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1 Introduction

The last twenty years have witnessed a significant growth of the literature on
the “survival problem” ([25], p.436), primarily in the context of the causes and
remedies of famines. Once a subject essentially of empirical development eco-
nomics, economic survival became an issue of analytical economics and, most
recently, of general equilibrium theory. Considerable progress has been achieved
in the theoretical analysis and empirical investigations of the causes of famines
and policy measures to combat famines (see the collection edited by Drezè [10]
and the detailed list of references). There has been a recognition that a par-
tial equilibrium model, focusing on the food market, is unable to capture the
complexity of events that result in famines, and may indeed render misleading
policy prescriptions. It is better to turn to general equilibrium models with an
explicit treatment of survival, for a better understanding of the relevant issues.
Cast in a market economy framework, a formal analysis clearly indicates

that an agent may fail to survive due to an “endowment failure” and/or “an
adverse movement of the terms of trade” As Sen puts it in [25], “ ... starvation
is a matter of some people not having enough food to eat, and not a matter
of there being not enough food to eat. While the latter can be a cause of the
former, it is clearly one of many possible influences.”1 The Ethiopian famine
in 1972-74 and the famine in Bangladesh in 1974 provide striking examples of
the “terms of trade” effect, examples in which a particular group of agents got
“decimated by the market mechanism.” (Sen [26]) The famine victims often
belonged to the groups of non-food producers. These individuals had to acquire
food in the market in exchange for their output (or labor), and, thus, were more
vulnerable to the shifts in the terms of trade affecting their food purchasing
power (see also [20], p.14).
Sen’s entitlement approach elaborated in [24] - [26], as well as the model

of Coles and Hammond [7] are examples of static, deterministic analysis of the
survival problem in a general equilibrium framework. Uncertainty was formally

∗The paper is dedicated with affection and respect to Professor Rabi Bhattacharya. Thanks
are due to Kaushik Basu, Steve Coate, David Easley, Sir James Mirrlees, and Karl Shell for
discussion and comments. All remaining errors are ours.

1As a matter of fact, “Some of the worst famines have taken place with no significant
decline in food availability per head.” ([26], p.17)
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introduced, and the survival probability was precisely defined in a static Wal-
rasian model in Bhattacharya and Majumdar [4]. Here again, an agent may fail
to survive (“is ruined”) in a particular state of the environment for two reasons:
a meager endowment in this state (a direct effect on the individual) and/or an
“unfavorable” equilibrium price system at which the wealth of the agent falls
short of the minimum expenditure (computed at the equilibrium price system)
needed for survival (an indirect terms of trade effect involving the preferences
and the endowments of all the agents). The main results of Bhattacharya and
Majumdar [4] and Hashimzade [13] (reviewed briefly in Section 2) characterize
the probability of survival in a “large” Walrasian economy, under alternative
assumptions on the nature of dependence among economic agents, when the
endowments depend on the state of the environment.
In both these studies mentioned above the uncertainty is “intrinsic”, i.e.

affects one of the “fundamental characteristics” (endowments) of an economy.
But in a dynamic world, adverse term-of-trade effects may emerge from “extrin-
sic” uncertainty, which may influence current prices through self-fulfilling beliefs
or expectations. Static models are obviously inadequate to deal with such a role
of expectations. Risk-averse agents tend to smooth consumption over time, and
their intertemporal consumption decisions depend on their expectations about
future endowments and prices. These decisions, in their turn, typically affect
current equilibrium prices, as well as the probability of survival.
In Section 3 we explore the connection between survival and extrinsic uncer-

tainty more formally by using the overlapping generations (“OLG”) model (see
[11] and [22]. A typical overlapping generations economy is an infinite horizon
discrete-time economy with an infinite sequence of consumers, each living two
periods. In every time period t there are “young” agents, born at t, and “old”
agents, born at t−1. If young agents are endowed by consumption good(s), and
old agents are endowed by nominal asset (fiat money), there is an opportunity
for an inter-generational trade. We give an example of an overlapping gener-
ations economy in which an agent may be ruined even when the fundamentals
(endowments and preferences) of the economy are not affected by uncertainty.
Self-fulfilling beliefs of the agents based on “sunspots” may generate an adverse
terms of trade, i.e. may lead to an equilibrium price system at which the con-
sumption of old agents is below the minimum subsistence level. We note that
there is already a vast literature on OLG models, following the seminal paper by
Samuelson [22], and, in particular, on the role of extrinsic uncertainty (following
the paper by Cass and Shell [5]), but neither this literature, nor the literature on
the Arrow-Debreu model of complete markets treats the question of economic
survival.
In Section 4, we turn to the question of insurance against risk, and we explore

the role of markets for securities in the survival problem. Lack of insurance and
financial markets and the very limited access to such markets for a vast number
of agents characterize many developing countries. However, even the presence
of complete markets for securities does not necessarily improve the chance of
survival of an agent. Trade in securities allows us to achieve optimal allocation,
when the set of securities is complete (an example is a complete set of Arrow
securities [1]: suppose, there are two possible states of environment. Then a
complete set of Arrow securities would be a set of two securities, each paying
one monetary unit in one state and nothing in another). Even so, the optimal
allocation can be such that the consumption of some agents falls below the
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survival threshold. We consider an economy where endowments of the agents
are random, and the agents can trade a complete set of securities (in our example
securities yield payoff denominated in a numéraire commodity, see [12]) to insure
themselves against this type of intrinsic uncertainty. We show that trade in
securities can, in fact, worsen survival prospects of the agents 2.

2 Equilibrium

In what follows, R++ is the set of positive real numbers, x = (xk) ∈ Rl is non-
negative (written x ≥ 0) if xk ≥ 0 for all k, and x is strictly positive (written
xÀ 0) if x ∈ R++.
Consider, first, a deterministic Walrasian exchange economy with two goods.

Assume that an agent i has an initial endowment ei = (ei1, ei2) À 0, and a
Cobb-Douglas utility function

u(xi1, xi2) = xγi1x
1−γ
i2 (1)

where 0 < γ < 1 and the pair (xi1, xi2) denotes the quantities of goods 1 and 2
consumed by agent i. Thus an agent i is described by a pair αi = (γ, ei).
Let p be the price of the first good. In a Walrasian model with two goods,

we can normalize prices so that (p, 1− p) is the vector of prices accepted by all
the agents. The typical agent solves the following maximization problem (P):

maximize u(xi1, xi2) (2)

subject to the “budget constraint” defined as

pxi1 + (1− p)xi2 = wi(p)

where the income or wealth wi of the i-th agent is defined as the value of its
endowment computed at (p, 1− p):

wi(p) = pei1 + (1− p)ei2. (3)

Solving the problem (P) one obtains the excess demand for the first good as:

ζi1(p, 1− p) = [(1− p)/p]γei2 − (1− γ)ei1 (4)

One can verify that

pζi1(p, 1− p) + (1− p)ζi2(p, 1− p) = 0 (5)

The total excess demand for the first good at the prices (p, 1− p) in a Wal-
rasian exchange economy with n agents is given by:

ζ1(p, 1− p) =
nX
i=1

ζi1(p, 1− p) (6)

2We are not addressing the issue of practical implementation of securities or insurance
policies. The point of this excercise is to demonstrate that the traditional approach to the
equilibrium in market economies fails to tackle the survival problem precisely because the
usual concept of Pareto optimality ignores the notion of survival.
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In view of (5) it also follows that

pζ1(p, 1− p) + (1− p)ζ2(p, 1− p) = 0 (7)

The “market clearing” Walrasian equilibrium price system is defined by

ζ1(p
∗, 1− p∗) = ζ2(p

∗, 1− p∗) = 0 (8)

and direct computation gives us the equilibrium price p∗n (we emphasize the
dependence of equilibrium price on the number of agents by writing p∗n) as:

p∗n =

"
nX
i=1

Xi

#
/

"
nX
i=1

Xi +
nX
i=1

Yi

#
(9)

where
Xi = γei2, Yi = (1− γ)ei1. (10)

To be sure, one can verify directly that demand equals supply in the market for
the second good when the excess demand for the first good is zero.
Finally, let us stress that a Walrasian economy is “informationally decen-

tralized” in the sense that agent i has no information about (ej) for i 6= j. Thus
it is not possible for agent i to compute the equilibrium price p∗n.

2.1 Survival

In order to provide the motivation for our formal approach, we recall the basic
elements of Amartya Sen’s analysis ([26], Appendix A) in our notation. Let
Fi be a (nonempty) closed subset of R

2
++. We interpret Fi as the set of all

combinations of the two goods that enable the i-th agent to survive. Now,
given a price system (p, 1− p), one can define a function mi(p) as

mi(p) = min
(xi1,xi2)∈Fi

{pxi1 + (1− p)xi2} (11)

Thus, mi(p) is readily interpreted as the minimum expenditure needed for sur-
vival at prices (p, 1− p).

Example: Let (ai1, ai2)À 0 be a fixed element of R2++. Let

Fi = {(xi1, xi2) ∈ R2++ : xi1 ≥ ai1, xi2 ≥ ai2} (12)

Here mi(p) = pai1 + (1− p)ai2.
In our approach we do not deal with the set Fi explicitly. Instead, let us

suppose that, in addition to its utility function and endowment vector, each
agent i is characterized by a continuous function mi(p) : [0, 1] → R++, and
say that for an agent to survive at prices (p, 1 − p), its wealth wi(p) (see (3)
must exceed mi(p). Hence, the i-th agent fails to survive (or, is ruined) at the
Walrasian equilibrium (p∗n, 1− p∗n) if

[p∗nei1 + (1− p∗n)ei2] ≤ mi(p
∗
n) (13)

or, using the definition (3)
wi(p

∗
n) ≤ mi(p

∗
n) (14)

4



From (13) and (14) one can see that an agent may face ruin due to (a) a pos-
sible endowment failure or (b) the equilibrium price system adversely affecting
its wealth relative to the minimum expenditure. This issue is linked to the lit-
erature on the “price” and “welfare” effects of a change in the endowment on
a deterministic Walrasian equilibrium (see the review of transfer problem by
Majumdar and Mitra [17]).
Observe that in our economy even with an exact information on the total

endowment (
Pn

i=1 ei1) of the first good (“food”), it is not possible to figure
out how many agents may starve in equilibrium, in the absense of detailed
information on the pattern of (ei,mi) (and the formula (9)).

2.2 Intrinsic uncertainty: computing the probability of
ruin.

Let us introduce uncertainty. Suppose that the endowments ei of the agents
(i = 1, 2, · · ·n) are random variables. In other words, each ei is a (measurable)
mapping from a probability space(Ω,F , P ) into the non-negative orthant of R2.
One interprets Ω as the set of all possible states of environment, and ei(ω) is
the endowment of agent i in the particular state ω. The distribution of ei(·) is
denoted by µi [formally each µi is a probability measure on the Borel σ field
of R2, its support being a nonempty subset of the strictly positive orthant of
R2]. From the expression (9), the “market clearing” equilibrium price p∗n(ω) is
random, i.e., depends on ω:

p∗n =

"
nX
i=1

γei2(ω)

#
/

"
nX
i=1

γei2(ω) +
nX
i=1

(1− γ) ei1(ω)

#
(15)

The wealth wi(p
∗
n(ω)) of agent i at p

∗
n(ω) is simply p

∗
n(ω)ei1(ω)+[1−p∗n(ω)]ei2(ω).

The event
Ri
n = {ω ∈ Ω : wi(p

∗
n(ω)) ≤ mi(p

∗
n(ω))}

is the set of all states of the environment in which agent i does not survive.
Again, from the definition of the event Ri

n it is clear that an agent may be
ruined due to a meager endowment vector in a particular state of environment.
In what follows, we shall refer to this situation as a “direct” effect of endowment
uncertainty or as an “individual” risk of ruin. But it is also possible for ruin
to occur through an unfavorable movement of the equilibrium prices (terms of
trade) even when there is no change (or perhaps an increase!) in the endowment
vector. A Walrasian equilibrium price system reflects the entire pattern of
endowment that emerges in a particular state of the environment. Given the
role of the price system in determining the wealth of an agent and the minimum
expenditure needed for survival, this possibility of ruin through adverse terms
of trade can be viewed as an “indirect” (“terms of trade”) effect of endowment
uncertainty.
To begin with let us make the following assumptions:

A1. lim
n→∞

"
nX
i=1

V arXi

#
/n2 = 0; lim

n→∞

"
nX
i=1

V arYi

#
/n2 = 0.

A2. {Xi} are uncorrelated, {Yi} are uncorrelated.
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A3.

"
(1/n)

X
i

EXi

#
converges to some π1 > 0,

"
(1/n)

X
i

EYi

#
converges to

some π2 > 0 as n tends to infinity.

In the special case when the distributions of ei are the same for all i (so that
1/n

P
iEXi = π1, where π1 is the common expectation of all Xi; similarly for

π2), A3 is satisfied.
Under A1-A3, if the number n of agents increases to infinity, as a consequence

of the weak law of large numbers (see Lamperti [15], p.22) we have the following
property of equilibrium prices p∗n:

Proposition 1. Under A1-A3, as n tends to infinity, p∗n(ω) converges in prob-
ability to the constant

p0 = π1/ [π1 + π2] (16)

Roughtly, one interprets (16) as follows: for large values of n, the equilibrium
price will not vary much from one state of the environment to another, and will
be insensitive to the exact value of n, the number of agents.
For the constant p0 defined by (16), we have the following characterization

of the probability of ruin in a large Walrasian economy:

Proposition 2. If p0ei1(ω) + (1 − p0)ei2(ω) has a continuous distribution
function,

lim
n→∞

£
P (Ri

n)
¤
= P{ω : p0ei1(ω) + (1− p0)ei2(ω) ≤ mi(p0)} (17)

Remark: The probability on the right side of (17) does not depend on n, and is
determined by µi, a characteristic of agent i, and p0.
Our first task is to characterize P (Ri

n) when n is large (so that the assump-
tion that an individual agent accepts market prices as given is realistic).
One is tempted to conjecture that the convergence property of Proposition

1 will continue to hold if correlation among agents becomes ‘negligible’ as the
size of the economy increases. We shall indicate a ‘typical’ result that captures
such intuition.

Proposition 3. Let the assumptions (A1) and (A3) hold. Moreover, assume

(A.2’) There exist two non-negative sequences (Lk)k≥0, (L0k)k≥0 both converging
to zero such that for all i, k

|Cov(Xi,Xi+k)| ≤ Lk
|Cov(Yi, Yi+k)| ≤ L0k

Then, as n tends to infinity, p∗n(ω) converges in probability to the constant

p0 = π1/[π1 + π2]
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2.3 Some comments on Walrasian equilibria

The analysis so far is deceptively simple for one primary reason. Once one
dispenses with the Cobb-Douglas functional form, one loses the formula (15)
in which a unique equilibrium in every ω is conveniently computed. A more
general treatment - unavoidably more technical - is in [4] which contains the
proofs of Propositions 1-3 above, and Proposition 4 below.
In a more general framework with l ≥ 2 goods (see [8] and [9] for a clas-

sical exposition of the deterministic Walrasian equilibrium theory), we begin

with the price simplex S =

(
p = (pk) ∈ Rl : p ≥ 0,

lX
k=1

pk = 1

)
. An agent i ac-

cepts the price system p ∈ S as given. It is described by a pair (fi, ei), where
the endowment vector ei ∈ Rl, ei À 0. The wealth of the agent i at p is

wi = p · ei ≡
lX

k=1

pkeik. The demand function fi is a continuous function from

S × R++ to Rl
+ such that for every (p,wi) ∈ S × R++, p · fi(p,wi) = wi

(where p · fi(p,wi) ≡
lX

k=1

pkfik(p,wi)). Usually the demand functions are de-

rived from a utility maximization problem of type (P) indicated above. For our
analysis, the key concepts are the excess demand function of agent i, defined as
ζ̂i(p) ≡ fi(p,wi)−ei (compare to (4)). The excess demand function for the econ-

omy is ζ̂(p) =
lX

i=1

ζ̂i(p), a continuous function on S. Note that
lX

k=1

pk ζ̂ik(p) = 0;

hence, the excess demand function for the economy satisfies the “Walras Law”:

p · ζ̂(p) ≡
lX

k=1

pk ζ̂k(p) = 0. (18)

An equilibrium price system p∗ ∈ S satisfies ζ̂(p∗) = 0.
By Walras Law (18), if for any p̂ ∈ S ζ̂k(p̂) = 0 for k = 1, · · · , l − 1 then

necessarily ζ̂k(p̂) = 0 for k = l. The Walras Law (18) can be verified directly
from (3) and (4) in our example, and when the equilibrium price (9) is derived
for the first market, there is also equilibrium in the second market which can be
directly checked. A detailed exposition of this model with l ≥ 2 commodities
is in Debreu [9]. In [3] the Debreu model was extended to introduce random
preferences and endowments, and the implications of the law of large numbers
and the central limit theorem were first systematically explored. Throughout
this section we shall consider l = 2 to see the main results in the simplest form.

2.4 Dependence: Exchangeability

We shall now see that if dependence among agents does not “disappear” even
when the economy is large, the risk of ruin due to the “indirect” terms of
trade effect of uncertainty may remain significant. To capture this in a simple
manner, let us say that µ and ν are two possible probability laws of {ei(·)}i≥1.
Think of Nature conducting an experiment with two outcomes “H” and “T”
with probabilities (θ, 1− θ), 0 < θ < 1. Conditionally, given that “H” shows up,
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the sequence {ei(·)}i≥1 is independent and identically distributed with common
distribution µ. On the other hand, conditionally given that “T” shows up,
the sequence {ei(·)}i≥1 is independent and identically distributed with comon
distribution ν. Let π1µ and π1ν be the expected values of X1 under µ and ν
respectively. Similarly, let π2µ and π2ν be the expected values of Y1 under µ
and ν. It follows that pn(·) converges to p0(·) almost surely, where p0(·) =
π1µ/[π1µ+π2µ] = p0µ with probability θ and p0(·) = π1ν/[π1ν+π2ν ] = p0ν with
probability 1 − θ. We now have a precise characterization of the probabilities
of ruin as n tends to infinity. To state it, write

J = {(u1, u2) ∈ R2+ : p0µu1 + (1− p0µ)u2 ≤ mi(p0µ)};
ri(µ) =

Z
J

µ(du1, du2). (19)

Similarly, define ri(ν) obtained on replacing µ by ν in (19).

Proposition 4. Assume that p0ei1(ω)+ (1− p0)ei2(ω) had a continuous distri-
bution function under each distribution µ and ν of ei = (ei1, ei2).

(a) Then, as the number of agents n goes to infinity, the probability of ruin of
the i-th agent converges to ri(µ), with probability θ, when “H” occurs and
to ri(ν), with probability 1− θ when “T” occurs.

(b) The overall, or unconditional, probability of ruin converges to

θri(µ) + (1− θ)ri(ν).

Here, the precise limit distribution is slightly more complicated, but the
important distinction from the case of independence (or, “near independence”)
is that the limit depends not just on the individual uncertainties captured by
the distributions µ and ν of an agent’s endowments, but also on θ that retains
an influence on the distribution of prices even with large n.

2.5 Dependency neighborhoods

Dependency neighborhoods were introduced by Stein [28] and are defined in the
following way. Consider a set of n random agents. A subset Si of the set of
integers {1, 2, ..., n} containing an agent i is a dependency neighborhood of i
if i is independent of all agents not in Si. The sets Si need not constitute a
partition. Further, consider a dependency neighborhood of Si - a set Ni such
that Si ⊆ Ni, and the collection of agents in Si is independent of the collection
of agents not in Ni. The latter can be viewed as the second-order dependency
neighborhood of the agent i. In general,

Ni =
[

{j∈Si}
Sj (20)

need not be the case (this is related to the fact that pairwise independence does
not imply mutual independence), although one might expect this relation to
hold in non-exotic situations (see, for example, [21]).

Consider now an economy En with dependency neighborhoods S(n)1 , . . . , S
(n)
n

for each of n agents. As above, the i-th agent is characterized by αi = (γ, ei),
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where ei = (ei1, ei2). The Walrasian equilibrium price p∗n is given by (9)-(10).
The convergence property, similar to Proposition 3, holds under modified as-
sumptions on the distribution of random endowments and an additional as-
sumption on the size of the dependency neighborhood.

Proposition 5. Let the assumptions (A1) and (A3) hold. Moreover, assume

(A.2”) Bni ≡ max
i6=j∈S(n)i

| Cov(Zi, Zj) |< B <∞ , Z ∈ {X,Y }, for every i =

1, . . . , n uniformly in n for some sufficienly large positive B.

(A.4) sn ≡ max
i=1,...,n

`S
(n)
i ≤ n1−� uniformly in n for some � ∈ (0, 1).

Then, as n tends to infinity, p∗n(ω) converges in probability to p lim p∗n(ω) =
π1

π1 + π2
.

Using the results of Majumdar and Rotar [19], we can construct approximate
distribution of equilibrium price in a large Walrasian economy.

Proposition 6. Let the assumptions (A.1), (A.2”), (A.3) and (A.4) hold. Let
also assume that (20) holds for the dependency neighborhoods structure. Then
the distribution of p∗n(ω) can be approximated by normal distribution with mean
p0 and variance vn defined as

p0 =
π1

π1 + π2
(21)

vn =
1

(π1 + π2)
4

1

n2
V ar

"
nX
i=1

(π2Xi − π1Yi)

#
(22)

(See [13] for proofs.)

3 Extrinsic uncertainty with overlapping gener-
ations: an example.

In the previous section we assumed that endowments of the agents are different
in different states of environment. This type of uncertainty, that affects the so-
called fundamentals of the economy (endowments, preferences, and technology),
is called the intrinsic uncertainty. When the uncertainty affects the beliefs
of the agents (for example, the agents believe that market prices depend on
some “sunspots”) whereas the fundamentals are the same in all states, this
type of uncertainty is called extrinsic uncertainty. Clearly, with respect to the
probability of survival, the extrinsic uncertainty has no direct effect, because
it does not affect the endowments. However, it may have an indirect effect:
self-fulfilling beliefs of the agents regarding market prices affect their wealth,
and some agents may be ruined in one state of environment and survive in some
other state, even though the fundamentals of the economy are the same in all
states. To study the indirect, or the adverse term-of-trade effect of extrinsic
uncertainty on survival we turn to a dynamic economy.
Consider a discrete time, infinite horizon OLG economy with constant pop-

ulation. We use Gale’s terminology [11] wherever appropriate. For expository
simplicity, and without loss of generality we assume that at the beginning of
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every time period t = 1, 2, · · · there are two agents: one “young” born in t, and
one “old” born in t− 1. In period t = 1 there is one old agent of generation 0.
There is one (perishable) consumption good in every period. The agent born
in t (generation t) receives an endowment vector et = (e

y
t , e

o
t ) and consumes a

vector ct = (c
y
t , c

o
t ). We consider the Samuelson case

3 and assume, without loss
of generality, et = (1, 0). We assume that the preferences of the agent of gener-
ation t can be represented by expected utility function Ut(·) = E [U t(ct)] with
Bernoulli utility U t(ct), continuously differentiable and almost everywhere twice
continuously differentiable, strictly concave and strictly monotone in D, com-
pact, convex subset of R2++. The old agent of generation 0 is endowed with one
unit of fiat money, the only nominal asset in the economy. In every period the
market for the perishable consumption good is open and accessible to all agents.
Denote the nominal price of the consumption good at time t by pt. Define a
price system to be a sequence of positive numbers, p = {pt}∞t=0, a consumption
program to be a sequence of pairs of positive numbers c = {ct}∞t=0, a feasible pro-
gram to be a consumption program that satisfies cyt + cot−1 ≤ eyt + eot−1 = 1. The
agent of generation t maximizes his lifetime expected utility in the beginning of
period t. In period 1, the young agent gives its saving (sy1) of the consumption
good, to the old agent in exchange for one unit of money (the exchange rate is
determined by p1). Thus, p1s1 = 1. This unit of money is carried into period 2
(the old age of agent born in period 1) and is exchanged (at the rate determined
by p2) for the consumption food saved by the young agent born in period 2 (s

y
2).

The process is repeated.

3.1 Perfect Foresight Equilibrium

If there is no uncertainty, with perfect foresight the price-taking young agent’s
optimization problem is the following:

maxU(cyt , c
o
t )

subject to

cyt = 1− syt
cot = pts

y
t /pt+1

(0 ≤ syt ≤ 1, t = 1, 2, · · ·).
Here, syt ≡ eyt − cyt is savings of the young agent (this is the Samuelson case,

in Gale’s definitions [11]). A perfect foresight competitive equilibrium is defined
as a feasible program and a price system such that

(i) the consumption program c̄ = {c̄t} solves optimization problem of each
agent given p̄ = {p̄t} : (c̄yt , c̄ot ) ∈ D, c̄yt = 1− st and c̄ot = p̄tst/p̄t+1 with

st = arg max
0≤syt≤1

U

µ
(1− syt ) , s

y
t

p̄t
p̄t+1

¶
and

3If a population grows geometrically at the rate γ, so that γt agents is born in period t,
and there is only one good in each period, the Samuelson case corresponds to marginal rate
of intertemporal substitution of consumption under autarky, U1(ey, eo)/U2(ey, eo), being less
than γ. In our case γ = 1.
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(ii) the market for consumption good clears in every period:

c̄yt + c̄ot−1 = 1 (demand = supply for the consumption good)
p̄tst = 1 (demand = supply for money)

for t = 1, 2, · · ·.
By strict concavity of the utility function U(cyt , c

o
t ), the young agent’s opti-

mization problem has a unique solution. Hence, we can express st as a single-
valued function of pt/pt+1, i.e. we write st = st(pt/pt+1). This function (called
savings function) generates an offer curve in the space of net trades, as price
ratios vary. In the perfect foresight equilibrium

st(pt/pt+1) = 1/pt. (23)

The stationary perfect foresight monetary equilibrium is a sequence of con-
stant prices p and constant consumption programs (1− s̄, s̄), where s̄ = s(1).4

3.2 Sunspot equilibrium

Now consider an extrinsic uncertainty in this economy. There is no uncer-
tainty in fundamentals, such as endowments and preferences, but the agents
believe that market prices depend on realization of an extrinsic random vari-
able (sunspot). We assume that there is one-to-one mapping from the sunspot
variable to price of the consumption good. Because the agents cannot observe
future sunspots, they maximize expected utility over all possible future realiza-
tion of the states of nature. We examine the situation with two states of nature,
σ ∈ {α, β}, that follow a first-order Markov process with stationary transition
probabilities,

Π =

·
παα παβ

πβα πββ

¸
(24)

where πσσ
0
> 0 is the probability of being in state σ0 in the next period given

that current state is σ, and πσα + πσβ = 1. A young agent born in t observes
price pσt and solves the following optimization problem:

max
h
πσαU(cy,σt , co,αt ) + πσβU(cy,σt , co,βt )

i
subject to

cy,σt = 1− sσt

co,σ
0

t = pσt s
σ
t /p

σ0
t+1

(0 ≤ sσt ≤ 1, sσ
0

t ≥ 0, σ, σ0 ∈ {α, β}).
We restrict our attention to stationary equilibria, in which prices depend

on the current realization of the state of nature σ, and do not depend on the
calendar time nor the history of σ. A stationary sunspot equilibrium, SSE, is a
pair of feasible programs and nominal prices, such that for every σ ∈ {α, β}

4Given our assumptions on preferences and endowments, the stationary perfect foresight
monetary equilibrium exists and is optimal (see, for example, [16], Ch. 8).
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(i) the consumption programs solve the agents’ optimization problem:

sσ(pσ/pσ
0
) =

arg max
0≤sσ≤1

[πσαU ((1− sσ) , sσpσ/pα) +

+πσβU
¡
(1− sσ) , sσpσ/pβ

¢¤
(25)

and

(ii) markets clear in every period, in every state.

cy,σ + co,σ = 1

pσsσ = 1

It is easy to see that a stationary sunspot equilibrium exists when the equa-
tion

pα

pβ
sα
µ
pα

pβ

¶
− sβ

µ
pβ

pα

¶
= 0 (26)

has positive solutions for pα/pβ other than 1 . Solution pα/pβ = 1 corresponds
to the equilibrium in which uncertainty does not matter. It can be shown that,
if sunspot equlibria exist in this economy, there is at least two of them, with
pα/pβ > 1 and pα/pβ < 1 (see, for example, [6], [27]). This means that in the
sunspot equilibrium consumption of old agents is above the certainty equilibrium
consumption of olds in one state of nature and below in the other. Suppose, we
introduce an exogenous minimal subsistence level of consumption (independent
of σ ∈ {α, β}). It may be the case that in one of the states of nature consumption
of old agents falls short of minimal subsistence level: old agents are ruined. Note
that the endowments are not affected by the uncertainty, and, therefore, there is
no direct effect of uncertainty on ruin. The event of ruin is caused purely by an
indirect, or term-of-trade effect: the equilibrium price system is such that the
wealth of old agents does not allow them to survive. The following numerical
example illustrates this possibility for the case of quadratic utility.

3.3 Ruin in equilibrium.

Let the preferences of the agents be represented by expected utility function
with

U(c) = u(cy, co)− v(co)

u(cy, co) = 2a
√
cyco + q cy + r co − 1

2
b(cy)2 − 1

2
d(co)2

v(co) =

½
θ
2 (A− co)

2
, 0 < co ≤ A

0, co > A

where a, b, c, q, r, θ, A are positive constants such that the utility function is
increasing and jointly concave in its arguments in D. v(·) is the disutility of
consuming less than A, the minimal subsistence level.5 As above, agents in
each generation receive identical positive endowments e = 1 of consumption
good when young and zero endowments when old; the initial olds are endowed
with one unit of money.

5It may seem odd that the disutility from starvation is finite, but this can be justified by
the willingness of the agents to take a risk. Consider the following. In the continuous time,
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3.3.1 Benchmark case: perfect foresight

For the above preferences, savings function st(pt/pt+1) is implicitly defined by

ρt =
a
p
ρtst/(1− st)) + q − b (1− st)

a
p
(1− st)/(ρtst) + r − d ρtst − v0(ρtst)

, (27)

where ρt ≡ pt/pt+1. The offer curve is described by

(1− x)

µ
a

r
y

x
+ q − b x

¶
− y

µ
a

r
x

y
+ r − d y − v0(y)

¶
= 0 (28)

In the stationary (deterministic) perfect foresight monetary equilibrium con-
sumption plan of an agent is (x, 1− x), where x solves

a

Ãr
x

1− x
−
r
1− x

x

!
+ x (b+ d) + v0(1− x) + q − r − b = 0 (29)

3.3.2 Stationary sunspot equilibria

Two states of nature, α and β evolve according to a stationary first-order Markov
process. The states of nature do not affect the endowments. Agents can trade
their real and nominal assets. In a stationary sunspot equilibrium with trade
sα, sβ solve the following system of equations:

πααa
q

sα

1−sα + (1− παα) a

q
sβ

1−sα + q − b (1− sα) = (30)

= πααa
³p

1−sα
sα

+ r − d sα − v0(sα)
´
+ (1− παα)

³
a
q

1−sα
sβ

+ r − d sβ − v0(sβ)
´

sβ

sα

and

πββa
q

sβ

1−sβ +
¡
1− πββ

¢
a
q

sα

1−sβ + q − b
¡
1− sβ

¢
= (31)

= πββa

µq
1−sβ
sβ

+ r − d sβ − v0(sβ)

¶
+
¡
1− πββ

¢µ
a

q
1−sβ
sα

+ r − d sα − v0(sα)

¶
sα

sβ

It is easy to see that one solution is sα = sβ = 1−x, where x solves the equa-
tion for the perfect foresight above. This solution does not depend on the tran-
sition probabilities, prices and consumption are not affected by the uncertainty:
sunspots do not matter in this equilibrium. However, there may be more solu-
tions. For example, for a = 2, b = 0.5, d = 7, q = 0.02, r = 0.6 θ = 0.05A = 0.3
and παα = πββ = 0.15 there are three stationary monetary equilibria in the
economy: one coinciding with the perfect foresight equilibrium and two sunspot
equilibria. Prices and consumption programs for these equilibria are given in
the following table.

if the consumption of an old agent is above A, he lives to the end of the second period. If
his consumption is below A, perhaps, he does not die immediately. Albeit low, the amount
consumed allows him to live some time in the second period, and his lifespan in the second
period is the longer, the closer is his consumption to A. In the discrete time this translates
into probability of survival in the second period as a function of consumption. Thus, the
old agent survives with probability 1 if co ≥ A and with probability less than 1 if co < A.
Suppose, the objective of the agent is to maximize the probability of survival (or maximize
his expected lifespan). Then it can be presented equivalently as the objective to minimize the
disutility from consumption at the level below A. Clearly, this disutility can be finite, at least
in the vicinity of A, if the agent is willing to take a risk. The authors are indebted to David
Easley for this argument.
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State PFE 1st SSE 2nd SSE

α (0.6670; 0.3330; 3.00) (0.5973; 0.4027; 2.48) (0.7518; 0.2482; 4.03)

β (0.6670; 0.3330; 3.00) (0.7518; 0.2482; 4.03) (0.5973; 0.4027; 2.48)

(In every entry, the first number is consumption of young, the second is con-
sumption of old, and the third is nominal price of consumption good.)
The consumption programs in sunspot equilibria are Pareto inferior to the

program in the perfect foresight equilibrium. Furthermore, in two sunspot equi-
libria old agents survive in one state of nature and fail to survive in another with
the same amount of resources, because equilibrium price is too high. (We inten-
tionally considered the case where agents survive in the certainty equilibrium to
demonstrate that survival is always feasible. Also, in this model young agents
always survive, - otherwise, the overlapping generations structure collapses.)

4 Insurance and survival

The purpose of the following examples is to demonstrate that trade in securi-
ties does not guarantee survival of all agents. Furthermore, trade in securities
can even deteriorate the survival chances of some agents. For expositionary
simplicity, we consider a static Cobb-Douglas-Sen economy, similar to the one
described in Section 2.

4.1 Static economy with two states: definitions

Let us first restate the definitions of a stochastic general equilibrium concept in
a Cobb-Douglas-Sen economy with logarithmic preferences for a particular case
of two possible states of environment. Consider a pure exchange economy with
two goods, l ∈ {1, 2}, with good 1 being a numéraire. There are two states of
nature, s ∈ Ω = {α, β}, with π = P [s = α] = 1 − P [s = β]. Two consumers,
i ∈ {1, 2}, receive endowments ei(s) = (ei1(s), ei2(s)) ∈ R+2 . Each consumer is
characterized by the Cobb-Douglas logarithmic utility function:

u(xi1, xi2) = γi lnxi1 + (1− γi) lnxi2. (32)

In addition, each consumer is characterized by the minimum expenditure func-
tion,mi(p

∗(·)), the level of wealth at and below which consumer i fails to survive
in the equlibrium with (random, normalized) equilibrium price vector (1, p∗(·)).
Consumers maximize utility in every state, taking price as given. A random
equilibrium is defined as a set of vectors of allocations, {xi(s)}, and prices,
p∗(s) for each state of nature, such that

• Given normalized price vector (1, p∗(s)) in state s, consumption vector
xi(s) = (xi1(s), xi2(s)) maximizes utility of consumer i in state s subject
to his budget constraint, xi1(s) + p∗(s)xi2(s) ≤ ei1(s) + p∗(s)ei2(s), for
every i and s;
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• Markets for consumtpion goods clear in every state.
If we allow γ (the parameter in Cobb-Douglas preferences) vary across the

consumers, the equilibrium price in state s will be

p∗(s) =
P

i (1− γi) ei1(s)P
i γiei2(s)

.

Hence, wealth of consumer i in state s is

wi(s) = ei1(s) + p∗(s)ei2(s) = ei1(s) +

P
i (1− γi) ei1(s)P

i γiei2(s)
ei2(s).

Assume, for simplicity, that the minimum expenditure function is the same
for all agents and has linear form:

m(p∗(s)) = a0 + p∗(s)a1

for some positive constants a0 and a1. Then, consumer i is ruined in state s if

ei1(s) + p∗(s)ei2(s) ≤ a0 + p∗(s)a1.

If this inequality holds for consumer i for s = α only, then consumer i is ruined
with probability π. If it holds for s = β only, then i is ruined with probability
(1−π). If it holds for consumer i in both states, then i is ruined with probability
1.
Suppose, consumers know π. The question is, if consumers could trade

securities before s is realized, would this improve their chances to survive?

4.2 Arrow-type securities in a two-period economy

Assume now, that in the economy described in Section 4.1 there are two time
periods, t = 0, 1. Let the preferences of the consumers be described by von
Neumann-Morgenstern expected utility function, with Bernoulli utility in the
log Cobb-Douglas form (32), with γ varying across consumers.
At t = 0 consumers can issue and trade contracts in real Arrow-type se-

curities. At t = 1 consumers receive their endowments, execute the contracts
and trade consumption goods. Markets for securities are complete: for every
state of nature there is a security that promises to deliver at t = 1 one unit of
numéraire good if this particular state occurs, and nothing in other states (see
[23] and [12] for a more general exposition). Denote the holdings of security
that pays in state s by ysi for consumer i; y

s
i ∈ R. Consumers know probability

distribution of the states of nature. In time period t = 0 they choose holdings
of securities, or portfolios, (yαi , y

β
i ) to maximize expected utility of consumption

in time period t = 1. We normalize price of the asset that pays in state α to
unity and denote price of the asset that pays in state β by q. A random equi-
librium with complete asset markets is a set of vectors of portfolios {(ȳαi , ȳβi )},
allocations {x̄i(s)}, security prices (1, q̄) and consumption good prices (1, p̄(s))
for each state of nature, such that

• Given asset prices (1, q̄) and normalized consumption good price vector
(1, p̄(s)) in state s, portfolio (yαi , y

β
i ) and consumption vector xi(s) =

(xi1(s), xi2(s)) maximize expected utility of consumer i at t = 0 subject

to his budget constraints at t = 0, yαi + qyβi ≤ 0, at t = 1, xi1(s) +
p∗(s)xi2(s) ≤ ei1(s) + p∗(s)ei2(s) + ysi , for every i and s;
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• Asset markets clear at t = 0;
• Markets for consumption goods clear at t = 1 in every state.

Routine calculations give the following expressions for equilibrium prices:

q̄ =
1− π

π

E1(α)

E1(β)

p̄(β) = p̄(α)
E2(α)E1(β)

E1(α)E2(β)

and

p̄(α) =

P
i(1− πγi)ei1(α)− (1− π)

P
i γiei1(β)E1(α)/E1(β)

π
P

i γiei2(α) + (1− π)
P

i γiei2(β)E2(α)/E2(β)
.

Here, El(s) ≡
P

i eli(s) is aggregate endowment of good l in state s. Wealth (in
terms of the numéraire) of consumer i at t = 1 is then

W̄i(α) = πw̄i(α) + (1− π)
E1(α)

E1(β)
w̄i(β)

W̄i(β) = (1− π)w̄i(β) + π
E1(β)

E1(α)
w̄i(α)

where w̄i(s) = ei1(s) + p̄(s)ei2(s), s = α, β.

Note, that W̄i(β) =
E1(β)

E1(α)
W̄i(α), which means that if there is no aggregate

uncertainty in the endowment of numéraire, wealth is equalized across states. If
there is no aggregate uncertainty in the endowments of both goods, relative price
of consumption goods is also equalized across states. Then p̄ = p̄(α) = p̄(β)
will be between p∗(α) and p∗(β) and W̄i = W̄i(α) = W̄i(β) will be between
wi(α) and wi(β). For the minimum expenditure function in the above form,
we will also have that mi(p̄) = mi(p̄(α)) = mi(p̄(β)) will be between mi(p

∗(α))
and mi(p

∗(β)). Could it happen that wealth of a consumer in a particular
state falls below the minimum subsistence level in an economy with securities,
whereas without securities his wealth in the same state is above the minimum
subsistence level?
The following simple numerical examples demonstrate this possibility for the

case with no aggregate uncertainty and for the case with aggregate uncertainty
in endowments.

4.2.1 Example A: No Aggregate Uncertainty

Consider an economy with two consumers, i ∈ {1, 2}. Let the preferences of
these two consumers and their endowments in two states be the following:

Consumer i γi ei(α) ei(β)

i = 1 1/2 (1, 0) (0, 2)

i = 2 1/3 (1, 4) (2, 2)
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Let P [s = α] = 1 − P [s = β] = π = 1/4. Then in the equilibrium without
securities

p∗(α) =
7

8

p∗(β) =
4

5

and in the equilibrium with securities

p̄(α) = p̄(β) =
31

38
.

Suppose, both consumers have minimal expenditure function in the linear
form, with the same parameters a0 = 3/4 and a1 = 1. Then the survival
threshold in the economy without securities is 1.625 in state α and 1.55 in state
β. It is easy to see that agent i = 1 is ruined in state s = α and survives in
state s = β; agent i = 2 survives in both states. With securities, the survival
threshold in both states is ≈ 1.5658, and agent i = 2 still survives in both states,
but agent i = 1 is now ruined in both states.

4.2.2 Example B: Aggregate Uncertainty

Consider the same economy, now with aggregate uncertainty in the endowments:

Consumer i γi ei(α) ei(β)

i = 1 1/2 (1, 0) (0, 2)

i = 2 1/3 (0, 2) (2, 2)

With π = 1/4 the equilibrium price without securities is

p∗(α) =
3

4

p∗(β) =
4

5

and with securities

p̄(α) =
15

19

p̄(β) =
30

19

Let the minimal expenditure function for both consumers be linear, with
a0 = 1/5 and a1 = 1. The survival threshold in an economy without securities
is, then, 0.95 in state α and 1 in state β. Both agents survive in both states.
With securities, the survival threshold is ≈ 0.990 in state α and ≈ 1.779 in state
β. In that case, agent 2 still survives in both states, but agent 1 survives only
in β and is ruined in α.
These two examples demonstrate how trade in securities may worsen sur-

vival prospects of the agents with random endowments even when markets for
securities are complete.
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5 Concluding remarks

In this paper we introduced a formal general equilibrium approach to the prob-
lem of survival under uncertainty. The question of obvious practical importance
is “how does one improve the chance of survival of an agent”? Clearly, when
ruin is caused by market forces, the intervention of the government is desirable.
The choice of the optimal policy is determined by the policy tools available to
the government, and the sensitivity of the survival probability to the changes in
policy variables. For the case of static economy with intrinsic uncertainty this
problem was touched upon in [4]. In particular, under certain assumptions on
the joint distribution of the endowments and linearity of the minimum expen-
diture function, the probability of survival of an agent increases as the limiting
averages of the endowments increase. For the OLG economy with extrinsic
uncertainty we showed elsewhere [14] that a lump-sum tax and transfer pol-
icy, with the amounts of taxes and transfers depending on equilibrium market
price, can stabilize consumption at certainty equilibrium level (without affecting
prices), thus eliminating the possiblity of ruin of the agents. In any case, the
general equlibrium framework has to be used in order to accurately predict the
outcomes of various policy measures.
Another issue should be mentioned. Throughout this paper we assumed that

the objective of an agent is to maximize his expected utility (as the traditional
economic theory postulates). In a model with a single agent Majumdar and
Radner [18] explored the implications for maximization of the probability of
survival. A systematic extension of this analysis to a framework with many
interacting agents remains an important direction of research.
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