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Abstract

This paper proposes a new approach to testing in the generalized method of moments (GMM)
framework. The new tests are constructed using heteroskedasticity autocorrelation (HAC) ro-
bust standard errors computed using nonparametric spectral density estimators without trun-
cation. While such standard errors are not consistent, a new asymptotic theory shows that
they lead to valid tests nonetheless. In an over-identified linear instrumental variables model,
simulations suggest that the new tests and the associated limiting distribution theory provide
a more accurate first order asymptotic null approximation than standard HAC robust tests.
Finite sample power of the new tests is shown to be comparable to standard tests. Because use
of a truncation lag equal to the sample requires no additional choices for practitioners, the new
approach could potentially lead to a standard of practice (which does not currently exist) for
the computation of HAC robust standard errors in GMM models.
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1 Introduction

The generalized method of moments (GMM) estimation method has now become one of the stan-

dard methodologies in econometrics since it was first introduced to the econometrics literature

by the influential paper Hansen (1982). GMM is widely used in empirical macroeconomics and

finance. GMM is appealing because it can deliver consistent estimates of parameters in models

where likelihood functions are either hard or impossible to write down. The class of GMM mod-

els is large and includes such special cases as linear regression, nonlinear regression, instrumental

variables (IV), and maximum likelihood.

In macroeconomic and finance applications, heteroskedasticity and/or autocorrelation of un-

known form is usually an important specification issue. In many cases, GMM estimators are

consistent in spite of heteroskedasticity and/or autocorrelation and can have certain optimality

properties. Therefore, heteroskedasticity and/or serial correlation is not a problem, per say, for

estimation, but it does affect inference in that standard errors robust to heteroskedasticity and/or

serial correlation are required. Such standard errors are often called HAC robust standard errors

because they are computed using heteroskedasticity autocorrelation consistent covariance matrix

estimators.

A key component in constructing HAC robust standard errors is the estimation of the spectral

density at frequency zero of the random process that underlies the moment conditions that define

a GMM estimator. The HAC robust standard error literature in econometrics has grown from and

extended the spectral density estimation literature in time series statistics. Usually, nonparametric

estimators have been proposed although parametric estimators have been receiving some attention

recently. Some key contributions to the nonparametric approach include White (1984), Newey and

West (1987), Gallant (1987), Gallant and White (1988), Andrews (1991), Andrews and Monahan

(1992), Hansen (1992) and Robinson (1998). Recent papers by den Haan and Levin (1997,1998)

have argued that parametric estimators based on vector autoregression (VAR) approximations can

have certain advantages over the nonparametric approach.

A practical problem with both the nonparametric and parametric approach to constructing

HAC robust standard errors is the need to choose ”tuning parameters” such as a truncation lag

or bandwidth in the nonparametric approach or the lag length in the parametric approach. In

both cases, asymptotic theory designed to determine conditions under which HAC robust standard

errors will be consistent only provides conditions on the rates at which truncation lags or VAR

lags must grow as the sample size increases. However, an empirical researcher faced with a finite

sample could choose any truncation lag or VAR lag and justify that choice using clever asymptotic
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arguments. Thus, no standard has emerged for the computation of HAC robust standard errors

in practice. This situation contrasts models with only heteroskedasticity where the approach

proposed by White (1980) has become an empirical standard of practice.

The tuning parameter problem has not gone unnoticed in the HAC literature and many data

dependent methods have been proposed for choosing the tuning parameters. The practical draw-

back to the data dependent approach is that the choice of truncation lag or VAR lag length is

replaced with choices such as approximating model of serial correlation (nonparametric approach)

or maximal VAR lag length (parametric approach). Data dependent methods, while important im-

provements over the basic case, ultimately require practical choices and do not establish a standard

of practice for the computation of HAC robust standard errors.

The goal of this paper is to propose a different approach to the computation of HAC robust

standard errors in GMM models that could potentially lead to a standard of practice in empirical

applications. The results in this paper build upon and extend to the GMM framework the approach

proposed by Kiefer and Vogelsang (2000). The basic idea is to shed the notion that valid standard

errors can only be obtained by searching for consistent covariance matrix estimators. Consistency

is a sufficient, but not necessary condition, for obtaining valid standard errors. The class of stan-

dard errors considered here are those constructed using nonparametric spectral density estimators

but without truncation; the truncation lag is chosen to be the sample size. This new approach

requires a new asymptotic theory for HAC robust tests. Kiefer and Vogelsang (2000) developed

the required distribution theory for linear regression models. It was not obvious that the results

obtained by Kiefer and Vogelsang (2000) extend to over-identified GMM models. However, the

new asymptotic theory does go through smoothly for over-identified GMM models. This result is

the main theoretical contribution of the paper.

An additional advantage of the new approach is a more accurate first order asymptotic ap-

proximation of the finite sample null distributions of t and F tests. It has been well documented

that tests based on traditional HAC robust standard errors can perform badly in finite samples

and are subject to substantial size distortions. See for example, Andrews (1991), Andrews and

Monahan (1992), den Haan and Levin (1997), and, with a focus on GMM, a special issue of the

Journal of Business and Economic Statistics (volume 14, July 1996). Size distortions associated

with the new tests are smaller and yet power remains comparable to standard tests.

The remainder of the paper is organized as follows. The next section describes the model

and gives assumptions sufficient for the main theoretical results. Section 3 reviews the standard

approach to testing in the GMM framework. The new approach is given in Section 4 along with

the theoretical results of the paper. Section 5 illustrates the new tests in the special of linear IV
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estimation. A finite sample simulation study compares and contrasts the new tests with standard

tests. Section 6 concludes with proofs collecting in an appendix.

Finally, the following notation is used throughout the paper. The symbol ⇒ denotes weak

convergence, Bj(r) denotes a j vector of standard brownian motions (Wiener processes) defined

on r ∈ [0, 1], eBj(r) = Bj(r) − rBj(1) denotes a j vector of standard Brownian bridges, and [rT ]
denotes the integer part of rT for r ∈ [0, 1].

2 The Model and Assumptions

Suppose we are interesting in estimating the p × 1 vector of parameters, θ, where θ0 denotes the
true value of θ. Let vt denote a vector of observed data for t = 1, 2, ..., T . Assume that q moment

conditions hold for the data and that these moment conditions can be written as

E[f(vt, θ0)] = 0, (1)

where f(·) is a q×1 vector of functions with q ≥ p. The moment conditions given by (1) are often
derived from economic models. The basic idea of GMM estimation is to find a value for θ that most

closely satisfies an empirical analog of the moment conditions (1). Define gt(θ) = T−1
Pt
j=1 f(vj, θ)

where gT (θ) = T−1
PT
t=1 f(vt, θ) can be viewed as the sample analog to (1). Then, the GMM

estimator of θ based on a sample of T observations is defined as

bθT = argmin
θ∈Θ

gT (θ)
0WT gT (θ)

where WT is a q × q positive definite weighting matrix. bθT can also be defined in terms of the
solution to the first order conditions (FOC) of the minimization problem

GT (bθT )0WT gT (bθT ) = 0, (2)

where Gt(θ) = T−1
Pt
j=1 ∂f(vj , θ)/∂θ

0. When the model is exactly identified and q = p, the

weighting matrix becomes irrelevant and bθT is defined by the equation gT (bθT ) = 0.
A function related to Gt(θ) will be important for technical developments. Application of the

mean value theorem implies that

gt(bθT ) = gt(θ0) +Gt(bθT , θ0,λT )(bθT − θ0) (3)

where Gt(bθT , θ0,λT ) denotes the q × p matrix whose ith row is the corresponding row of Gt(θ(i)T )
where θ

(i)
T = λi,T θ0+(1−λi,T )bθT for some 0 ≤ λi,T ≤ 1 and λT is the q× 1 vector with ith element

λi,T .
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Because the focus of this paper is on hypothesis testing, it is taken as given that bθT is consistent
and asymptotically normally distributed. So, rather than focus on well known regularity conditions

under which bθT is consistent and asymptotically normally distributed (consult Hansen (1982) and
Newey and McFadden (1994)), attention is given to high level assumptions that are sufficient for

obtaining the main results of the paper. To that end, the following assumptions are used:

Assumption 1 p lim bθT = θ0.
Assumption 2 T−1/2

P[rT ]
t=1 f(vt, θ0) = T 1/2g[rT ](θ0) =⇒ ΛBq(r) where Ω = ΛΛ0 =

P∞
j=−∞ Γj ,

Γj = cov[f(vt, θ0), f(vt−j , θ0)].

Assumption 3 p limG[rT ](bθT ) = rG0 and p limG[rT ](bθT , θ0,λT ) = rG0 uniformly in r ∈ [0, 1]
where G0 = E[∂f(vt, θ)/∂θ0].

Assumption 4 WT is positive semi-definite and p limWT = W∞ where W∞ is a matrix of con-

stants.

These assumptions are fairly standard with the exception of Assumption 2. Assumption 2

requires that a functional central limit theorem apply to T 1/2gt(θ0). Asymptotic normality ofbθT requires the less stringent assumption that a central limit theorem apply to T 1/2gT (θ0). In

the standard approach, however, because Ω must be consistently estimated in order to construct

asymptotically valid tests regarding θ0, regularity conditions needed to obtain a consistent estimate

of Ω are more than sufficient for Assumption 2 to hold. For example, a typical regularity condition

for consistent estimation of Ω using spectral kernel methods is that f(vt, θ0) be a mean zero fourth

order stationary process that is α−mixing (see e.g. Andrews (1991)). Assumption 2 holds under
the milder assumption that f(vt, θ0) is a mean zero 2+ δ order stationary process (for some δ > 0)

that is α−mixing (see e.g. Phillips and Durlauf (1986)). Therefore, the assumptions used in this
paper are slightly weaker than the usual assumptions required for asymptotically valid testing in

GMM models.

3 Asymptotic Normality and Covariance Matrix Estimation

The typical starting point for inference regarding the parameter vector θ0 is an asymptotic normality

result for bθT . The following lemma provides the foundation upon which the test statistics proposed
in this paper are built. A proof is given in the appendix.

Lemma 1 Under Assumptions 1 - 4, as T →∞,

T 1/2(bθT − θ0)⇒−(G00W∞G0)−1G00W∞ΛBq(1) ≡ −(G00W∞G0)−1Λ∗Bp(1),
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where Λ∗Λ∗0 = G00W∞ΛΛ0W∞G0.

Given that Bp(1) is a p-vector of standard normal random variables, it immediately follows

from the lemma that T 1/2(bθT − θ0) →d N(0, V ) where V = (G00W∞G0)−1Λ∗Λ∗0(G00W∞G0)−1.

Exploiting the asymptotic normality of bθT , asymptotically valid test statistics regarding θ0 can
be constructing in the usual way (i.e. t and Wald tests) provided a consistent estimator of the

asymptotic covariance matrix, V , is available. The (G00W∞G0)−1 term of V is easy to consistently

estimate using [G0T (bθT )WTGT (bθT )]−1. The middle term of V is more difficult to estimate. If

we write Λ∗Λ∗0 = G00W∞ΛΛ0W∞G0 = G00W∞ΩW∞G0, then the middle term can be consistently

estimated using G0T (bθT )WT
bΩWTGT (bθT ) where bΩ is a consistent estimator of Ω. Therefore, V can

be consistently estimated using

bV = [G0T (bθT )WTGT (bθT )]−1G0T (bθT )WT
bΩWTGT (bθT )[G0T (bθT )WTGT (bθT )]−1.

Recall from Assumption 2 that Ω is the infinite sum of the autocovariances of f(vt, θ0). It is well

known that Ω is equal to 2π times the spectral density matrix of f(vt, θ0) evaluated at frequency

zero. Therefore, it has become standard in the GMM framework to use spectral density estimators

from the time series literature as a way of estimating Ω.

One of the most popular classes of spectral density estimators, the nonparametric class, take

the form

bΩ = T−1X
j=−(T−1)

k(j/M)bΓj (4)

with

bΓj = T−1 TX
t=j+1

f(vt, bθT )f(vt−j, bθT )0 for j ≥ 0,
bΓj = T−1 TX

t=−j+1
f(vt+j, bθT )f(vt, bθT )0 for j < 0,

where k(x) is a kernel function satisfying k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, k(x) continuous at

x = 0 and
R∞
−∞ k

2(x)dx <∞. Often k(x) = 0 for |x| > 1 soM ”trims” the sample autocovariances

and acts as a truncation lag. For bΩ to be consistent, M → ∞ and M/T → 0 as T → ∞. The

technical requirement that M grows at a suitable rate has long been recognized as an important

practical limitation to nonparametric spectral density estimators. The problem in practice is that

for any finite sample of size T, any choice of M ≤ T can be justified and the ”suitable rate” can be
satisfied by the ”fictional promise” thatM will be chosen in certain ways should more data become
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available. For example, suppose we adopt the rule that M = CT 1/3 where C is a finite constant.

If T = 100 and the practitioner decides that M = 29 gives a desired result, then this choice of M

could be justified on the grounds of consistency of bΩ by using C = 6.2478. Then, in theory, the

practitioner would have to use this value of C should more data become available. Presumably,

the practitioner is already using all the available data: hence the ”fictional promise”. But, this

promise in no way restricts the choice of M in the sample at hand, because for any choice of M

there is always a corresponding choice of C that makes bΩ consistent.
The arbitrary nature of the choice of M in finite samples has led to the development of data

dependent choices ofM most notably by Andrews (1991) and Newey and West (1994) in the context

of covariance matrix estimation. The basic idea is to chooseM to minimize the mean square error

(MSE) of bΩ (or some asymptotic approximation of the MSE). Because the MSE of bΩ depends on
the serial correlation structure of f(vt, θ0), the practitioner must choice an ”approximate” model

for the serial correlation of f(vt, θ0). Once this ”approximate” model is chosen, then the choice of

M becomes automatic. However, this approach simply replaces the choice of M with the choice

of an approximate model for the serial correlation in f(vt, θ0).

Because of these practical problems inherent in nonparametric estimation of Ω, den Haan

and Levin (1997,1998) recommend using parametric estimators of Ω based on VAR models fit

to f(vt, bθT ). The parametric approach can attain the same level of generality with regard to the
nature of the serial correlation in f(vt, θ0) provided the lag of the VAR increases at a suitable rate

as the sample size increases. Therefore, the choice of M is replaced by the choice of lag length.

Again, data dependent methods have been proposed to help make this choice. But, in finite sam-

ples, data dependent lag length methods require the practitioner to choice a maximal lag length.

There is no guide whatsoever on this choice of maximal lag length other than the maximal lag

length must increase as T increases but not too fast. So, the choice of lag length is replaced with

the choice of maximal lag length. Again, no standard of practice emerges.

4 A New Approach

Following Kiefer and Vogelsang (2000) consider estimating Ω using (4) but with M = T. This

estimator is denoted by bΩM=T . This is a specific choice of M that uses information about all of

the sample autocovariances in the data. It is well known that letting M grow at the same rate as

T results in an inconsistent estimate of Ω. Thus, the corresponding estimate of V,

bVM=T = [G0T (bθT )WTGT (bθT )]−1G0T (bθT )WT
bΩM=TWTGT (bθT )[G0T (bθT )WTGT (bθT )]−1, (5)
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will not be consistent. However, it is important to keep in mind that a consistent estimate of V is

only a sufficient condition for valid asymptotic testing, not a necessary condition. This fact is often

overlooked, especially in textbook treatments of asymptotic testing. As shown below, use of bΩM=T
delivers an estimate of V that converges to a random variable that is proportional to V in a useful

way and otherwise does not depend on unknown nuisance parameters. Therefore, asymptotically

valid testing is still possible except that the distribution theory becomes nonstandard; i.e. t-tests

will not be asymptotically normal.

In a sense, merely appealing to consistency of an estimator of V leads to a less than satisfactory

asymptotic approximation for t-tests based on bθT . Consistency is best viewed as the minimally
required asymptotic property for an estimator. For example, showing that bθT is consistent is the
natural first step when determining whether it is a useful estimator. But, if one is interested in

testing hypotheses about θ0, then consistency of bθT is not enough, and an asymptotic normality
result for T 1/2(bθT −θ0) is required. In other words, testing requires at least a first order asymptotic
approximation to the finite sample distribution of bθT . One should perhaps view consistency as a
less than first order asymptotic approximation. When we replace V with a consistent estimator and

then treat V as known asymptotically, we are using a constant to approximate the finite sampling

variability of a random variable. In small samples, this approximation is likely to be inaccurate.

In other words, the standard asymptotic approximation for the t-test ignores the finite sample

variability of the estimate of V. By using bΩM=T and a first order asymptotic approximation of its
finite sampling behavior, it may be possible to obtain a more accurate asymptotic approximation

for t and F tests regarding θ0.

4.1 Asymptotic Distribution of bΩM=T .
In this subsection the asymptotic distribution of bΩM=T is derived. When the model is exactly

identified and q = p, then bΩM=T will be asymptotically proportional to ΛΛ0 and it easy to show
that the resulting estimate of V will be proportional to V . However, when the model is over-

identified and q > p, then bΩM=T will no longer be proportional to ΛΛ0 asymptotically1. This does
not pose any problems because the middle term of the estimate of V, G0T (bθT )WT

bΩM=TWTGT (bθT ),
does have the required asymptotic proportionality to variance nuisance parameters. The details

are as follows.

LetKil = k((i−l)/T ). Using algebraic arguments similar to those used by Kiefer and Vogelsang
1Asymptotic proportionality to ΛΛ0 of bΩM=T could be obtained by demeaning f(vt, bθT ) before computing bΩM=T .

However, it can be shown that the term G0T (bθT )WT
bΩM=TWTGT (bθT ) is computationally equivalent whether or not

f(vt, bθT ) is demeaned before computing bΩM=T . On the other hand, as shown by Hall (2000), demeaning improves
the power of tests for over-identified restrictions and is recommended.
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(2000), it is straightforward to show that

bΩM=T = T−1 T−1X
l=1

T−1X
i=1

[(Kil −Ki,l+1)− (Ki+1,l −Ki+1,l+1)]Tgi(bθT )Tgl(bθT )0
+ T−1

T−1X
l=1

(KTl −KT,l+1)TgT (bθT )Tgl(bθT )0 + T−1 TX
i=1

f(vi, bθT )KiTTgl(bθT )0. (6)

Using (6) it directly follows that

G0T (bθT )WT
bΩM=TWTGT (bθT )

= T−1
T−1X
l=1

T−1X
i=1

[(Kil −Ki,l+1)− (Ki+1,l −Ki+1,l+1)]G0T (bθT )WTTgi(bθT )Tgl(bθT )0WTGT (bθT ), (7)

where the second and third terms of (6) vanish because from (2) it follows thatG0T (bθT )WTTgT (bθT ) =
TgT (bθT )0WTGT (bθT ) = 0. Define the step function DT (r) for r ∈ [0, 1] as DT (r) = D(j) for
j
T ≤ r < j+1

T , j = 0, 1, 2, ..., T −1 where D(x) = [k((x+1)/T )−k(x/T )]− [k(x/T )−k((x−1)/T )].
Simple algebra applied to (7) gives

G0T (bθT )WT
bΩM=TWTGT (bθT )

= T−1
T−1X
l=1

T−1
T−1X
i=1

−T 2DT ((i− l)/T )G0T (bθT )WTT
1/2gi(bθT )T 1/2gl(bθT )0WTGT (bθT )

=

Z 1

0

Z 1

0
−T 2DT (r − s)G0T (bθT )WTT

1/2g[rT ](bθT )T 1/2g[sT ](bθT )0WTGT (bθT )drds. (8)

When k00(x) exists and is continuous on the interval x ∈ (−1, 1), it is easy to show that T 2DT (r)→
k00(r) uniformly in r. Therefore, given (8), all that is needed to derive the asymptotic distribution of

G0T (bθT )WT
bΩM=TWTGT (bθT ) is the limit of G0T (bθT )WTT

1/2g[rT ](bθT ) which is given by the following
lemma that is proved in the appendix.

Lemma 2 Under Assumptions 1-4, as T →∞,

G0T (bθT )WTT
1/2g[rT ](bθT )⇒ G00W∞

£
ΛBq(r)− rG0(G00W∞G0)−1G00W∞ΛBq(1)

¤
≡ G00W∞Λ [Bq(r)− rBq(1)]
≡ Λ∗ [Bp(r)− rBp(1)]
= Λ∗ eBp(r).

Using T 2DT (r) → k00(r) and applying Lemma 2 to (8) it follows from the continuous mapping

theorem that

G0T (bθT )WT
bΩM=TWTGT (bθT )⇒ Λ∗

Z 1

0

Z 1

0
−k00(r − s) eBp(r) eBp(s)0drdsΛ∗0. (9)
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The reason that G0T (bθT )WT
bΩM=TWTGT (bθT ) can be used for valid testing is because it is asymp-

totically proportional to Λ∗Λ∗0 and the random variable
R 1
0

R 1
0 −k00(r− s) eBp(r) eBp(s)0drds does not

depend on unknown nuisance parameters.

4.2 Inference Without Truncation

In this section it is shown how asymptotically valid (pivotal) t and F statistics can be constructed

using the inconsistent estimate of V based on bΩM=T . Suppose the hypothesis of interest can be

written as

H0 : r(θ0) = 0

H1 : r(θ0) 6= 0,

where r(θ0) is am×1 vector (m ≤ p) of continuously differentiable functions with derivative matrix
R(θ0) = ∂r(θ0)/∂θ0. Application of the Delta method gives

T 1/2r(bθT )⇒−R(θ0)V 1/2Bp(1) ≡ N(0, VR)

where VR = R(θ0)V R(θ0)0. Suppose we use the inconsistent estimator of VR, R(bθT )bVM=TR(bθT )0,
where bVM=T is given by (5) to construct the F statistic

F ∗ = Tr(bθT )0 ³R(bθT )bVM=TR(bθT )0´−1 r(bθT )/m.
The only difference between F ∗ and a conventional F test is that bΩM=T is used instead of a

consistent estimator of Ω. In the case where m = 1 so that only one restriction is being testing,

we can construct a t statistic given by

t∗ =
T 1/2r(bθT )q

R(bθT )bVM=TR(bθT )0 .
A practically relevant t test is the test of significance of the individual parameters

H0 : θi = 0

H1 : θi 6= 0.

In this case the t∗ statistic can be written as

t∗ =
bθi

se(bθi) ,
where se(bθi) =qT−1bV iiM=T and bV iiM=T is the ith diagonal element of the bVM=T matrix. A theorem
which is proved in the appendix establishes the limiting null distributions of t∗ and F ∗.
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Theorem 1 Under Assumptions 1-4, as T →∞,

F ∗ ⇒ Bm(1)
0
µZ 1

0

Z 1

0
−k00(r − s) eBm(r) eBm(s)0drds¶−1Bm(1)/m,

t∗ ⇒ B1(1)qR 1
0

R 1
0 −k00(r − s) eB1(r) eB1(s)0drds.

According to the theorem, the asymptotic distributions are free of nuisance parameters although

the distributions are nonstandard and depend on the kernel through k00(x). Given the kernel,

critical values are easily obtained using simulation methods. Therefore, using the truncation lag

of M = T when estimating the asymptotic variance delivers an asymptotically valid class of tests

even though the asymptotic variance is not consistently estimated. The practical advantage of

usingM = T is that this choice of truncation lag is not arbitrary in finite samples. What remains,

though, is the choice of kernel.

4.3 The Bartlett Kernel

The dependence of the asymptotic distributions of F ∗ and t∗ on the kernel can be used to guide

the choice of kernel in practice. Kiefer and Vogelsang (2000) showed that among a large group

of popular kernels, the Bartlett kernel delivers the highest power for the t∗ statistic2, and they

recommend the use of the Bartlett kernel when using M = T . Their power analysis easily extends

to the GMM framework given Theorem 1. Therefore, it is instructive to analyze the F ∗ and t∗

statistics for the case of the Bartlett kernel.

The Bartlett kernel is given by k(x) = 1 − |x| for |x| ≤ 1 and k(x) = 0 otherwise. Note that

k00(x) = 0 for x 6= 0, but k00(0) does not exist. Kiefer and Vogelsang (2000) showed that heuristically
we can define k00(0) = −2. Then, when the Bartlett kernel is used, the limiting distributions of F ∗
and t∗ simply to

F ∗ ⇒ Bm(1)
0
µ
2

Z 1

0

eBm(r) eBm(r)0dr¶−1Bm(1)/m,
t∗ ⇒ B1(1)q

2
R 1
0
eB1(r)2dr .

A formal proof of these results follows directly from results in Kiefer and Vogelsang (2001). The

distribution of t∗ is mixture normal. The density of B1(1)/
qR 1

0
eB1(r)2dr was derived by Abadir

2 It is interesting to note that the testing approach proposed by Kiefer, Vogelsang and Bunzel (2000) is exactly
equivalent to using 1

2
bΩM=T with the Bartlett kernel.
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and Paruolo (1997) so that analytical critical values are available for t∗. Critical values for t∗are

tabulated in Table 1 and were computed by scaling the critical values of B1(1)/
qR 1

0
eB1(r)2dr by

1/
√
2. Analytical representations of the density of F ∗ have not been derived; however, critical

values are easy to obtain using simulation methods. Critical values for F ∗ for m = 1, 2, ..., 30 are

tabulated in Table 2.

5 Linear IV Models: Choice of WT and Finite Sample Performance

In this section attention is focused on the special case of linear instrumental variables (IV) models.

Beyond serving as an example, this section has two additional goals. The first goal is to explore

the choice of the weighting matrix, WT , which is greatly simplified in the linear case because the

formula for bθT can be written in a closed form. The second goal is to illustrate the finite sample
performance of the new tests, and this is also simplified (in terms of computation complexity) in

the linear model.

5.1 Linear IV Model

Let xt denote a p× 1 vector of regressors. Consider the linear regression

yt = x
0
tθ0 + ut,

where ut is a mean zero error term and xt and ut could be correlated. Suppose that a q × 1
vector of instruments, zt, are available that satisfy the moment conditions E(ztut) = 0. For the

instruments to be valid we also need the assumption that cov(xt, zt) 6= 0. In the general notation
from above, we have vt = (yt, x0t, z0t)0 and f(vt, θ0) = ztut = zt(yt − x0tθ0). Then it follows that
gT (θ) = T

−1PT
t=1 zt(yt − x0tθ). Given a weighting matrix, WT , it is easy to show that

bθT =
Ã TX

t=1

ztx
0
t

!0
WT

Ã
TX
t=1

ztx
0
t

!−1 Ã TX
t=1

ztx
0
t

!0
WT

Ã
TX
t=1

ztyt

! . (10)

The asymptotic variance of bθT is
V = (Q0zxW∞Qzx)−1Q0zxW∞ΩW∞Qzx(Q0zxW∞Qzx)−1,

where Qzx = p lim(T−1
PT
t=1 ztx

0
t) and Ω = limT→∞VAR (T−1/2

PT
t=1 ztut). The asymptotic

variance matrix can be consistently estimated using

bV = ( bQ0zxWT
bQzx)−1 bQ0zxWT

bΩWT
bQzx( bQ0zxWT

bQzx)−1,
where bQzx = T−1PT

t=1 ztx
0
t and bΩ is given by (4) using f(vt, bθT ) = ztbut = zt(yt − x0tbθT ).
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As shown by Hansen (1982), the weighting matrix that gives the optimal (minimum asymptotic

variance) GMM estimator is WT = bΩ−1. In this case, the asymptotic variance of bθT simplifies
to Vopt = (Q0zxΩ−1Qzx)−1 and the corresponding estimator simplifies to bVopt = ( bQ0zxbΩ−1 bQzx)−1.
Because bΩ is constructed using bθT , there can be improvements in the precision of bΩ through

iteration. Let bθ0T denote an initial estimate of θ obtained with an arbitrary weighting matrix (e.g.
WT = I). Let bΩ(bθ0T ) denote the estimate of Ω obtained using bθ0T . Now, using the weighting matrix,
WT = bΩ(bθ0T )−1 we obtain the updated estimate of θ, bθ1T . Using bθ1T we can then construct a new
estimate of Ω, bΩ(bθ1T ) and a new weighting matrix WT = bΩ(bθ1T )−1. This algorithm is iterated until

the estimate of θ converges. In what follow, iteration is always used when using WT = bΩ−1 and
the corresponding estimate of θ is denoted by bθoptT . Note that for bθT to be consistent, the weighting
matrix must converge to a constant matrix as T increases. Thus, truncation must be used given

that WT = bΩ−1M=T converges to a random matrix.

If one would like to completely avoid the choice of truncation lag when doing inference, a weight-

ing matrix other than WT = bΩ−1 is required. In the case where the errors and instruments are

i.i.d., the optimal weighting matrix simplifies to WT =
³
T−1

PT
t=1 ztz

0
t

´−1
. Use of this weighting

matrix generates the well known generalized IV estimator (GIVE) which is denoted by bθGIV ET .

5.2 Finite Sample Results

Monte Carlo simulations are used to compare and contrast the performance of standard GMM

tests with the new tests. The role of the weighting matrix is highlighted in this exercise. To keep

matters simple, attention is focused on a simple regression model with AR(2) errors:

yt = θ1 + θ2xt + ut (11)

ut = ρ1ut−1 + ρ2ut−2 + ξt,

where ξt ∼ i.i.d. N(0, 1), u−1 = u0 = 0, xt is a scalar AR(1) process given by xt = 0.5xt−1 + εt,
εt ∼ i.i.d. N(0, 1), x0 = 0. There are two instruments, zt = (z1t, z2t)

0 available for xt given by

zit = xt + ηit where ηit ∼ i.i.d. N(0, 1), i = 1, 2. All the errors are assumed to be uncorrelated

with each other (although ξt and εt could be modeled as correlated given that IV estimation

is used). The vector of parameters θ = (θ1, θ2)0 is estimated using (10) with the weighting

matrices W1T = bΩ−1 (with iteration) and W2T =
³
T−1

PT
t=1 ztz

0
t

´−1
. The focus is on θ2 and

the respective estimates denoted by bθopt2 and bθGIV E2 . The null hypothesis of interest is H0 : θ2 ≤
0, H1 : θ2 > 0. For each estimate of θ2 both the standard t statistic and t∗ were computed.

The standard t statistic is denoted by tHAC . For tHAC , Ω was estimated using the quadratic

spectral kernel with the truncation lag chosen using the data dependent method proposed by
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Andrews (1991) using the V AR(1) plug-in method. Following the recommendation of Kiefer and

Vogelsang (2000) t∗ was implemented using the Bartlett kernel (without truncation). Following

Andrews and Monahan (1992), tHAC and t∗ were also implemented using V AR(1) prewhitening.

See Andrews and Monahan (1992) for computational details

To assess the accuracy of the limiting null distributions, data was generated according to (11)

with θ2 = 0 (θ1 was set to zero without loss of generality). Empirical null rejection probabilities

were computed using 2,000 replications for the sample sizes T = 25, 50, 100, 200. Asymptotic 5%

right tail critical values were used so that the nominal level is 0.05. Results were obtained for

AR(1) errors with ρ2 = 0 and ρ1 = −0.5,−0.3, 0.0, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99. Results were also
obtained for AR(2) models with ρ1 = 1.3 and ρ2 = −0.8,−0.6,−0.4,−0.35. Serial correlation

parameter values relevant for macroeconomic data include the AR(1) model with ρ1 ≥ 0.7 and the
AR(2) model with ρ2 ≥ −0.6.

The results are reported in Table III. Several interesting patterns emerge from the table.

First, in nearly all cases empirical null rejection probabilities are closer to 0.05 for t∗ than for tHAC .

In some cases the differences are quite large. For example, with T = 25 and ρ1 = ρ2 = 0, the

probability of rejection is 0.089 for tHAC and 0.063 for t∗. Second, models with more persistent serial

correlation have greater distortions. This fact is well known in the HAC literature. Third, whereas

prewhitening usually improves accuracy for t∗ (even when the errors are AR(2)), prewhitening

sometimes decreases accuracy in the asymptotic approximation for tHAC . Although for highly

persistent errors (ρ1 ≥ 0.7), prewhitening does improve the asymptotic approximation. Fourth, for
both tHAC and t∗ the asymptotic approximation is more accurate for and bθGIV E2 than for bθopt2 . It

is not obvious why this should be the case, and the pattern holds regardless of sample size or error

model. Finally, when the sample size is relatively large (T = 200), empirical rejection probabilities

are remarkably close to 0.05 for prewhitened t∗ using bθGIV E2 .

Given that the asymptotic null approximation appears better for t∗, the obvious question to

ask is: does t∗ have any power? The answer is yes as the next simulation experiment illus-

trates. To simulate finite sample power of the tests, data was generated according to (11) for

θ2 = 0.0, 0.05, 0.1, ..., 0.95, 1.0 (again, θ1 = 0). Results are reported for T = 100 for two error

models. The first model has ρ1 = 0.7, ρ2 = 0 while the second model has ρ1 = 1.3, ρ2 = −0.6.
Power was calculated using finite sample critical values, i.e. power is size adjusted. This was done

so that the empirical null rejection probabilities are the same for all statistics thus making power

comparisons more meaningful in a theoretical sense. Of course, such size correction cannot be

done in practice on actual data, but it serves a useful purpose here for comparing the performance

of different tests statistics. As before, 2,000 replications were used. Results are only reported for

13



the case of prewhitening. Similar results were obtained without prewhitening.

The results are given by Figures 1 and 2. Two patterns emerge. First, power is similar for all

the tests with power of tHAC slightly higher than t∗. Second, for both statistics, power is higher

for bθGIV E2 than for bθopt2 . This result is surprising and counter-intuitive given that bθopt2 has a smaller

asymptotic variance than bθGIV E2 for the two error models considered here. It should be noted that

in unreported simulations, power was often greater for bθopt2 than for bθGIV E2 when the errors are more

persistent. But when errors are less persistent, but still serially correlated, the counter-intuitive

rankings consistently emerged.

The finite sample results suggest that t∗ is a good alternative to tHAC in practice. t∗ has a more

accurate asymptotic null approximation and power is competitive. The asymptotic approximation

is most accurate and power can be higher when t∗ is implemented withW2T =
³
T−1

PT
t=1 ztz

0
t

´−1
.

When implemented in this way, t∗ has, in a sense, a fully automatic bandwidth. Reinforcing

the recommendation of Andrews and Monahan (1992), the simulations also show that V AR(1)

prewhitening improves the asymptotic approximation even if the errors have higher order serial

correlation. An obvious topic for future research is to see whether these finite sample results in

the linear IV model continue to hold in nonlinear models estimated by GMM.

6 Conclusions

This paper proposes a new approach to testing in the GMM framework. The new tests are

constructed using HAC robust standard errors computed using nonparametric spectral density

estimators without truncation. While such standard errors are not consistent, a new asymptotic

theory shows that they lead to valid tests nonetheless. In the context of the linear IV model, the

new tests and the associated limiting distribution theory are shown to have better finite sample

size, i.e. a more accurate first order asymptotic null approximation, than standard HAC robust

tests. Finite sample power of the new tests is shown to be comparable to standard tests. Because

use of a truncation lag equal to the sample size is specific recommendation, it is fully automatic.

This approach could potentially lead to a standard of practice (which does not currently exist) for

the computation of HAC robust standard errors in GMM models.

7 Appendix

Proof of Lemma 1: Setting t = T , multiplying both sides of (3) by G0T (bθT )WT , and using the

first order condition G0T (bθT )WT gT (bθT ) = 0 gives
0 = G0T (bθT )WT gT (θ0) +G

0
T (
bθT )WTGT (bθT , θ0,λT )(bθT − θ0). (12)
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Solving (12) for (bθT − θ0) and scaling by T 1/2 gives
T 1/2(bθT − θ0) = −[G0T (bθT )WTGT (bθT , θ0,λT )]−1G0T (bθT )WTT

1/2gT (θ0).

The lemma follows because p limG0T (bθT )WTGT (bθT , θ0,λT ) = G00W∞G0 by assumptions 3 and 4

and because G0T (bθT )WTT
1/2gT (θ0)⇒ G00W∞ΛBq(1) by assumptions 2, 3, and 4.

Proof of Lemma 2: Setting t = [rT ] and multiplying both sides of (3) by T 1/2 gives

T 1/2g[rT ](bθT ) = T 1/2g[rT ](θ0) +G[rT ](bθT , θ0,λT )T 1/2(bθT − θ0). (13)

Using assumptions 2, 3 and 4 and Lemma 1 it follows that

T 1/2g[rT ](bθT )⇒ ΛBq(r)− rG0(G00W∞G0)−1G00W∞ΛBq(1). (14)

Because p limG0T (bθT )WT = G
0
0W∞ by assumptions 3 and 4, it follows from (13) and (14) that

G0T (bθT )WTT
1/2g[rT ](bθT )⇒ G00W∞

¡
ΛBq(r)− rG0(G00W∞G0)−1G00W∞ΛBq(1)

¢
,

which completes the proof.

Proof of Theorem 1: Once the result for F ∗ is established, the result for t∗ trivially follows

when m = 1. Applying the delta method to the result in Lemma 1 and using the fact that Bq(1)

is a vector of independent standard normal random variables gives

T 1/2r(bθT )⇒−R(θ0)
¡
G00W∞G0

¢−1
G00W∞ΛBq(1)

≡ −R(θ0)
¡
G00W∞G0

¢−1
Λ∗Bp(1)

≡ Λ∗∗Bm(1), (15)

where Λ∗∗ is the matrix square root of R(θ0) (G00W∞G0)−1 Λ∗Λ∗0 (G00W∞G0)−1R(θ0)0. Using (9)

it directly follows that

R(bθT )bVM=TR(bθT )0
= R(bθT )[G0T (bθT )WTGT (bθT , θ0,λT )]−1G0T (bθT )WT

bΩM=TWTGT (bθT )[G0T (bθT )WTGT (bθT , θ0,λT )]−1R(bθT )0
(16)

⇒ R(θ0)
¡
G00W∞G0

¢−1
Λ∗
Z 1

0

Z 1

0
−k00(r − s) eBp(r) eBp(s)0drdsΛ∗0 ¡G00W∞G0

¢−1
R(θ0)

0

≡ Λ∗∗
Z 1

0

Z 1

0
−k00(r − s) eBm(r) eBm(s)0drdsΛ∗∗0, (17)
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where we use the fact that

R(θ0)
¡
G00W∞G0

¢−1
Λ∗ eBp(r) = R(θ0) ¡G00W∞G0

¢−1
Λ∗ (Bp(r)− rBp(1))

≡ Λ∗∗ (Bm(r)− rBm(1))
= Λ∗∗ eBm(r).

Using (15) and (17) it directly follows that

F ∗ = Tr(bθT )0 ³R(bθT )bVM=TR(bθT )0´−1 r(bθT )/m
= T 1/2r(bθT )0 ³R(bθT )bVM=TR(bθT )0´−1 T 1/2r(bθT )/m
⇒ (Λ∗∗Bm(1))0

µ
Λ∗∗

Z 1

0

Z 1

0
−k00(r − s) eBm(r) eBm(s)0drdsΛ∗∗0¶−1 (Λ∗∗Bm(1)) /m

≡ Bm(1)0
µZ 1

0

Z 1

0
−k00(r − s) eBm(r) eBm(s)0drds¶−1Bm(1)/m,

which completes the proof.
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Table I: Asymptotic Critical Values for t∗ Using Bartlett Kernel

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
-6.090 -4.771 -3.764 -2.740 0.000 2.740 3.764 4.771 6.090

Note: Critical values were obtained by scaling by 1/
√
2 the critical values from line 1 of Table I in

Abadir and Paruolo (1997).

Table II: Asymptotic Critical Values for F ∗ Using Bartlett Kernel

q = 1 2 3 4 5 6 7 8 9 10
90% 14.28 17.99 21.13 24.24 27.81 30.36 33.39 36.08 38.94 41.71
95% 23.14 26.19 29.08 32.42 35.97 38.81 42.08 45.32 48.14 50.75

97.5% 33.64 35.56 37.88 40.57 44.78 47.94 50.81 54.22 57.47 59.98
99% 51.05 48.74 51.04 52.39 56.92 60.81 62.27 67.14 69.67 72.05

q = 11 12 13 14 15 16 17 18 19 20
90% 44.56 47.27 50.32 52.97 55.71 58.14 60.75 63.35 65.81 68.64
95% 53.70 56.70 60.11 62.83 65.74 68.68 70.59 73.76 76.42 79.50

97.5% 63.14 65.98 69.46 72.46 75.51 78.09 80.94 83.63 86.20 89.86
99% 74.74 78.80 82.09 85.12 88.86 91.37 94.08 97.41 99.75 103.2

q = 21 22 23 24 25 26 27 28 29 30
90% 70.80 73.41 76.19 78.40 81.21 83.59 85.83 88.11 90.92 93.63
95% 82.00 84.76 87.15 89.67 92.70 95.49 97.57 99.48 102.9 105.8

97.5% 92.32 94.54 98.06 100.4 103.5 106.6 108.8 110.7 114.6 117.5
99% 105.4 108.0 111.8 114.7 117.6 120.8 123.4 124.5 129.6 132.1

Notes: The critical values were calculated via simulation methods using normalized partial sums
of 1,000 i.i.d. N(0, 1) random deviates to approximate the standard Brownian motions in the
respective distributions. 50,000 replications.were used. q is the number of restrictions being
tested.
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Table III: Empirical Null Rejection Probabilities in Linear IV Model

Panel A: T = 25

No Prewhitening With Prewhitening

ρ1 ρ2
-0.50 0.00
-0.30 0.00
0.00 0.00
0.30 0.00
0.50 0.00
0.70 0.00
0.90 0.00
0.95 0.00
0.99 0.00
1.30 -0.80
1.30 -0.60
1.30 -0.40
1.30 -0.35

bθGIV E2
bθopt2

tHAC t∗

0.057 0.043
0.068 0.054
0.089 0.063
0.105 0.073
0.115 0.075
0.127 0.091
0.146 0.100
0.149 0.100
0.149 0.099
0.108 0.073
0.136 0.094
0.150 0.112
0.158 0.102

tHAC t∗

0.074 0.057
0.089 0.066
0.115 0.087
0.136 0.097
0.146 0.102
0.154 0.113
0.168 0.115
0.180 0.120
0.178 0.118
0.148 0.099
0.166 0.121
0.172 0.128
0.183 0.125

bθGIV E2
bθopt2

tHAC t∗

0.067 0.040
0.076 0.049
0.092 0.060
0.107 0.069
0.114 0.073
0.120 0.078
0.132 0.081
0.138 0.083
0.141 0.080
0.094 0.063
0.116 0.077
0.132 0.089
0.147 0.086

tHAC t∗

0.098 0.063
0.115 0.075
0.133 0.086
0.147 0.095
0.154 0.103
0.151 0.104
0.161 0.108
0.170 0.105
0.167 0.102
0.138 0.093
0.147 0.110
0.165 0.115
0.172 0.114

Panel B: T = 50

No Prewhitening With Prewhitening

ρ1 ρ2
-0.50 0.00
-0.30 0.00
0.00 0.00
0.30 0.00
0.50 0.00
0.70 0.00
0.90 0.00
0.95 0.00
0.99 0.00
1.30 -0.80
1.30 -0.60
1.30 -0.40
1.30 -0.35

bθGIV E2
bθopt2

tHAC t∗

0.061 0.054
0.067 0.061
0.068 0.061
0.082 0.062
0.087 0.064
0.093 0.076
0.121 0.081
0.128 0.089
0.123 0.079
0.088 0.060
0.096 0.074
0.119 0.085
0.129 0.091

tHAC t∗

0.065 0.057
0.071 0.068
0.081 0.070
0.103 0.076
0.109 0.075
0.117 0.087
0.131 0.099
0.141 0.101
0.141 0.092
0.103 0.070
0.119 0.085
0.128 0.099
0.138 0.102

bθGIV E2
bθopt2

tHAC t∗

0.070 0.056
0.075 0.059
0.079 0.058
0.081 0.057
0.081 0.061
0.084 0.069
0.102 0.068
0.105 0.072
0.109 0.068
0.070 0.054
0.079 0.059
0.095 0.067
0.109 0.069

tHAC t∗

0.077 0.060
0.084 0.069
0.092 0.072
0.099 0.071
0.108 0.075
0.105 0.078
0.115 0.085
0.118 0.084
0.113 0.079
0.085 0.065
0.103 0.076
0.107 0.084
0.122 0.085
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Table III: Continued

Panel C: T = 100

No Prewhitening With Prewhitening

ρ1 ρ2
-0.50 0.00
-0.30 0.00
0.00 0.00
0.30 0.00
0.50 0.00
0.70 0.00
0.90 0.00
0.95 0.00
0.99 0.00
1.30 -0.80
1.30 -0.60
1.30 -0.40
1.30 -0.35

bθGIV E2
bθopt2

tHAC t∗

0.040 0.049
0.044 0.044
0.048 0.048
0.067 0.056
0.079 0.061
0.081 0.059
0.096 0.070
0.091 0.068
0.093 0.071
0.063 0.060
0.081 0.064
0.097 0.069
0.095 0.070

tHAC t∗

0.043 0.051
0.048 0.050
0.054 0.056
0.078 0.063
0.093 0.069
0.093 0.073
0.101 0.080
0.101 0.079
0.107 0.077
0.078 0.064
0.095 0.069
0.109 0.079
0.108 0.079

bθGIV E2
bθopt2

tHAC t∗

0.045 0.049
0.049 0.045
0.049 0.047
0.065 0.054
0.072 0.056
0.070 0.055
0.071 0.058
0.075 0.058
0.071 0.056
0.050 0.054
0.058 0.055
0.073 0.052
0.074 0.053

tHAC t∗

0.053 0.051
0.057 0.054
0.060 0.057
0.073 0.062
0.082 0.068
0.081 0.066
0.085 0.068
0.079 0.069
0.081 0.065
0.061 0.055
0.071 0.063
0.086 0.066
0.079 0.064

Panel D: T = 200

No Prewhitening With Prewhitening

ρ1 ρ2
-0.50 0.00
-0.30 0.00
0.00 0.00
0.30 0.00
0.50 0.00
0.70 0.00
0.90 0.00
0.95 0.00
0.99 0.00
1.30 -0.80
1.30 -0.60
1.30 -0.40
1.30 -0.35

bθGIV E2
bθopt2

tHAC t∗

0.043 0.052
0.042 0.048
0.048 0.050
0.059 0.048
0.063 0.055
0.068 0.053
0.079 0.057
0.077 0.060
0.082 0.059
0.054 0.048
0.056 0.053
0.082 0.055
0.077 0.059

tHAC t∗

0.043 0.055
0.046 0.050
0.051 0.052
0.065 0.051
0.066 0.060
0.070 0.059
0.081 0.065
0.081 0.064
0.085 0.064
0.059 0.050
0.065 0.055
0.084 0.057
0.082 0.065

bθGIV E2
bθopt2

tHAC t∗

0.044 0.049
0.049 0.049
0.049 0.050
0.052 0.048
0.057 0.055
0.054 0.053
0.061 0.053
0.064 0.051
0.069 0.050
0.040 0.044
0.044 0.048
0.061 0.049
0.063 0.050

tHAC t∗

0.049 0.056
0.052 0.052
0.051 0.052
0.058 0.053
0.061 0.059
0.062 0.057
0.066 0.062
0.069 0.060
0.072 0.051
0.044 0.047
0.048 0.052
0.064 0.051
0.069 0.058

Notes: The t statistics were computed for model (11) which was estimated by GMM using (10).bθopt2 is the estimate of θ2 using the optimal weighting matrix W1T = bΩ−1 (with iteration). bθGIV E2

is the estimate of θ2 using the weighting matrixW2T =
³
T−1

PT
t=1 ztz

0
t

´−1
. The null hypothesis of

interest is H0 : θ2 ≤ 0, H1 : θ2 > 0, and asymptotic 5% right tail critical values were used. 2,000
replications were used all cases.
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