’,

h(y,
and (2, h(z,)). (4. h(z,9), h(y, h(z.y))) and (h(z.y), h(y, h(z.)). h(h(z,y). by, hz,))) are
in N. Thus, the Ramsey-Euler equation yields the following identity in (z,y):

W(l‘,y) = u;;(:c,y,h(:c,y)) (5.12)
+ouz(y, h(z,y), h(y, h(z,y))

+6%ur (h(2,y), h(y, h(z,y)),
=0

)
h(h(z,y), by, h(z,y))))

If we differentiate W with respect to = and evaluate the derivatives of w at (z*,z*, 2*), and the
derivatives of h at (z*, z*), then the derivative W (z*, x*)/0z must be equal to zero. We can
write the derivative (after dropping the points of evaluation (z*, z*,z*) and (z*,z*) to ease the
writing) as:

oW (z",2")/0x = wug + usshy + O[usahy + usshohy] + 6 [ur1hy + uiohohy + U13(h1)2 + U13(h2)2h1]
= U3y + [ugs + dugn + 52U11]h1 + 8[ugs + duis]hiha + 52%13[(h1)2 + (h2)?h4]

Denote [uss + dugg + (52u11] by C’, and [ugg + duga] by D. Then, we have:
OW (z*,2*) )0z = ugy + Chy + 6Dhyhy + 6%urs[(hy)? + (he)?hi] = 0 (5.13)

Similarly, if we differentiate W with respect to y, and evaluate the derivatives of u at
(x*,z*,z*), and the derivatives of h at (z*,z*), then the derivative OW (z*,z*)/0y must be
equal to zero. We can write the derivative (after dropping the points of evaluation (z*, z*, x*)
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and (z*,z*) to ease the writing) as:

OW (z*,2")/0y = usy + usshy + O[usr + useho + uszhy + U23(h2)2]
+62 [ullhg + Ulghl + Um(hg)z + 2U13h1h2 + Ulg(hg)g]
= ugg + Odusy + Chy + 6Dhy + 2(52u13h1h2 —+ 6D(h2>2 + (52u13(h2)3

Rearranging terms yields the derivative:
(9W(£U*, l'*>/(9y = (ng + 6UQ1> + éhg —+ 6D[h1 —+ (hg)z] + 62UJ13[2h1 + (hg)z]hg =0 (514)

We recall from Section 5.1 that if ) is a characteristic root associated with the optimal policy
function, then (A\)? = hoX + hy. Using this information in (5.13) and (5.14), we get:

OW (z*,2*) Dz + AOW (¢*,2%) /8y = wuz1 + [uzz + duai]A + C(ha + haX) + D[ A + (ha)*\ + hyho)

+6%u13[(h1)? + (h2)?hy + 2h1ho X + (hy)® )]

= gy + [usy + Sug A 4+ CA2 + D[\ 4 hyN?]
+(52U13[h1(h1 + hz)\) + hihoA + (hz)Q[fh + h2>\H

= Uy + [ugy + Ouy A+ CA2 + 6DN3
+6%u13[R1A? + hihoX + (he)?N?]

= ugs + [uzs + 6um A + ON + 6DX® + 6%ura [N + ho\Y]
sy + [ugy + Oug )X + CA2 4+ 6DX3 + §%uis\* =0

This completes the verification of our claim.

We now show how the characteristic roots associated with the optimal policy function (ana-
lyzed in Section 5.1) can be found by calculating the characteristic roots of (5.11).

Notice that f = 0 is not a solution to (5.11) since w13 # 0. We can, therefore, use the
transformed variable:

1= 586+ (1/P)

to examine the roots of (5.11). Using this transformation, (5.11) becomes
Uy + (Suy + ugs)p + [(52u11 + duge + uzz — 20uy3] =0 (5.15)
Let us define G : R — R by
G(p) = ursp® + (Surz + uns)p + [6%ur1 + Suas + uss — 20uys] (5.16)

Since the Hessian of u is negative definite, we have u;; < 0, uss < 0, uszs < 0, and since
u13 > 0, we have
[621141 + Ougg + usz — 2(5u13]/u13 <0

Denoting the roots of (5.15), which is a quadratic in u, by p, and p,, we note that

papry <0 (5.17)

so these roots are necessarily real. We denote the positive root by p; and the negative root by

21



Ho-
Given p,(i = 1,2), we can obtain the corresponding roots of /3 by solving the quadratic

56+ (1/8) = (5.18)

We denote the roots of (5.18) corresponding to p; by f; and 5, [with |3;| = min[|5,], |5,|]] and
the roots of (5.18) corresponding to p, by 35 and 3, [with |G;] = min|[|3s], |B4]]]-
Define the function F : R? — R by

F(B;m) = 66> —mpB +1 (5.19)

Then (3, and (3, are the roots of F(5; u,) = 0, and 35 and (3, are the roots of F(53; u,) = 0.
Using our analysis in Section 5.1, we can show that the roots 3, and [, are real, and

0< B, <1<8, (5.20)

To see this, recall that A; and A, are solutions of (5.3). These are real and of opposite signs.
Thus, examining (5.19), it is clear that A; and A must correspond to different p;. This means
that (3, and (3, are real, and so are 35 and [3,.

Now, note that since 3, and (3, solve the equation

6B —wB+1=0 (5.21)

and ji; > 0, we have 3,8, = (1/6) > 0 and (3, + f5) = (1;/6) > 0. Thus, 3; and 3, are both
positive.
Since 34 and [, are roots of the equation

6% — B +1=0 (5.22)

we have 350, = (1/6) > 0 and (5 + B, = (45/6) < 0. Thus 5 and 3, are of the same sign, and
they must both be negative.

It follows from the above analysis that A\; must be one of the roots 3; and (5, and A\ must
be one of the roots 35 and 3,. Further, since \; < 1, and 3,6, = (1/6) > 1, Ay = 3, and
By > (1/6). This establishes (5.20).

Similarly, we can show that:

0>p6;>—-1>0, (5.23)

Since (—Ay) < 1, and f56, = (1/6) > 1, (—A2) = (—f3) and (—3,) > (1/6). This establishes
(5.23).

5.3 Differentiability of the Optimal Policy Function

In Section 5.1, we assumed that the optimal policy function was continuously differentiable in a
neighborhood of the steady state, x*. We used this to obtain the characteristic roots associated
with the optimal policy function, and to relate them (in Section 5.2) to the characteristic roots
associated with the Ramsey-Euler equation. To complete our analysis, we need to show that
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the optimal policy function is indeed continuously differentiable in a neighborhood of the steady
state, z*. We do this by applying the Stable Manifold Theorem.

We have seen in Section 5.2 that the characteristic roots (8, 85, B3, 3,) associated with the
equation (5.11) satisfy the restrictions:

By<—1<B3<0<P; <1< P, (5.24)

We assume now that the generic case in (5.24) holds; that is, the weak inequalities in (5.24) are
replaced by strict inequalities:

By<—1<pB;<0< B, <1<p,y (5.25)

We wish to analyze the behavior of the Ramsey-Euler dynamical system near the steady
state, z*. To this end, we define:

F(v,w,z,y,2) = us(v,w, ) + dus(w, z,y) + 6*ui(z, 9, 2)

in a neighborhood N’ = Q° of (z*,x*, z*, 2%, x*) [where Q = (z* — ¢,2* + ¢) and ¢ is as given in
Section 5.1]. Then, F is C'!' on N’. We note that:

DsF(x*,x*, 2%, 2% ) = §*uys(x*, 2%, 2%) # 0

and so we can apply the implicit function theorem® to obtain an open set U containing (z*, x*, z*, x*),
and an open set V' containing x*, and a unique function ® : U — V, such that:

us(v, w,x) + dug(w, z,y) + 68%us (x,y, ®(v,w,2,9)) = 0 for all (v,w,x,y) € U (5.26)

and:

O(z*, z* 2" %) =" (5.27)
Further, ® is C* on U. Clearly, we can pick an open set Uc U, with U containing (z*, z*, x*, x*),
such that ®(U) C Q.

Define the set U’ = {(v,w',2’,y/) € R* : (v/,w',2",9) = (v — 2", w — z*, 0 — z*,y — x*) for
some (v,w,z,y) € U} Thus, U’ is a neighborhood of (0,0,0,0), a translation of the set U by
subtraction of the point (z*, 2*, z*, 2*) from each point (v, w,z,y) € U. Now, define G : U’ — R*
as follows:

(5.28)

4
o+ X, 2" + Xo, 2" + X3, 2" + Xy) — 2*

Note that G(0,0,0,0) = (0,0,0,0), using (5.27).
The Ramsey-Euler dynamics near the steady state is governed by (5.26). This gives rise to

%See, for example, Rosenlicht (1986), p.205-209.
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the (four-dimensional) dynamical system:
Xt-i-l - G(Xt> (529)

In order to apply the standard form of the Stable Manifold Theorem, however, we need to
transform the variables appearing in this dynamical system.

To this end, we proceed as follows. Given G, we can calculate the Jacobian matrix of G at
(0,0,0,0) :

0 1 0 0
0 0 1 0
Ja(0) = 0 0 0 ] (5.30)
O (x*, z*, x*,x%) Po(x*, a*,x*, x*) Ps(z*, a* a*,2*) Dy(a*, z* z* x%)

The entries in the last row of Jg(0) can be related to the second-order derivatives of u at
(x*, z*, z*). Differentiating (5.26) with respect to v, w, z, y and evaluating the relevant derivatives
at (v,w,z,y) = (z*, %, z*, 2*), we obtain:

ugy (2%, 2%, 2%) + 8%urg(a*, o*, o) Py (2%, 2*, 2", 2*) =
ugo(x*, &%, %) + dugy (2%, x*, %) + (52u13(:c*,:c z*)P (:c z* % %) =0
ugs(x*, x*, x*) +(5u22(:c z*, %) + 6 un(:c ¥ x*) + (:c ¥, a*) Py (z*, o, ¥, %) = 0
(5uz3(:c z*, %) + 62ugs (¥, ¥, %) + §%ups(z*, :L'*:L') (:c 2 2*) =0
(5.31)
These equations yield:
Oy (a%,27, 2%, %) = —(1/8%) )

[uga(x*, 2%, %) + Sugy (x*, 2%, )]

Dy (z*, 2, 2", %) = — 62u13(:c*,:€*,l'*)

[uss(z*, 2%, %) + Sugs (z*, 2%, 2*) 4 6%uy (x*, %, )] (5.32)
6*uys(x*, 2, %)

[bugs(z*, 2%, %) + 6%uys(2*, 2*, 2*)]

Oy (x*, ", 2%, %) = —

Oy(x*, 2™, 2%, 2%) = —
4( ) ) ) ) 62u13(1'*,1'*,1'*) )

Define the Vandermonde matrix:

1 1 1 1

p_| B By By By
5% 5§ 5§ 531
By Bs By By
Note that the unusual order in the Vandermonde matrix is to be explained by the fact that the

characteristic roots 3, and 35 are less than one in absolute value, while 3, and 3, are greater than
one in absolute value. [This order becomes important in the application of the Stable Manifold

(5.33)
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Theorem below]. Define the diagonal matrix of characteristic values:

B, 0 0 0
0 B, 0 0
B= 3 5.34
0 0 B, 0 (5.34)
0 0 0 B
Now, denoting by A the Jacobian matrix J¢(0), we can verify (using (5.30),(5.32) and (5.11))
that:
By By By By
ap—pB— | Py Oz O (5.35)

i
B1 Bs By By
This means that (3,, 05, 35, 34) are the characteristic roots of A, with the column vectors of P

constituting a set of characteristic vectors of A, corresponding to these characteristic roots. The
Vandermonde matrix is known to be non-singular®, so we get the spectral decomposition:

P'AP =B (5.36)
Returning now to our dynamical system (5.29), we rewrite it as:
X1 = AX, + [G(Xy) — AXy) (5.37)
Multiplying through in (5.37) by P~!, we obtain:
P'X, = (P'AP)P'X, + [P'G(PP'X,) — (P'AP)P'X|] (5.38)
Thus, using (5.36), and defining new variables Y = P71 X, we get:
Yip1 = BY; + [PT'G(PY,) — BY]] (5.39)
Denote by U the set {Y : Y = P7'X for some X € U}, and define g : U — R* as follows:
g(Y)=P'G(PY)-BY (5.40)

Note that by (5.28), we have:
9(0,0,0,0) = (0,0,0,0) (5.41)

Also, we obtain by differentiating (5.40) and evaluating the derivatives at (0,0, 0,0) :

J

g

(0) =P 'Jg(PO)P —B =P 'Jg(0)P—-B=P'AP-B =0 (5.42)
Thus, the dynamical system (5.39) can now be written as :

Yo = BY; + g(Y)) (5.43)

6Several methods are known for computing the inverse of a Vandermonde matrix. For one such approach, see
Parker (1964).
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with ¢(0) = 0 and J,(0) = 0.
The Stable Manifold Theorem can be applied to the dynamical system (5.43). We give below
the particular statement of it (due to Irwin (1970)) that is directly applicable’.

Stable Manifold Theorem for a Fixed Point (Irwin):

Let F = E; x FE5 be a Banach Space and let T} : F; — E; and Ty : E5 — FE5 be isomorphisms
with max{||T1 ]|, |75 ||} < 1. Let U be an open neighborhood of 0 in E and let g : U — E be
a C" map (r > 1) with ¢(0) = 0 and Dg(0) = 0. Let f = T} x Ty + g . Then, there exist open
balls C' and D centered at 0 in E; and FEs respectively, and a unique map H : C' — D such that
f(graph(H)) C graph(H). The map H is C" on the open ball C' and DH (0) = 0. Further, for
all z€e C x D, f*(z) — 0 as n — oo if and only if z € graph(H)).

To apply the theorem, we define the maps T} : R? — R? and T} : R? — R? as follows:
o 61 0 Zl . o 62 0 Zl
file) = [ 0 S, 22 Ta(2) = 0 B, 22

5= )| 3

so that, using (5.25), we have ||Ty|| < 1 and ||T5*|| < 1. Applying the theorem in our context
(with = 1) we get the C' function H with the properties stated above. We wish to conclude
from this that the policy function, h, is C! in a neighborhood of (z*, z*).

First, we note that H(0,0) = (0,0). To see this, we check that f(0,0,0,0) = ¢(0,0,0,0) =
(0,0,0,0) by (5.41), so that f™(0,0,0,0) = (0,0,0,0), and so by the Stable Manifold Theorem,
(0,0,0,0) € graph(H). That is, H(0,0) = (0,0).

Next, we define a function, K : R? x R? x ' — R* as follows:

Note that:

K(a,b,z) = P*(a,b) — (2, H(2)) (5.44)

Clearly, K is C! on its domain, and K(0,0,0,0,0,0) = (0,0,0,0), since H(0,0) = (0,0). Further,
the matrix (D;K"(0,0,0,0,0,0)), where i = 1,2,3,4 and j = 3,4,5,6 can be checked to be
non-singular. To see this, denote P! by R, and write R as follows:

Ry Rip
R =
{ Ro1 Ra }

where each R;; (with ¢ =1,2;j5 = 1,2) a 2 x 2 matrix. Then, we have:

i | R 1
(DJK (070707 07070>> - |: RQQ 0 :|
where [ is the 2 X 2 identity matrix, and 0 is the 2 x 2 null matrix. Thus, the matrix

(D;K'(0,0,0,0,0,0)) is non-singular if and only if Ry is non-singular. To verify that Ry is

TA good exposition of Irwin’s result can be found in Franks (1979).
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non-singular, we write (by definition of R) :
Ri1 Rip Py Po | _ |10
Ry R Py Py 0 I
where each P;; (with ¢ =1,2;j = 1,2) is a 2 X 2 sub-matrix of P. This yields the equations:

Ro1Pi1 + Raa Py =0 } (5.45)

Ro1Pig+ Roo Py =1

Clearly, P is non-singular, since det(Py;) = 35 — 8, < 0 (by (5.25)). Thus, Ry = —Rgo Py Py
(from the first equation of (5.45)) and using this in the second equation of (5.45), we obtain
Rys[Pay — Py P, Piy] = I. This establishes that Ry, is non-singular.

We can now use the implicit function theorem to obtain an open set E' C R? containing
(0,0), an open set C' C C containing (0,0), and an open set E” C R? containing (0,0), and
unique functions L' : B/ — E” and L? : E' — (", such that:

K(a,L'(a),L*(a)) =0 forall a € E' (5.46)
and:
L'(0,0) = (0,0); L*(0,0) = (0,0) (5.47)
Further, L' and L? are C* on E'. Using the definition of K, we have from (5.46) :

P (a,L'(a)) = (L*(a), H(L?*(a))) for all a € E’ (5.48)

Now, we look at the optimal policy function, h. Pick 0 < & < e (where ¢ is given as in
Section 5.1) so that (—¢&’,&’)* C U’ (where U’ is given as in (5.28)), and P~z € C x D for all
z € (—¢',¢)*. Denote (—¢', ') by S.

Pick any (21, 22) € S2. Define (x1,12) = (z*,2*) + (21, 22). Then the sequence {z;} satisfying
Tiro = h(zy, i) for t > 1 is well-defined and x; — x* as t — oo. Thus, the sequence {z}
satisfying z; = z; — 2* for t > 1 is well-defined and z, — 0 as t — oco. Further, since (zy, 20) € S?,
we have z; € S for all ¢t > 1 (by the proof of Theorem 2). Then, we have:

(24, 2t41, 2t42, 2e43) €U fort >1 (5.49)

and:
P~ (2, 241, Zeaas Zea3) €C X D fort > 1 (5.50)
Using (5.28) and (5.49), we can write for ¢t > 1,
F(P™ (2, 2041, 242, 2043)) = P~ (2001, 2042, 243, P(@° + 2, 8% + 2041, 85 + 240,85 + 2043) — 2¥)

(5.51)
Using (5.12), we have for t > 1,

* * * * * *
Uz (2 4 24, &5 + 241, 7 + Zigo) + OU (X + 241, T F 2o, 7+ Zi43)

+ 82up (2% + Zip2, @F + 2e43, 8"+ 2004) =0 (5.52)
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Using (5.26) and (5.49), we have for t > 1,

* * * * * *
us(x™ 4 2, " + 2e41, T 4 2e42) + Oua (T 4 ze41, TF + Zea2, T + 2i43)

+ 62Uy (2% + Zpgo, TF F Zag, BT+ 2, T° + 2py1, T+ Zpi0, 85+ 2i43)) =0 (5.53)

Note that by (5.49), ®(z* + 2, T* + 2411, T* + 2e40, T* + 2:43) € Q. Since uy3 > 0 on @3, (5.52)
and (5.53) yield (by an application of the Mean Value theorem):

O™ + 21, " + 20401, " + 2y, 5 + 2143) = T + 2144 (5.54)

Using (5.54) in (5.51), we obtain:
FP™ (2, 2041, 2oy 2043)) = PN 2041, Zer2, 20e3, Zesa) for t >1 (5.55)

We can infer from (5.55) that:
(P21, 22,23, 21)) = P (Zns1, Znt2, Znis, Znga) forn > 1 (5.56)

Since the right hand-side of (5.56) converges to (0, 0,0, 0) asn — oo, we must have (P~ (21, 22, 23, 24)) —
(0,0,0,0) as n — oo. By the Stable Manifold Theorem, then, we must have:

P21, 20, 23, 24) € graph(H) (5.57)
Define a function 1 : S? — R? by:
V(21,20) = (h(x* + 21,2% + 22) — 2", h(z* + 22, h(x* + 21, 2% + 22)) — 2*) for all z € S”

Then 9(0,0) = (0,0) and (5.57) shows that, given any 2z = (21,22) € S? we must have
P~Y(z,4(2)) € graph(H). Thus, given any z € S?, there is z’ € C, such that:

P~ (2,49(2)) = (¢, H(2"))
Clearly, such a 2z’ must be unique. Thus, there is a function, K : S — C such that:
Pz, 4(2)) = (K(2), H{K(2))) for all z € S (5.58)

Note that since 1(0,0) = (0,0), (5.58) implies that K(0,0) = (0,0). Defining S’ = S2 N E’, we
have from (5.58),
P (z,9(2)) = (K(2), H(K(2))) for all z € S’ (5.59)

On the other hand, from (5.48), we have:
Pz, L*(2)) = (L*(2), H(L*(2))) forall z € S’ (5.60)

Since L' and L? are the unique functions satisfying (5.60) and (5.47), and since 1(0,0) = (0, 0)
and K(0,0) = (0,0), we must have ¢» = L' and K = L? on S’. Since L' is C*' on S, we can
conclude that v is C! on S’. Using the definition of 1) , it follows that the optimal policy function,
h,is C* on S'.
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