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Abstract

Many applications of search theory in monetary economics use the Shi-Trejos-

Wright model, hereafter STW, while applications in finance use Duffie-Gârleanu-

Pederson, hereafter DGP. These approaches have much in common, and both

claim to be about liquidity, but the models also differ in a fundamental way: in

STW agents use assets as payment instruments when trading goods; in DGP

there are no gains from exchanging goods, but agents trade because they value

assets differently with goods serving as payment instruments. We develop a

framework nesting the two. This clarifies the connection between the litera-

tures, and generates new insights and applications. Even in the special cases of

the baseline STW and DGP models, we provide propositions generalizing and

strengthening what is currently known, and rederiving some existing results

using more tractable arguments.
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1 Introduction

One of our jobs as scholars is to explore connections between disparate theories, or

between models that seem related yet different. In search-and-bargaining theory,

many applications in monetary economics build on Shi (1995) or Trejos and Wright

(1995), hereafter STW, while applications in finance build on Duffie, Gârleanu and

Pederson (2005), hereafter DGP.1 A search-and-bargaining approach is natural in

monetary theory, as it provides a convenient way to study bilateral trade when barter

and credit are difficult. In finance, it is not only natural, but accurate: “Many assets,

such as mortgage-backed securities, corporate bonds, government bonds, US federal

funds, emerging-market debt, bank loans, swaps and many other derivatives, private

equity, and real estate, are traded in over-the-counter (OTC) markets. Traders in

these markets search for counterparties, incurring opportunity or other costs. When

counterparties meet, their bilateral relationship is strategic; prices are set through

a bargaining process that reflects each investor’s alternatives to immediate trade”

(Duffie et al. 2007, emphasis added).

Once one goes beyond superficial issues of notation and interpretation, it is appar-

ent that the STW and DGP models are closely related, and both claim to be about

liquidity. As we show, neither is a special case of the other, but there is still a con-

nection that is worth making precise. We provide an integrated framework nesting

STW and DGP as special cases. This is useful because people pursuing applications

in finance with these models ought know there is similar work in monetary economics,

1Here is a literature review, that one can skip for now if so inclinded. Both STW and DGP use

what New Monetarists (see Williamson and Wright 2010 or Nosal and Rocheteau 2011 for surveys)

call second-generation models, where assets are indivisible and agents can hold at most 1. First-

generation models had indivisible goods, too. For third-generation models, with divisible assets and

goods, in STW we have Shi (1997), Green and Zhou (1998), Lagos and Wright (2005), Rocheteau

and Wright (2005), and Molico (2006); in DGP we have Lagos and Rocheteau (2009), Lagos et

al. (2011), Babus and Kondor (2012), and Monnet and Narajabad (2012). Despite these extensions,

indivisible-asset models are still useful, and more tractable. See, e.g., Wallace (2000,2010), Trejos

and Wright (1993,2001), He et al. (2005), Wallace and Nosal (2007), Wallace and Zhu (2007a,b),

Ales et al. (2010), and Choi (2012), who use STW, and Duffie et al. (2007), Weill (2007,2008), Weill

and Vayanos (2008), Pagnotta and Philippon (2011), and Chiu and Koeppl (2012) who use DGP.
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and vice versa. Also, integrating the approaches allows insights from one field to help

understand substantive issues in the other. Since people in finance, e.g., are inter-

ested in bubbles, excess volatility and related phenomena, monetary theory has a lot

to contribute in terms of methods and results. Since many assets are increasingly

used to facilitate transactions, e.g., T-bills serving as collateral or housing wealth

securing home-equity loans, monetary economists could benefit from knowing more

finance. One of our goals is to bridge a gap between the fields.

It has been said that “some papers are about issues, and other papers are about

papers.” It is natural to think of this one in terms of the latter — the motivation

is integrating two popular literatures in monetary and financial economics. It is no

surprise that people familiar with these literatures will see some things that look fa-

miliar, but there are also several original contributions: even in the special cases of the

baseline STW and DGP models, we provide several propositions that generalize and

strengthen what is currently known, and we rederive some existing results using much

more tractable arguments. To better understand what is novel and what constitutes

a review, here are ten things that are new relative to existing work.

1. As regards the STW model, we allow assets to bear a flow return . Most pre-

sentations of the model have  = 0 (fiat money); a few allow   0 (dividends);

even fewer consider   0 (storage cost). We characterize steady states and

perfect-foresight dynamics for all  (Proposition 1). In particular, we prove

that   0 implies the asset can be valued and circulate as a medium of ex-

change iff  is not too big, and   0 implies it is always valued but circulates iff

 is not too big. Although parts of these results can be found elsewhere, there

is no such comprehensive characterization.

2. While there are papers showing the existence of sunspot equilibria in STW (e.g.,

Shi 1995 or Ennis 2001,2004), we show this using different methods, and show

such equilibria exist for a rather larger set of parameters (Proposition 2). As
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excess volatility is one reason to be interested in STW, it is useful to know more

about sunspot equilibria in the model.

3. Different from previous analyses of STW, we use Kalai bargaining, instead of

generalized Nash. The results are similar, but also differ in interesting ways.

Kalai allows us to derive stronger results, and to derive them more easily. More-

over, for a different-but-related class of models following Lagos and Wright

(2005), it has been argued by Aruoba et al. (2007) that Kalai bargaining has

advantages over Nash in addition to tractability: it guarantees value functions

are concave; it provides no incentive to hide assets; it gives cleaner predictions;

and so on. Hence, in those models the standard approach is now Kalai bargain-

ing, and we think it should be that way in STW, too. This is the first analysis

of STW with Kalai bargaining.

4. As regards the baseline DGP model, which has  () = , we allow concave

utility over transfers going to the agent giving up the asset. Many results in

the baseline model go through, but others change — e.g., there is generally no

longer a unique steady state or a unique equilibrium (Proposition 10). This is

new.

5. Different from the baseline DGP model, nonlinear  () implies trading patterns

can be much more interesting: with  () = , trade only occurs when an agent

with an asset and a low valuation for it meets one with a high valuation without

the asset; here, agents with the same valuation may trade, and sometimes even

agents with high valuations trade assets to those with low valuations. This is

endogenous, and depends on parameter values (Proposition 9).

6. In DGP, even with  () = , while it is known there is a unique steady state, we

show much more: when  () =  there is a unique equilibrium. We do this by

verifying explicitly saddle-path stability for steady state (Proposition 4). This
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may be merely a matter of calculation, but it is important because it implies

not only that the baseline model cannot have multiple steady states, it implies

it cannot have any endogenous multiplicity.

7. Although it is known that the baseline DGP model has a unique steady state for

a given trading pattern, we calculate the closed-form solution explicitly. While

this is again merely a matter of calculation, it can be useful in applications to

have closed-form solutions. Similarly, in terms of calculations, we provide ex-

plicit comparative-static results for DGP (Proposition 5) and STW (Proposition

3), and these are cleaner than existing results.

8. In models with indivisible assets, since trading opportunities are not convex,

there can be a role for lotteries in facilitating exchange. While there are previous

analyses of STW that allow lotteries (e.g., Berentsen et al. 2002), they typically

restrict attention to  = 0. We analyze the model for general  and, in particular,

show that for   0, but not for   0, there can be multiple steady states even

with lotteries (Figure 5).

9. While DGP models have been studied with dealers that intermediate between

asset buyers and sellers (as we review in Proposition 7), we consider differ-

ent types of intermediation, including banks that in addition to trading the

exogenous stock of assets can issue their own assets. This generates new re-

sults, relative to previous analyses of this model, such as inside liquidity getting

crowded out by changes in outside liquidity (Proposition 8).

10. We provide a way to embed STW and DGP models into a simple general equi-

librium setting (Section 5), where agents trade different consumption goods and

labor. This allows us to study a much broader set of issues — e.g., the effect of

activity in asset markets on labor markets — compared to previous analyses of

these models.
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The rest of the paper is organized as follows. Section 2 lays out a general de-

scription of an OTC market. Section 3 provides results for a special case where the

framework collapses to STW. Section 4 provides results when it collapses to DGP.

Section 5 shows how to embed simple OTC markets into general equilibrium. Section

6 analyzes the integrated model. Section 7 concludes.

2 The Environment

Time is continuous (but see Section 5) and the horizon infinite. There is a [0 1]

continuum of agents that discount at rate   0. They meet, and potentially trade,

bilaterally and anonymously according to a Poisson process with arrival rate . There

are two tradable objects: a nonstorable consumption good  and a storable asset .

As in STW and DGP, the asset is indivisible, and agents can hold at most 1 unit.

Thus, if  ∈ (0 1) is the fixed supply of the asset,  is also the measure of agents

holding  = 1 while 1− is the measure holding  = 0. One can think of the asset

is a standard Lucas (1978) “tree” giving off a constant dividend stream, normalized

to 1, in terms of “fruit,” but agents may differ over time in their valuation of this

dividend. Specifically, each individual has a state  ∈ { }, which means that at
that moment he gets either utility  or  ≥  from the dividend.

The state of an individual changes over time according to a Poisson process,

independent of the matching process, with  denoting the rate of switching from

 to  and  denoting the rate of switching back.
2 In DGP, there are potential

gains from trade when an agent in state  with  = 0 meets someone in state 

with  = 1. Some papers using the DGP model refer to a switch from  to 

as a liquidity shock, since it makes agents want to divest themselves of assets. In

contrast, in STW,  =  = , where the original papers focus on  = 0, which

2One can imagine    is due to individual asset-holding costs. Or, Duffie et al. (2007) say

it can be due to: “(i) low liquidity, that is, a need for cash, (ii) high financing or financial-distress

costs, (iii) adverse correlation of asset returns with endowments ... (iv) a relative tax disadvantage

... (v) a relatively low personal use for ... certain durable consumption goods such as homes.”
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means the asset is fiat money — i.e., an object that is “intrinsically useless” (Wallace

1980). Hence there are no gains from exchanging assets in STW; instead, gains from

trade arise due to the production and consumption of .

There are many ways to specify specialization. Following Aiyagari and Wallace

(1991), we assume there are  varieties of the good and equal measures of  types

of agents, where type  consumes variety  and produces  + 1 modulo . One

meets someone who produces something one desires at rate  = . As long as

  2 there can be no barter, and credit is impossible since agents are anonymous

(Kocherlakota 1998). Therefore, when an agent wants another agent to produce, if

the former has an asset and the latter does not, they can potentially swap  for .

Economists using STW interpret assets in the model as valued for their liquidity, in

a different sense than the one used in DGP: for the latter, the sale of an asset is

motivated by a need for liquidity; for the former, the asset is liquidity.

Let  () be the utility from consuming  units of one’s consumption good, and

 () the disutility of producing, with  (0) =  (0) = 0, 0 ()  0 and 0 ()  0. In

STW, 00 () ≤ 0 and 00 () ≥ 0, with at least one strict, in which case we define ̄  0
by  (̄) =  (̄) and ∗ ∈ (0 ̄) by 0 (∗) = 0 (∗). In DGP,  () =  () = , so there

are no gains from trade in , and as we said, it is simply a means of payment when

trading assets. This completes our description of the basic environment. Since we

want to highlight symmetries between the models, for now, we ignore some details,

such as the ability to barter or use credit in some meetings in STW, or the fact that

in some versions of DGP agents can trade with intermediaries (we come back to this

in Section 4, where intermediation is discussed explicitly).

Let  be the measure of agents holding  ∈ {0 1} with  =  ∈ {  }.
Let  be the probability of trade when an agent with  ∈ {  } and  = 1

meets an agent with  ∈ {  } and  = 0, where subscripts  and  indicate

the potential buyer and seller of . Of course, the seller of  is the buyer of , and
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vice-versa; unless explicitly stated to the contrary, by the buyer we mean the buyer

of . Labelling aside, the law of motion for 1 is

̇1 = 

1 − 


1 − 1


0  + 0


1  (1)

The first term on the RHS is the flow in due to agents with  = 1 switching from 

to . The second is the flow out due to agents with  = 1 switching the other way.

The third term is the flow out due to agents with  = 1 and  trading away assets

to those with  = 0 and  . The final term is the flow in due to agents with  = 0

and  acquiring assets from those with  = 1 and  .
3

The rest of the dynamics are described by

̇0 = 

0 − 


0 − 0 


1 + 1 


0 (2)

1− = 0 + 0 (3)

 = 1 + 1  (4)

Since (3)-(4) are identities, we can reduce this system to two equations in
¡
1  


0

¢
,

which is natural in DGP, where in equilibrium  = 1 and  =  =  = 0.

It is natural in DGP because, while the total asset supply  is fixed, 1 represents

the effective supply on the market: the measure of agents with an asset trying to

trade it away. Similarly, 0 represents the effective demand : the measure of agents

with no asset trying to acquire one. In the general case, however, potentially anyone

may trade for an asset (even those with ) or trade one away (even those with ).

As in Proposition 1 of Duffie et al. (2005), or as a special case of the proof of

Lemma 2 below, we have:

Lemma 1 The system (1)-(4) has a unique, globally stable, steady state.

3This assumes random search, as in most of the literature, but one can also use directed search.

Given our specialization pattern, e.g., we can assume type  always directs his search to type − 1,
who produces the good he wants. Still there is an element of randomness, since sometimes the

producer of his good already has  = 1, so they cannot trade, but one could change that and make

search even more directed. See Coles (1999), Corbae et al. (2003), Matsu and Shimizu (2005) or

Julien et al. (2008) for related models with alternative matching processes.
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Let  
 be the payoff or value function for an agent holding  ∈ {0 1} with

 =  ∈ { }. For  =  and  = 1, the flow Bellman equation is

 
1 = 0 

£
() +  

0 −  
1

¤
+ 0

£
() +  

0 −  
1

¤
(5)

+ + 
¡
 
1 −  

1

¢
+ ̇ 

1 

The first term on the RHS is the rate of meeting someone who has a high valuation for

the dividend but no asset 0 , times the probability of trade  , times the surplus

() +  
0 −  

1 , where  is the amount a buyer in state  ∈ {} gets from a
seller in state  ∈ {} if they trade. The second term is the expected gain from

trading with someone who has a low valuation. The other terms are the utility from

dividends, the expected capital gain from switching states, and a pure time change

in  
1 that later arises due to self-fulfilling expectations. Similarly,

 
1 = 0 

£
() +  

0 −  
1

¤
+ 0

£
() +  

0 −  
1

¤
(6)

+ + 
¡
 
1 −  

1

¢
+ ̇ 

1

 
0 = 1 

£
 
1 −  

0 − ()
¤
+ 1

£
 
1 −  

0 − ()
¤

(7)

+
¡
 
0 −  

0

¢
+ ̇ 

0

 
0 = 1 

£
 
1 −  

0 − ()
¤
+ 1

£
 
1 −  

0 − ()
¤

(8)

+
¡
 
0 −  

0

¢
+ ̇ 

0 

If we let ∆ =  
1 −  

0 for  ∈ {}, equilibrium trading strategies satisfy

 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ()  ∆ and () ≤ ∆

1 if () ≥ ∆ and ()  ∆

0 if ()  ∆ and () ≥ ∆

0 if () ≤ ∆ and ()  ∆

Φ if () = ∆ and () = ∆

(9)

where Φ is our notation for a generic mixed strategy. We also need to determine

 While various mechanisms can be used, for simplicity this paper adopts Kalai’s

(1977) proportional bargaining solution. Kalai bargaining in this context says that
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when a buyer with  gives  to a seller with  for , the former gets a share  of

the total surplus: ()−∆ = 
£
 ()−∆ −  () +∆

¤
. This simplifies to

(1− )∆ + ∆ = (1− ) () +  () ≡  ()  (10)

where the function  (·) plays a big role in what follows.4

Define the vectors n = (), V = ( 
), φ = () and q = (). Then we have:

Definition 1 Given an initial n0, equilibrium is a list {nVφq} of nonnegative
and bounded functions of time satisfying: the law of motion (1)-(4) for n; the Bellman

equations (5)-(8) for V; the trading conditions (9) for φ; and the bargaining solution

(10) for q. A stationary equilibrium, or steady state, is one that is constant wrt time.

Appendix A presents an extended model with  ∈ {1 2 } for any integer ,
and provides an algorithm like the one in Kiyotaki and Wright (1989) to solve for the

set of stationary pure-strategy equilibria. For now, we use  = 1 as in STW or  = 2

as in DGP to discuss substantive applications in money and finance.

3 Money

Suppose  =  = , as in STW, except that we use Kalai bargaining, which makes

the model more tractable, and we allow  6= 0, which makes it more interesting.

Indeed, we not only allow   0, as in DGP, we also consider   0, in which case 

can be interpreted as a storage cost. When  = , we ignore superscripts and write

4Aruoba et al. (2007) discuss the advantages of Kalai bargaining in a class of related models.

With  () =  () = , as in DGP, Kalai is equivalent to generalized Nash bargaining. The original

STW models use a bargaining game that is equivalent to symmetric Nash; Rupert et al. (2001)

extend this to generalized Nash. Other solution concepts used in these models include pure mecha-

nism design (Wallace and Zhu 2007a,b), price posting (Curtis and Wright 2004; Julien et al. 2008),

and, in versions with some multilateral meetings, auctions (Julien et al. 2008). For comparison, the

generalized Nash bargaining solution in this model implies

(1− ) 0 ()∆ + 0 ()∆ = (1− ) 0 () () + 0 ()  () 

Unless  () =  () = , or  = 1, this differs from (10) for  6= ∗. While the qualitative results are
similar, Kalai bargaining reduces the algebra compared to Nash.
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 
 =  and 


 = . The distribution is summarized by 1 = and 0 = 1− ,

which are constant over time, even if other variables are not. Moreover,  = , and

 =  ∀ ( ), so there is a single  giving the price of the asset in terms of the good.
Then bargaining implies  () = ∆, and

1 =  (1−) [() + 0 − 1] +  + ̇1

0 =  [−() + 1 − 0] + ̇0

To solve the model, assume that trade occurs (i.e.,  = 1), and subtract the

Bellman equations to get ∆ as a function of ∆̇. Then, using the bargaining solution

to eliminate ∆ =  () and ∆̇ = 0 () ̇, we arrive at the differential equation

0 () ̇ = [ +  − ( + ) ] ()− [ − ( + ) ]  ()−  ≡  ()  (11)

where  () also plays a big role. Equilibrium is characterized by a nonnegative and

bounded solution to (11). To reduce notation, write  () =  () −  () − ,

where  =  +  − ( + )  and  =  − ( + ) . Notice

  0 iff    ≡  + 

 + 
and   0 iff    ≡ 

 + 
 (12)

where  ∈ (0) and  ∈ ( 1). This aids us in signing the derivatives

0 () = 
0 ()−

0 () and 00 () = 
00 ()−

00 () . (13)

Also notice  (0) = − and  (̄) = ̄ − , where  (̄) =  (̄) and ̄ =  (̄).

Exchange requires  ∈ [0 ̄], since otherwise  ()   () and trade is not mutually

advantageous. A steady state is a  ∈ [0 ̄] solving  () = 0. To analyze steady

states, we break the analysis into three cases depending on , as well as subcases

depending on .

Case 1:  ∈ ( 1]. From (12)-(13),    0 and  () is convex. As Figure 1

shows, for   ̄ there is no solution to  () = 0 in (0 ̄), and hence there is no steady

state with trade. Intuitively, when   ̄ the asset is so valuable that an agent will

10



Figure 1: Existence of equilibria with trade, Case 1:   

only give it up for   ̄, but then agents with  = 0 do not want it. For  ∈ ¡0 ̄¢,
there is a unique  ∈ (0 ̄) solving  () = 0, and hence a unique steady state with
trade. For fiat currency,  = 0, there is a nonmonetary steady state  = 0 and a

monetary steady state  ∈ (0 ̄). For  ∈ ( 0), where   0 is the value of  that

makes min  () = () = 0, there are two steady states with trade,  ∈ (0 ̄) and
 ∈ (0 ). And for    there is again no steady state with trade, but since   0,

now agents dispose of their assets.

Figure 2: Existence of equilibria with trade, Case 2:     

Case 2:  ∈ ( ]. Now (12)-(13) imply   0   and 0 ()  0. As Figure

2 shows: for   ̄ there is no steady state with trade and agents hoard assets; for

 ∈ ¡0 ̄¢ there is a unique steady state with trade  ∈ (0 ̄); for  = 0 nonmonetary
steady state exists uniquely; and for   0 agents dispose of assets.

Case 3:  ∈ [0 ]. Now 0    and  () is concave. Let ̂  ̄ be the  that

makes max  () =  (̂) = 0. Given  = ̂ there are two possibilities: Case 3a where

̂  ̄, and Case 3b where ̂ ≥ ̄. Case 3a is shown in Figure 3. For   ̂ there is no

11



Figure 3: Existence of equilibria with trade, Case 3:   

steady state with trade; for  ∈ (̄ ̂) there are two,  ∈ (0 ̄) and  ∈ (0 ); for
 ∈ (0 ̄) there is a unique  ∈ (0 ̄); for  = 0 the unique steady state is  = 0; and
for   0 agents dispose of assets.5

To highlight a few economic results, first,  can be so big that assets stop circu-

lating — they get hoarded à la Gresham’s Law.6 Second, if   0 assets can be valued,

but if   0 is too big they will be abandoned. When  = 0 the asset cannot circulate

if  is low, but if   0 it may circulate even if  = 0. Also, multiple steady states can

arise for   0 and for   0. Multiplicity arises because the value of a liquid asset is

at least partly a self-fulfilling property: if you think others will give a low  for the

asset then you will only give a low  to get it; but if you think they will give a high

 then you will give more to get it. The pure version of this is fiat currency, since

 = 0 implies that, at least if   , there is always a monetary steady state with

  0 plus a nonmonetary one with  = 0. But the logic applies to assets, generally.

Next, consider perfect-foresight dynamics, which can be easily understood from

Figures 1-3, since ̇ =  () 0 () ≈  (), where  ≈  means  and  have the

same sign.

Case 1:  ∈ ( 1]. In Figure 1, if   ̄ then ̇  0 ∀ ∈ [0 ̄], so any path satisfying
(11) leads to   0, and the only equilibrium has no trade. If     0 then ̇  0

5Case 3b is only slightly different: in the second panel of Figure 3 there is a unique steady state,

because ̂  ̄ implies the higher root of  () = 0 exceeds ̄. Note that Case 3a obtains for small 

and Case 3b for big .
6This might be more clear if we added a second tradable asset — which is not hard (see, e.g.,

Burdett et al. 2001 or Velde et al. 1999), but we think there is enough going on already.
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∀ ∈ [0 ̄], and the only equilibrium has agents disposing of . For  ∈ (0 ̄), any
solution to (11) other than steady state  leads either to   0 or   ̄, so  is

the unique equilibrium. For  = 0 there are two steady states,  = 0 and   0.

Starting at any 0   leads to   ̄, inconsistent with equilibrium. But starting

at 0 ∈ (0 ) constitutes an equilibrium where  → 0. For  ∈ ( 0), in addition to
steady states  ∈ (0 ̄) and  ∈ (0 ), there is a continuum of equilibria, but now
0 ∈ (0 ) implies  →  from below and 0 ∈ ( ) implies  →  from above.

Case 2:  ∈ ( ]. In Figure 2, the only interesting situation (the only one with
trade) is  ∈ (0 ̄), where the steady state is the unique equilibrium.
Case 3:  ∈ [0 ). In Figure 3, there are two interesting situations. When there
is a unique steady state it is the unique equilibrium. When there are two steady

states   0 and   , we have a continuum of equilibrium where  →  from

above or below, depending on where we start. Notice that in Case 3 it is  that is

attractive, rather than  as in Case 1.

We summarize these results as follows:

Proposition 1 In STW, for high, intermediate and low , the sets of perfect foresight

equilibria are described in the discussions of Cases 1, 2 and 3, resp. For high , if

  0 is not too big there are 2 steady states,  ∈ (0 ̄) and  ∈ ( ̄), plus
equilibria where  → . For low , if   0 is not too big there are 2 steady states

 ∈ (0 ̄) and  ∈ ( ̄), plus equilibria where  → . For intermediate , or

more extreme , there is at most one equilibrium with trade. If   0 is too big trade

shuts down and agents hoard assets. If   0 is too big agents dispose of assets.

Now consider sunspot equilibria, where  fluctuates randomly over time, even

though fundamentals are constant. There is random variable  ∈ {1 2}, and when  =
 it switches to  6=  according to a Poisson process with arrival rate , independent

of everything else in the economy. In a stationary sunspot equilibria,  is a time-

invariant functions of . With a slight abuse of notation, let the superscript in  

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now indicate the sunspot state (not an agent’s ), and rewrite the Bellman equations

when  =  as

 
1 =  (1−)

£
() +  

0 −  
1

¤
+  + (


1 −  

1 ) (14)

 
0 = 

£−() +  
1 −  

0

¤
+ (


0 −  

0 ) (15)

A proper sunspot equilibrium is a pair (1 2), with 1 6= 2, solving  () = ∆,

where ∆ comes from (14)-(15), for  = 1 2. Such equilibria formalize the notion of

excess volatility in asset values. The following Proposition, proved in Appendix B,

verifies they exist.7

Proposition 2 In STW with  ∈ ( 1], if there are two steady states  ∈ (0 ̄)
and  ∈ ( ̄), for any 1 ∈ (0 ) and 2 ∈ ( ) there is a sunspot equilibrium
where  fluctuates between 1 and 2. And with  ∈ [0 ), if there are two steady
states  ∈ (0 ̄) and  ∈ ( ̄), for any 1 ∈ ( ) and 2 ∈ (  ̄) there is a
sunspot equilibrium where  fluctuates between 1 and 2.

This completes the analysis of dynamics. The bottom line is that once one takes

seriously the role of assets in facilitating transactions, outcomes can be complicated

in interesting ways by the self-referential nature of liquidity. Obviously for fiat money,

but also for   0, there are equilibria where to get an asset agents pay a cost ()

above its fundamental value . Hence, one might say these equilibria display bub-

bles in a standard sense: “if the reason that the price is high today is only because

investors believe that the selling price is high tomorrow — when ‘fundamental’ factors

do not seem to justify such a price — then a bubble exists” (Stiglitz 1990). Now, some

may argue that the liquidity service provided by an asset is a fundamental factors;

7Sunspots in STW are also studied by Shi (1995) and Ennis (2001,2004), using different methods.

They also seek a solution to the equilibrium conditions with 1 6= 2, but proceed by noting that

for 1 = 2 = 0 this is the same as the existence of two steady states. By continuity, if two steady

states  and  exist, for small 1 2  0 there is a sunspot equilibrium with 1 close to 

 and 2

close to  . We instead construct sunspot equilibria around  in one case, and around  in the

other, for any 1 and 2 in the ranges given in Proposition 2, not merely  close to steady state.
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rather than debate semantic issues, we emphasize the economics: the model can dis-

play (deterministic and stochastic) time-varying equilibria even when fundamentals

— preferences, technologies etc. — are constant.8

Figure 4: Equilibrium  as a function of 

Consider now the effects of parameter changes, which are sharper here than in

previous analyses. The equilibrium function  () shifts with parameters as follows:

 (·)


 0,
 (·)


 0,
 (·)


 0,
 (·)


 0,
 (·)


≈ −  (16)

From (16) one can derive the effects on  simply by shifting the curves in Figures

1-3. Figure 4 illustrates the effects of  for different , including some situations

with multiplicity. Notice that if ∈ (0 ̄) there is always a unique steady state and
  0. While multiplicity is interesting, it is also good to know conditions for

uniqueness. In any case, we summarize the ‘comparative static’ results as follows:

Proposition 3 In STW the effects of all parameters on  are determined by (16)

and Figures 1-3.

In terms of welfare, let  =  +  (1−) [ ()−  ()]. Clearly  is

maximized wrt  at ∗. From this and (16) one can study the effects of parameters on

8More can be done. Coles and Wright (1998), e.g., construct continuous-time cycles where  and

∆ revolve around steady state. That result requires strategic bargaining, however, and one has to

work in R2, while here we can eliminate ∆ =  () and work in R1. Also, while the results in Coles
and Wright might make one question the use of axiomatic bargaining in dynamic models, if  = 1

that point is moot, and this model can generate interesting dynamics with  = 1. Still, it may be

interesting to explore dyanmics with alternative strategic bargaining solutions in future work.
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 . One can also ask when ∗ obtains in equilibrium. With  = 0, it is easily checked

that  = ∗ is a steady state iff

 = ∗ ≡  (∗) +  [ (∗)−  (∗)]
( + ) [ (∗)−  (∗)]



Notice ∗ ≤ 1 iff  ≤ ∗ for some ∗  0. So, if agents are relatively patient we can

achieve the first best ∗ with  = ∗ ≤ 1; otherwise we cannot, and the second best
is achieved at  = 1.9

To close this Section, we note that in STW agents may want to trade using

lotteries.10 It is easy to show that we can restrict attention to a deterministic  and

a lottery over the asset transfer  ∈ {0 1}, say  =  ( = 1). Then we have

1 = (1−) [()− ∆] + 

0 =  [∆− ()]

⇒ ( + )∆ =  + (1−)() + () (17)

Kalai bargaining with lotteries reduces to

max


{()− ∆} st ∆ = () and  ∈ [0 1]  (18)

If there is trade then   0. If  ≤ 1 is binding then  solves (1− ) ()+ () =

∆, exactly as in the economy without lotteries. So, suppose  ≤ 1 is not binding.
Then (18) implies  = ∗ and  = ∗, where

∗∆ = (1− )(∗) + (∗) (19)

9This is a version of the Hosios (1990) condition for efficiency in search-and-bargaining models.

One can also compute the dividend ∗ =  (
∗)− (

∗) that delivers ∗ for a fixed . Or, one

can maximize  wrt  , which makes sense at least for fiat currency, which can be produced at

next-to-no cost. If  were fixed, the solution is  = 12, which maximizes trade volume (a special

case of Berentsen 2002, who shows that when the upper bound on currency holdings is any integer

̄, trade volume is maximized at  = ̄2). But  is endogenous in this model. Suppose there

is a unique steady state, where   0 (i.e., the nominal price level 1 is increasing in the

money supply). If   ∗, and hence   ∗, it is desirable to reduce  below 12 because the

fall in volume has only a second order cost, by the envelope theorem, while the increase in  has a

first-order effect. This formalizes in a stylized way the notion that monetary policy ought to try and

balance liquidity provision and inflation.
10See, e.g., Berentsen et al. (2002). Generally, a lottery is a probability distribution over the space

of feasible trades, ( ) ∈ R+×{0 1}, where  is output and  is the payment (asset transfer). Since
 is indivisible, this space is not convex and randomization can be useful.
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Combining (17) and (19), we arrive at

∗ =
 [(1− )(∗) + (∗)]

 + ( −) [ (∗)−  (∗)]
 (20)

It is easy to check ∗ ∈ (0 1) iff  (∗)  0. Referring back to Figures 1-3, we conclude

that whenever   ∗ in the economy without lotteries, the equilibrium with lotteries

is  = ∗ and  = ∗  1, as shown in Figure 5.

Figure 5: Equilibrium  as a funciton of  with lotteries

Comparing Figures 4 and 5, lotteries truncate  by ∗: there is a critical ∗ such

that  = ∗ ∀ ≥ ∗. As  increases above ∗, ∗ falls, and ∗ → 0 as  →∞. Trade
does not cease when  gets big: the buyer always gets  = ∗, but the asset changes

hands with lower and lower probability. So, Gresham’s Law does not hold in the

sense that the circulation of  stops, but it certainly slows down. Also, note that

we lose the multiplicity we had in Case 3 when there were no lotteries. We maintain

multiplicity in Case 1, however, where for     0 there are two steady states with

  ∗. Hence, in Case 1, there are dynamic equilibria where  →  from above or

below depending on where we start. So lotteries change some details, but the salient

results survive.

Some of the above results are new relative to previous analyses of STW. Others

generalize or simplify the proofs of known results, although in a sense everything is

new, as previous analyses used Nash, rather than Kalai bargaining. While more can

be done, we now turn to financial economics.
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4 Finance

Assume () = () =  and   , so there are no gains from trading  but there

are gains from trading . A moment’s reflection leads to the conclusion that trade

occurs iff an agent with  and  = 0 meets one with  and = 1, so  = 1 and

 =  =  = 0. Then (1)-(4) reduce to a quadratic equation one can solve

for steady state. To ease notation, normalize  = 1,11 and let  =  ( + )

and  =  ( + ) be the (unconditional) proportions of type  and . Then

0 =
1

2

h
 − −  −  +

√

i

(21)

1 =
1

2

h
− + −  −  +

√

i

(22)

1 =
1

2

h
 + +  +  −

√

i

(23)

0 =
1

2

h
2−  − +  +  −

√

i

(24)

is the steady state, where  = ( − +  + )
2
+ 4 . The key variables

are 0 and 1 , measuring effective demand and supply, and their product 

1


0 ,

measuring trade volume.

As a special case of (5)-(8), Bellman’s equations become

 
1 =  + (


1 −  

1 ) + ̇ 
1 (25)

 
0 = (


0 −  

0 ) + 1 (

1 −  

0 − ) + ̇ 
0 (26)

 
1 =  + (


1 −  

1 ) + 0 ( +  
0 −  

1 ) + ̇ 
1 (27)

 
0 = (


0 −  

0 ) + ̇ 
0  (28)

where  =  is what an agent with  gets for his asset from one with  . As

indicated by (25), a high valuation agent with  = 1 enjoys the flow  until he

switches to . After a switch, as indicated by (27), he enjoys the reduced flow ,

and either switches back or trades the asset away, whichever comes first.

11Recall  is the product of contact rate  and the probability of a single coincidence 1; but

we do not actually need   1 in DGP.
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As regards the terms of trade, now Kalai bargaining yields

 = ∆ + (1− )∆ (29)

which is the same as Nash because utility is linear in DGP. It is now a matter of

solving (25)-(28) for ∆ = 

1 − 


0 , inserting these into (29) and simplifying to get

 =  + (1− )  (30)

which gives  as a weighted average of the two fundamental valuations of the dividend,

with weight  =
¡
 +  + 0

¢
, where it is convenient to define

 ≡  +  +  + 0 + (1− )1  (31)

This construction delivers the unique steady state. We claim that it is a saddle

point. Therefore, starting at any initial n0, there is a unique path that neither

explodes nor becomes negative — the saddle path converging to steady state. Here

is the argument: First, subtracting (25)-(26) and (27)-(28), after eliminating  using

(29), we get two differential equations in ∆ and ∆. Then, as always, using the

identities 0 + 0 = 1− and 1 + 1 =  , we get two differential equations in

0 and 1 . This yields a 4× 4 dynamical system:
·
∆ = ∆ −  + (∆ −∆) + 1 (1− )(∆ −∆) (32)

·
∆ = ∆ −  − (∆ −∆)− 0 (∆ −∆) (33)

̇0 = 
¡
1− − 0

¢− 

0 − 0 


1 (34)

̇1 = 
¡
 − 1

¢− 

1 − 1


0 (35)

Appendix F calculates the eigenvalues for system (32)-(35) analytically and verifies

saddle-path stability.12

12This is a new result. As we said re Lemma 1, Duffie et al. (2005) show that the ode for n (1)-

(4) is stable. We show the condition for determinacy (uniqueness) of equilibrium, not just system

(1)-(4). This involves showing the joint system (nV ) displays saddle point stability, which we

do after reducing it to a 4× 4 system, as described in the text.
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Lemma 2 Dynamical system (32)-(35) has two positive and negative eigenvalues.

Hence, equilibrium (not only steady state) is unique: starting from any initial

conditions there is a unique transition to the steady state. We return to transition

momentarily, after discussing steady states. First, we have   0 and  

0, so making the asset better as a store of value increases its worth as a means of

payment. Also, naturally,  is decreasing in  and increasing in . Moreover, 

is increasing in 0 (effective asset demand) and decreasing in 1 (effective asset

supply). Of course, 0 and 1 are endogenous, but one can check that 

0 falls and

1 rises with , so   0. In terms of the switching process, consider changing

 or  holding 

0 and 


1 constant, say, by adjusting  and . Then  rises with

 and falls with  . If we do not hold 

0 and 


1 constant, one can still show  rises

with  and falls with  using a result proved in Appendix C.

Lemma 3 0   0, 0   0, 1   0 and 1   0.

We summarize these results as:

Proposition 4 In DGP there exists a unique equilibrium from any initial condition

n0, and a unique steady state, where n is given by (21)-(24) and  by (29).

Proposition 5 In DGP the effects of parameters on  are:   0,   0,

  0,   0,   0 and   0.

A main goal of the paper is to contrast these results for with those in Section 3.

The next Proposition describes some technical differences:

Proposition 6 (1) In DGP, there is always a unique equilibrium and a unique steady

state; in STW there can be multiple steady states and nonstationary equilibria. (2)

In DGP with    0, agents always trade when one with  =  and  = 1 meets

one with  =  and  = 0; in STW with   0, agents stop trading and hoard assets
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if || is big. (3) In DGP with    0, agents stop trading and dispose of assets;

in STW with   0, there can be trade as long as || is not too big.

Another difference is that, since DGP is not a model of fiat money, it is less

interesting to analyze welfare  as a function of  (although one still can ask, e.g.,

how  affects trading volume). Yet another difference it that, when  () =  () =

, one can easily show there is no gain from introducing lotteries. But perhaps

the biggest difference between the models, given people in finance are interested

in dynamics and volatility arising from self-fulfilling prophecies, is that there is no

way in DGP to construct anything like the deterministic or stochastic nonstationary

equilibria for STW in Section 3. However, there are interesting transitional dynamics

in DGP, resulting from the distribution n being endogenous, that do not arise in

STW.13

Figure 6: Short-run asset market dynamics

Such transitional dynamics are studied to good effect by Duffie et al. (2007) and

Weill (2007, 2008), but we construct our own examples. Suppose we start in steady

state, but at date  = 1 we shock n as a surprise to the agents in the model. As

n converges back to steady state, over time, there are perfect-foresight equilibrium

13In STW,  agents always hold  = 1 and 1− agents always hold  = 0, no matter what

else happens (short of agents disposing of their assets).
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price movements. Figure 6 shows three examples. In the left panel, the shock is a

jump in short-run asset demand at  = 1: we set  =  for all agents. This raises 

on impact, after which it decreases monotonically back to steady state. The middle

panel is what is sometimes called an aggregate liquidity shock: we set  =  for

everyone, so they all want to divest themselves of assets. Now  drops on impact

before regaining value as we converge back to steady state. The right panel displays

the transition after a shock that sets  =  for all agents with  = 0 and  = 

for all those with  = 1, so demand and supply both tighten. This generates a

nonmonotone path for  and n as we converge back to steady state.

Duffie et al. (2005) also discuss intermediation.14 Assume at rate  agents meet

third parties called brokers. In these meetings, if the agent is in state  with  = 0,

a broker would like to offer him the asset, asking  for it; and if the agent is in state

 with  = 1, a broker would like to take the asset off his hands, bidding  for

it. For now brokers do not hold assets, but they buy and sell them in a competitive

interdealer market, clearing at each instant by giving 0 surplus to the long side. The

long and short sides depend on which is bigger, effective supply 1 or demand 0 .

One can show 1  0 iff    . If 

1  0 there are more agents trying to sell

assets to dealers than trying to buy them, so dealers trying to off-load assets are on

the long side of the interdealer market and the price is . In this case, dealers do

not take assets from everyone they meet with  = 1 in the OTC market. If 1  0

there are fewer agents trying to sell assets to dealers, so dealers trying to off-load

them are on the short side of the interdealer market and the price is . In this case,

dealers do not sell assets to everyone with  = 0 in the OTC market.

To do it slightly differently, suppose as an alternative to the interdealer market

that each broker manages a collection of automated terminals of sufficient measure

14Introducing intermediaries into the OTC market is one of the main contributions of DGP.

However, search-based models of middlemen go back to Runbinstein and Wolinsky (1987), with Li

(1998,1999) and Shevichenko (2004) providing examples in the spirit of STW. In our view, a bigger

contribution of DGP was the idea to apply search theory to financial markets in the first place.
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to take advantage of the law of large numbers, in the spirit of Shi (1997). There is

a fixed cost  to setting up these terminals. Agents contact terminals according to

a Poisson process with arrival rate , which depends in general on the measure of

brokers in the market. A broker now does not have to trade on an interdealer market,

assuming he can shift assets across terminals, but he still may not trade with every

agent he meets in the OTC market — e.g., if 1  0 brokers trade with a fraction

0 

1 of those they meet, which equates their asset inflow and outflow.

For the sake of illustration, suppose brokers have all the bargaining power with

their customers — terminals are programmed with  and  to extract all gains from

trade. It is then easy to verify the following:

Proposition 7 In DGP, with intermediaries that have all the bargaining power, the

bid and ask prices satisfy

 =  + (1− )  and  =  + (1− ) 

where the weights are given by  =
¡
 + 0

¢
 and  =

¡
 +  + 0

¢
 with

 defined in (31). The bid-ask spread is  −  = ( − )   0. When agents

trade with each other  still satisfies (30), with  ∈ ( ) if  ∈ (0 1).

A positive bid-ask spread means dealers make profits. Clearly, the spread is in-

creasing in  , decreasing in , and vanishing as  −  → 0. This last result

indicates why there is no role for this kind of intermediation in the model of Section

3, where  = , which is another significant distinction between DGP and STW.
15

Consider 1 ≥ 0 (the other case is similar). Appendix D solves for steady state

with brokers, generalizing (21)-(24). Then intermediary profit is

Π = 0 ( − ) − 

15At least, there is no role for intermediaries in the baseline STW model presented above. Their

role in the papers mentioned fn. 14 arises from middlemen having a superior search technology,

informational advantages, or the ability to hold large inventories.
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which nets out the cost . Suppose we allow free entry. Then the number of interme-

diaries adjusts until Π = 0, which implies

0 =
 [ +  +  − (1− )( − )]

 −  − 


Alternatively, suppose we have a monopoly broker, who chooses his number of ter-

minals to maximize Π knowing that his choice affects his arrival rates. One can then

easily compare competitive and monopoly intermediation.

Instead of pursuing that exercise, consider a new application. Suppose interme-

diaries can hold or issue assets that others consider perfect substitutes for the assets

already in the model. We call these intermediaries banks (it is just a label). Let  be

the net asset issuance by banks. If   0 the nonbank public is holding bank assets;

if   0 then the bank is holding nonbank assets. We call  and  outside and

inside assets, following Holmstrom and Tirole (2011). A bank’s return from holding

assets is −, since   0 means the bank issues assets, where one can set 

as one likes, e.g., as an average of  and . For the sake of illustration, assume a

bank must trade with any agent it meets, as might be reasonable at least for central

banks. Now  is endogenously determined so that 1 = 0 . The other steady state

conditions are the same as before, except 1 + 1 =  +  (previously  = 0).

Appendix D solves for steady state, from which the following is immediate:

Proposition 8 In DGP with banking, any increase in outside assets  is completely

crowded out by an endogenous change in inside assets  , so that the total steady-state

asset supply is always  + = .

We read this Proposition as saying asset demand creates its own supply — finance’s

version of Say’s Law. It is a new result, we think, in the context of DGP, although

there are related ideas in the literature (e.g., Burdett et al. 2001). One can potentially

do more with this model. For instance, bank profit is

Π = ( − ) + 0 ( − )
¡
 +  +  + 0

¢− 
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With free entry, steady state adjusts until Π = 0, from which one can determine 0 .

One can then analyze when equilibrium delivers an efficient number of banks. Rather

than pursue extensions of these models, we move to some more novel material.

5 General Equilibrium

The theory presented above is GE (general equilibrium) in the same sense that, say,

Mortensen and Pissarides (1994) is a GE theory of the labor market: it is internally

consistent, agents maximize, quantities and prices are endogenous, and expectations

are rational. But these are not very general equilibrium models, in the sense that our

OTC market, like the labor market in Mortensen and Pissarides, is the only venue

for economic activity. Here we provide a simple way to embed the OTC model in GE

with minimal deviation from the benchmark setup, and in particular while continuing

to assume  ∈ {0 1}. For this it is convenient to switch to discrete time, and have
agents alternate between trading in an OTC market and a Walrasian market.16

To begin, consider  =  as in STW, and for now focus on stationary equilibrium.

The discrete-time Bellman equations in the OTC market are

1 =  (1−) [() +0] + [1−  (1−)]1 (36)

0 =  [−() +1] + (1− )0 (37)

where  is the value function entering the Walrasian market,

 = max
©
 ()− + (1 + )

−1
0
ª
st  = + ( + )− 0, 0 ∈ {0 1} 

Here  () is the utility of consuming a good , which we use as numeraire,  is labor

supply,  is the wage and  is the asset price. Notice the dividend  now arrives

in the Walrasian market in units of numeraire. For ease of exposition, assume  is

16Th idea that agents switch between decentralized and centralized trading is based on the stan-

dard New Monetarist framework discussed in the surveys mentioned in fn. 1. It has already been

used to embed, e.g., the Mortensen-Pissarides labor market in GE (Berentsen et al. 2011).

25



produced one-for-one with , so the equilibrium wage is  = 1.17

Using the budget equation to eliminate , we get

 = max
©
 ()− + ( + )− 0 + (1 + )

−1
0
ª
st 0 ∈ {0 1}  (38)

This yields  = ∗, where  0 (∗) = 1, and 1 −0 =  + . Given  ∈ (0 1), in
equilibrium some agents choose to be consumers in the OTC market with 0 = 1,

while others choose to be producers with 0 = 0, and they are indifferent: (1 + )  =

1 − 0. Using (36)-(37), we get the Walrasian asset-pricing condition

( + )  =  (1−) () +  () + (1− ) (39)

There is a different condition in the OTCmarket, determined by bargaining as before,

but instead of  () = 1 − 0 we have  () =1 −0. This boils down to

0 = ̃ () ≡  ()− ()− (1 + )  (40)

Steady state is given by  satisfying (40),  satisfying (39),  = ∗ and  satisfying

the budget equation. Clearly ̃ () is the same as  () in Section 3, except ̃ =  (1 + )

replaces , since when one acquires an asset in the OTCmarket, now one has to wait a

period for dividends. We can use the properties of  () derived above to immediately

establish several results: ∀̃ ∈ (0 ̄) there is a unique equilibrium; if ̃ = 0 there are
two steady states plus dynamic equilibria where  → 0 and → 0; for ̃ ∈ (0 ) and
big  or ̃ ∈ (̄ ̂) and small , there are multiple steady states, plus dynamic and
sunspot equilibria where  and  vary for no fundamental reason.18

The structure here makes equilibrium simple, but also special, in that  are 

independent. One way to generalize this is to relax the separability between  and 

17It is easy to introduce a concave technology  (), add capital, incorporate taxes, allow many

goods, etc. Also, notice there is discounting betwen the Walrasian and OTC markets, but not

between the OTC and Walrasian markets; this is merely to reduce notation. It simplfies some

calculations to have  enter utility linearly, but it is not otherwise important.
18A minor technicality is that in discrete time the sunspot transition probabilities have to satisfy

1 2 ∈ [0 1], while in continuous time we only need 1 2  0.
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in utility. To this end, let agents acquire  in the Walrasian market but only consume

it after OTC trading. Thus, in the Walrasian market they choose either 0 = 1

and  = 1 or 
0 = 0 and  = 0, taking into account the utility of consuming 1

and  is ( 1), while the utility of consuming 0 and producing  is ( 0). In

Appendix E, we argue the following: under reasonable conditions,  increases with .

If   0 then 1 also increases with , and if   0 so does 0. So when  and

 are complements, 1 and 0 increase with dividends. So does employment , and

welfare  . Good times on Wall Street mean good times on Main Street.19

We can similarly embed the baseline DGP model in GE. Assume the shock to 

occurs after one enters the OTC market but before trading. Then the discrete-time

Bellman equations at the opening of the OTC market are:

 
1 = (1− )


1 + 

£
0

¡
 +

0

¢
+ (1− 0 )


1

¤
 
0 = 


0 + (1− )

£
1

¡

1 − 

¢
+ (1− 0 )


0

¤
 
1 = 


1 + (1− )

£
0

¡
 +

0

¢
+ (1− 0 )


1

¤
 
0 = (1− )


0 + 

£
1

¡

1 − 

¢
+ (1− 0 )


0

¤
The first says that if one starts the OTC market with  and  = 1 and  does not

switch, one holds onto ; but if  switches one tries to trade the asset. And similarly

for the rest.

In the Walrasian market, for an agent with  and , we have

 
 = max

©
 ()− + ( + )− 0 + (1 + )

−1
 
0
ª
st 0 ∈ {0 1}

which is the same as (38) except the value functions and dividend are indexed by

the asset valuation . The interpretation is slightly different from the baseline model:

agents no longer derive a direct payoff from the asset; they derive a payoff by con-

verting returns into purchasing power. So, the asset could be a productive input, and

19Of course, if   0 and   0 then 0, 1 and  fall with , although  still rises.
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agents have an opportunity to turn it into  units of numeraire. When someone with

 = 1 and  =  contacts someone with  = 0 and  =    there are gains from

reallocating assets to more productive use.

Assume the  shocks are i.i.d., with  =  ( = ). Then  
 =  for

everyone at the start of OTC trading, and 1 =  (1− ) and 0 = (1−)  are

effective asset supply and demand in the market. Then

1 = 
1 + (1− )

©
 (1−) 

¡
 +

0

¢
+ [1−  (1−)]

1

ª
0 = (1− )

0 + 
©
 (1− )

¡

1 − 

¢
+ [1−  (1− )]

0

ª


The bargaining solution and market clearing determine the OTC and Walrasian value

of the asset, resp.,

 = +  + (1− )  and  = ̃ + (1− ̃) 

where ̃ =  [1 + (1− ) (1−  −)].

More can be done. For instance, rather than i.i.d., suppose  is persistent. It is

no longer the case that everyone is indifferent between bringing  = 0 and  = 1

to the OTC market. If  is small,  adjusts until agents with  are indifferent

between  = 0 and  = 1 while those with  strictly prefer  = 0. And if  is

big,  adjusts until agents with  are indifferent while those with  strictly prefer

 = 1. It is also possible to consider multiple rounds of OTC trade before agents

visit the Walrasian market.20 Also, once we put DGP into GE, we no longer need

assume they trade  physically in the OTC market. Suppose instead that when an

agent with  =  and  = 1 meets one with  =  and  = 0, the latter acquires

the asset in exchange for a promise to deliver  (for debt) units of purchasing power

in the next Walrasian market.

20This is related to the model Afonso and Lagos (2012) use to study to the federal funds market,

and to the model in Berentsen et al. (2005). It should not be difficult to track the distribution of n

over several rounds of OTC trading, as in Figure 6, before the Walrasian market convenes.
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Given this alternative scenario, let  
 () be the Walrasian value function for an

agent with ,  and debt . The OTC Bellman equations satisfy

1 = 
1 (0) + (1− )

©
 (1−) 

0 (−) + [1−  (1−)]
1 (0)

ª
0 = (1− )

0 (0) + 
©
 (1− )

1 () + [1−  (1− )]
0 (0)

ª


since those with  = 0 who realize  and meet a counterparty acquire the asset and

debt , while those those with  = 1 who realize  and meet a counterparty give

up the asset for a credit (negative debt) −. Having  enter utility linearly is nice,

but not necessary, as it implies 
1 () is linear, and the bargaining solution reduces

to  = +  + (1− )  .

In general, the point is not that the outcomes are so different, but by putting DGP

into GE one is lead to different interpretations. The same is true for STW. Thus, one

can assume agents get  without transferring the asset, but in exchange for a promise

of payment in the next Walrasian market, perhaps collateralized by the asset, as in

Kiyotaki and Moore (1997). And it seems interesting to be able to study, e.g., the

effects of OTC asset trade on other markets, such as the labor market. While all of

this is worth pursuing, again we move to something new.

6 The Integrated Model

Consider the general model, where preferences are nonlinear and  switches over

time. Now an agent with  =  may trade away an asset to get , or an agent

with  =  may accept an asset in exchange for . The goal is to describe the

different possible trading patterns that emerge. For arbitrary bargaining power ,

the algebra is complicated, but much insight can be gained from the case  = 1. Also,

we assume  ≥  ≥ 0 here, and normalize (without loss of generality) () = .

Then  
0 =  

0 = 0,  =  =  
 and  =  =  

1 . Hence, there are just

two ’s to determine,  =  and  = , and it should be clear that  ≥ 
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with equality only if  =  (an agent with  is always willing to produce more to

get the asset than one with ).

There are still many candidate equilibria, as each of the four endogenous trading

decisions in the vector φ = (     ) can take one of three values: always

trade  = 1; never trade  = 0; or mix  = Φ. The next result reduces the

number of candidates dramatically:

Lemma 4 In the integrated model with     0, we have:  = 1 ⇒  =

1⇒  = 1⇒  = 1; and  = 0⇒  = 0⇒  = 0⇒  = 0.

Proof : Given   , any pair (  ) satisfying () ≥  also satisfies () 

. Therefore  ≥ . Similarly, if () ≥  then   ̄, which implies   ̄

and hence ()  . Therefore  ≥  . And if () ≥  then ()   .

Therefore  ≥ . The results follow directly from these inequalities. ¥

Lemma 4 implies the only possible pure-strategy equilibria are

φ0 = (0 0 0 0), φ1 = (1 0 0 0), φ2 = (1 1 0 0), φ3 = (1 1 1 0), φ4 = (1 1 1 1)

where the subscript indicates the number of 1’s in the vector (e.g., φ4 entails trade

in all 4 possible situations). There are also candidate equilibria that involve mix-

ing across these, φ01 = (Φ 0 0 0), φ12 = (1Φ 0 0), φ23 = (1 1Φ 0) and φ34 =

(1 1 1Φ). The goal is to determine when each of these candidates is an equilibrium.

First, since  
0 =  

0 = 0, we need only consider two Bellman equations. Using the

bargaining solution  
1 =  and  

1 = , these are

 = 0  [ ()−  ] + 0 [ ()−  ] +  +  ( − ) (41)

 = 0  [ ()− ] + 0 [ ()− ] +  +  ( − )  (42)

Our method involves first considering the (endogenous) ’s that are consistent

with different types of equilibria. Consider first φ0. Although there is no trade in
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Figure 7: Equilibria in (  − ) space.

this case,21 obviously, we can still solve for

 =
( + )  + 

 ( +  + )
and  =

( + )  + 

 ( +  + )
 (43)

For this to be consistent with equilibrium we must check four conditions:  = 0⇔
 () ≤ ;  = 0 ⇔  () ≤ ;  = 0 ⇔  () ≤  ; and  = 0 ⇔
 () ≤  . The last one is the binding condition, by Lemma 4. Therefore the φ0

equilibrium conditions are satisfied when the ’s given in (43) put us in region 0 in

Figure 7, with boundary () =  .

Now for an important observation. In φ0 equilibrium, where the ’s put us in

0, if we reduce  the values of  and  −  both fall. This generates the

path shown as 0 in Figure 7. As we continue to reduce  , eventually 0 hits the

() =  boundary between 0 and 1 (see below for details). On this boundary

the conditions for the φ0 and the φ1 equilibria are satisfied, with (43) giving the ’s in

both. Continuing to reduce  , we define another path1, analogous to0, that goes

21As in Section 3, the introduction of lotteries may change this outcome to one in which the buyer

gets ∗ and gives up the asset with probability less than 1; we leave this to future work.
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through 1 until it hits the boundary () =  between 1 and 2. Equilibrium φ1

is consistent with ’s being in 1, where it satisfies the same conditions as φ0 except

it reverses the inequality for  , so  () ≥ , since a buyer with  now buys 

when he meets a seller with  .

If we reduce  further, equilibrium φ2 generates a path 2 starting where 1 hits

() = . Again, 2 describes the ’s consistent with the equilibrium conditions

for φ2, and in particular, now  () ≥ , since a buyer with  also buys from a

seller with . As we reduce  further, eventually 2 hits () =  , at which

point we define 3. So φ2 equilibrium is consistent with ’s in 2 and φ3 equilibrium

with ’s in 3. When 3 hits the boundary between 3 and 4, something different

happens: 3 and 4 do meet at this boundary, because 

0 and 0 are different in

φ3 and φ4. Between 3 and 4 on this boundary we have: if  = 0 then n is such

that agents prefer  = 1; if  = 1 then n is such that they prefer  = 0;

so equilibrium consistent with these ’s requires  ∈ (0 1) so that n is such that
agents are indifferent between  = 1 and  = 0.

22 Starting where 3 meets the

boundary between 3 and 4,as we reduce  ,  increases from 0 to 1, tracing

out 34 up to the point where  = 1 and 4 intersects the boundary between 3

and 4. As we continue to reduce  we trace out 4, with ’s consistent with φ4,

until we hit  = .

This completes the description of the possible ’s consistent with the different

equilibria. To summarize, for a given , if  is very high the equilibrium looks like

Gresham’s Law, where assets are to valuable to circulate, given concave utility As

 falls, eventually agents that have  = 1 and  start trading with those that have

 = 0 and  , which looks just like the baseline DGP model. As  falls further,

eventually agents that have  = 1 and  start also trading with those that have

 = 0 and . And so on, until  is close to , at which point agents with  = 1

22This construction of a mixed-strategy equilibrium does not apply to the other candidate mixed

equilibria, because in those candidates n does not depend on φ.
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trade with those who have  = 0 in every opportunity, and the market looks just

like the baseline STW model.

The next step is to translate this characterization of the sets of (endogenous) ’s

into sets of (exogenous) ’s that are consistent with different equilibria. This is

relatively easy — ones does not have to do much more than label the critical values

of  , for a given , at which the equilibria switch — once we have the following

technical result, the proof of which is left as an exercise.

Lemma 5 In the integrated model, ∀ ( ) we have: (1) the  −  =  ()

functions in Figure 7 are well-defined, continuous and increasing; (2)  hits each

boundary  ∩ +1 and  ∩ −1 exactly once; and (3)  hits +1 exactly once,

and it is in  ∩+1, except 3 and 4 which are connected by 34 along 3 ∩4.

Lemma 5 simply confirms that Figure 7 must look the way we drew it. Given this,

we can establish:

Proposition 9 In the integrated model, generically in ( ) space, there is a

unique equilibrium. If   ̄ the equilibrium is φ0. If   ̄ there exist func-

tions 01() ≥ 12() ≥ 23() ≥ 3Φ() ≥ Φ4() ≥ , with equality iff  = ̄,

as shown in Figure 8, with the following properties:

1.   01()⇒ φ0 is the equilibrium

2. 01()    12()⇒ φ1 is the equilibrium

3. 12()    23()⇒ φ2 is the equilibrium

4. 23()    3Φ()⇒ φ3 is the equilibrium

5. 3Φ()    Φ4()⇒ φ34 is the equilibrium

6. Φ4()     ⇒ φ4 is the equilibrium.
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Figure 8: Equilibria in (  − ) space.

Proof : As discussed above,   ̄ implies φ0 is the unique equilibrium. Consider

a fixed   ̄. If  is big φ0 is still the unique equilibrium, with ( ) given by

(43). By reducing  the φ0 equilibrium traces a path 0 through 0 as in Figure

7. It is easy to check 0 is a straight line with slope greater than 1. So at some

 = 01(), 0 hits the boundary 0∩1 before it hits the horizontal axis. Hence,
01()  . On the boundary 0∩1, with  = 01(), there are three equilibria:

φ0, φ1 and φ01. Reducing  further the φ1 equilibrium traces 1 through 1 until

it hits the boundary 1 ∩ 2 at some  = 12(), where   12()  01().

At  = 12() there are three equilibria: φ1, φ2 and φ12. Reducing  further the

φ2 equilibrium traces 2 through 2 until it hits 2 ∩ 3 at  = 23(), where

  23()  12(). At 23() there are three equilibria: φ2, φ3 and φ23.

Reducing  further the φ3 equilibrium traces 3 through 3 until it hits 3∩4
at  = 3Φ(), where   3Φ()  23(). For   3Φ(), neither φ3 nor

φ4 is an equilibrium, as discussed above, and agents must mix,  ∈ (0 1). As we
reduce  the probability  increases and the φ34 equilibrium traces 34 along

34



3 ∩ 4, until  = 1 and 34 meets 4 at  = Φ4(), where   Φ4() 

3Φ(). Finally, reducing  further, all the way to  = , the φ4 equilibrium

traces 4 through 4. We know φ4 is the unique equilibrium when  is close to ,

since  =  is STW, which has a unique equilibria given the parameter conditions

assumed here,  = 1 and   0.

Summarizing, for any   ̄, there are cutoffs for  partitioning parameter space

into regions where the different equilibria exist, as shown in Figure 8. ¥

Trade patterns here are more interesting than in the basic DGP and STW setups.

Agents have to decide when to give up their assets to get , depending on how much

they like the asset, and on how much  they get, which depends on how much a

counterparty likes the asset. Nonlinear  () is important for the results, but so is

 switching. Notice that since STW can have multiple steady states and interesting

dynamics, this is also true for some parameters in the integrated model, simply by

continuity. Proposition 9 does not admit these possibilities because of the maintained

parameter restrictions,  = 1 and  ≥   0, which put us in the the left panel of

Figure 4 in our analysis of STW. But we can relax these restrictions. If   1 there

are multiple steady states and interesting dynamics in STW when   ̂; and if  = 1

there are similar outcomes when   0. This observation establishes the following:

Proposition 10 For some parameters the integrated model admits multiple steady

states, plus nontrivial deterministic and stochastic dynamic equilibria.

If people in finance are interested in multiplicity, bubbles, excess volatility and

so on, they should find this interesting. The standard DGP model of OTC markets

cannot generate such phenomena; a nonlinear version can. Characterizing the set of

equilibria in the integrated model more generally — i.e., for all  and  — seems worth

additional effort. Also, as mentioned, in Appendix A we allow  ∈ {1 2 }
for any , and provide an algorithm for finding the set of pure-strategy steady-state

equilibria. It may be interesting to study dynamics in this case, too. In terms of
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monetary economics, once we allow time-varying ’s, there emerges a role for various

types of intermediation, as well as transitional dynamics, and both of these seem

worth investigating. All of this must be left to future research.

7 Summary and Conclusion

We presented many Propositions, some similar to findings in existing papers, and some

new. Reestablishing a few existing results was necessary before we could generalize

and integrate the models. In STW, we derived several stronger or different results

than previous analyses — e.g., we gave a complete characterization of steady states and

perfect-foresight dynamics for all , we provided an alternative method for verifying

that sunspot equilibria exist, and we did the whole thing using a different, and for this

application arguably better, bargaining solution. In DGP, we reviewed the standard

results, and provided some new twists — e.g., we introduced intermediaries that can

issue or hold assets, which lead to some insights about inside and outside liquidity.

We also established the uniqueness of equilibria, not only steady states, in DGP.

One main contribution, we think, was simply to compare and contrast two work-

horse models. Users of STW or DGP — and there are many, as documented in fn. 1 —

ought to know about this connection. Another contribution was to embed the models

into a simple general equilibrium context, generating interactions between financial

and other markets. For the integrated model nesting STW and DGP, we gave a

complete characterization of the equilibrium set, at least for steady states and a par-

ticular bargaining solution. For a summary of additional contributions, we refer back

to the list in the Introduction. More can be done. The goals of this paper were to

develop a framework that allows one to think about extensions and applications, to

understand search-and-bargaining theory at a deeper level, and to bridge some gaps

between monetary and financial economics.
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Appendices
A. The General Integrated Model: Let δ = (1 2 ), for any integer , with

   for   . Let Λ = [] be a matrix of Poisson switching rates and Φ =
£

¤

a matrix of trading strategies. Let  be the measure of agents with  =  and

 ∈ {0 1}. The laws of motion for 1 and 0 are

̇1 =
X




1 − 1

X


 + 0

X


1 − 1

X


0 (44)

̇0 =
X




0 − 0

X


 − 0

X


1 + 1

X


0 (45)

with identities
P

 

1 = and

P
 


0 = 1− . Bellman’s equations are

 
1 = 

X


0
£
 ()−∆

¤
+
X



¡
 
1 − 


1

¢
+  + ̇ 

1 (46)

 
0 = 

X


1
£
∆ −  ()

¤
+
X



¡
 
0 − 


0

¢
+ ̇ 

0  (47)

where in the baseline model ∆ =  
1 −  

0 , and in the GE extension ∆ = 
1 − 

0.

The bargaining solution is  () = ∆ + (1− )∆. The trading rules are:  = 1

if ()  ∆ and  () ≤ ∆, etc.

Subtracting the value functions,

∆ = 
X


0
£
 ()−∆

¤− 
X


1
£
∆ −  ()

¤
(48)

+
X



¡
∆ −∆

¢
+  + ∆̇

Assume () = () = , for now. Then eliminate  = ∆ + (1− )∆ to get the

rather elegant

∆ = 
X


£
0 + (1− )1 + 

¤ ¡
∆ −∆

¢
+  + ∆̇ (49)

a linear differential equation in ∆ =
¡
∆1∆2 ∆

¢
. Also, it is clear that  = 1⇔

∆  ∆, ignoring borderline cases where () = ∆ or  () = ∆ (or adjusting

the condition to accommodate such cases).

Here is an algorithm for solving for the set of pure-strategy steady-state equilibria.

First fill in Φ with all 0’s. Then solve (44)-(45) for steady state n = (n0n1). Insert
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Φ and n into (49) with ∆̇ = 0 and solve for ∆. Check if the solution satisfies

 = 1 ⇔ ∆  ∆ for all   given Φ. If it does, Φ is an equilibrium; otherwise, it

is not. Then update by changing one  from 0 to 1, and repeat until every  is 1.

With nonlinear utility, the only difference is that one has to solve the nonlinear

system (48) together with the bargaining solution  () = ∆+(1− )∆ simultane-

ously for∆ and q = [], and replace  = 1⇔ ∆  ∆ with  = 1⇔ ()  ∆

and  ()  ∆, if we ignore (or adjust for) borderline cases where () = ∆ or

 () = ∆. ¥

B. Proof of Proposition 2: Subtracting the Bellman equations and using the bar-

gaining solution  () =  
1 −  

0 , we get

 () =  (1−)() +  () +  −  () +  [ ()−  ()]  (50)

for  = 1 2. It is clear that we can always ignore , and set 1 = 2 = , in which

case (50) becomes  () = 0 from the perfect foresight model. A proper sunspot

equilibrium is a pair (1 2), with 1 6= 2, solving (50) for  = 1 2. While is natural

to interpret (1 2) as endogenously determined functions of (1 2), we we instead

solve (50) for (1 2) as functions of (1 2):

1 =
 (1)

 (2)−  (1)
and 2 =

− (2)
 (2)−  (1)

(51)

For any 1 ∈ (0 ̄) and 2 ∈ (1 ̄), there is a stationary sunspot equilibrium with
these values of (1 2), and (1 2) solving (51), as long as 1 1  0. This requires

that  () is decreasing around a solution to  () = 0. There are exactly two scenarios

in which this obtains:

Case 1.  ∈ ( 1] and  ∈ ( 0), as in the fourth panel of Figure 1. In this
situation, for any 1 ∈ (0 ) and 2 ∈ ( ), there is an equilibrium where 

fluctuates around the low-level steady state  with arrival rates given by (51). This

is so because, as is clear from the Figure, 2  1 and  (2)   (1), which guarantees

1 2  0.
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Case 2.  ∈ [0 ) and  ∈ (̄ ̂), as in the second panel of Figure 3. Now for any
1 ∈ ( ) and 2 ∈ (  ̄), there is an equilibrium where  fluctuates around the

high-level steady state  with arrival rates given by (51), for reasons similar to the

previous case. ¥

C. Proof of Lemma 3: Using  =  ( + ), (21)-(22) can be written:

0 =
1

2

"


 + 
− −  −  +

r³


+
− +  + 

´2
+ 4

#

1 =
1

2

"
− 

 + 
+ −  −  +

r³


+
− +  + 

´2
+ 4

#

Letting  = ( − +  + )
2
+ 4 , we have

0


= −
√
 +  − −  − 

2
√


∙


( + )
2
+ 1

¸
 0

1


=
 − +  +  −

√


2
√


∙
1 +



( + )
2

¸
 0

For the next result,

0


=

√
 +  − −  − 

2
√


∙


( + )
2
− 1
¸
+
1−√




Notice  ( + )
2−1 = (1−  −  − )  ( + ). If 1−−−  0

then 0   0. So suppose 1−  −  −   0. Then 0   0 iff

(1−  −  − )
³√

 +  − −  − 

´
+ 2 (1−) ( + )  0

After some algebra, this holds iff

(1−  −  − )
2
+ (1−)  2 (1−  −  − ) 

which is true under the supposition 1−  −  −   0. So 0   0.

Finally,

1


=

√
 +  − +  + 

2
√


∙


( + )
2
− 1
¸
+

√


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Again, if  − −   0 then 1   0. So suppose  − −   0. Then

1


≈ ( −  − )
2
+ − 2 ( −  − )  0

under the supposition 1−  −  −   0. This establishes the claim. ¥

D. Steady States with Brokers and Bankers: We provide the solutions to the

steady-state equations for DGP with intermediation. With brokers,

0 =
1

2

h
 − −  −  −  +

p

i

1 =
1

2

h
− + −  −  −  +

p

i

1 =
1

2

h
 + +  +  +  −

p

i

0 =
1

2

h
2−  − +  +  +  −

p

i

where  = ( − +  +  + )2 + 4 [ − ( −)]. With bankers,

0 = 1 =
1

2

h
−( +  + ) +

p
̃
i

1 =
1

2

h
2 +  +  +  −

p
̃
i

0 =
1

2

h
2(1− ) +  +  +  −

p
̃
i

and  = −  , where ̃ = ( +  + )
2 + 4 . ¥

E. Nonseparable Utility: We derive the effects of  on equilibrium in the GE

version of STW with nonseparable preferences,  ( ) and  ( ). Agents in the

Walrasian market solve

 = max
©−+ (1 + )

−1
0 ()

ª
st  = + ( + )− 0 and 0 ∈ {0 1} 

which implies 1 −0 = + . The OTC Bellman equations are

1 (1) =  (1−)
¡
 +0

¢
+ [1−  (1−)]

¡
 +1

¢
0 (0) = 

¡
 +1

¢
+ (1− )

¡
 +0

¢

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where superscripts  and  indicate traders and nontraders:  =  ( 1), 
 =

 (0 1), etc. Also, agents either choose 
0 = 1 and  = 1 or 

0 = 0 and  = 0.

The FOC for 1 and 0 are

(1 + ) =  0
1 (1) =  (1−) + [1−  (1−)] (52)

(1 + ) =  0
0 (0) =  + (1− )   (53)

Indifference between 0 = 1 and 0 = 0 implies −− 1 + (1 + )
−1

1 (1) = −0 +
(1 + )

−1
0 (0), or:

 =
 (1−)

¡
 − 

¢− 
¡
 − 

¢
+  −  + (1 + ) (0 − 1) + (1− ) 

 + 

OTC bargaining implies (1− )
¡
 − 

¢− 
¡
 − 

¢
=1 −0 = + . Elim-

inating  using the previous condition, we get a generalization of (40)



¡
 − 

¢
+

¡
 − 

¢
+  −  + (1 + ) (1 − 0 − ) = 0 (54)

Steady state ( 1 0) solves (52)-(54). From this we derive Γ ( 1 0)
0
=

(̃ 0 0)0, where

Γ =

⎡⎣ 

 +


 


−(1 +)



 +(1 + ) 

+(1−)



 −(1 + )

(1−)


  0

 0 

⎤⎦
with  =  (1−)+[1−  (1−)] and  = +(1− ) .

Letting Ω = det (Γ), we have



̃
=



Ω
,
1

̃
=
− (1−)

Ω
and

0

̃
=
−

Ω


In general, Ω is complicated, but if  =  = 0 then

Ω = 
¡



 +




¢


If there is a unique steady state then Ω ≈ 

 + 


 = ̃0 ()  0. Given this,

we assume Ω  0 even in the nonseparable case (which is reasonable, since our main
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intention is to show what might happen with nonseparable utility). Then ̃  0,

1̃ ≈  and 0̃ ≈ , as reported in the text. ¥

F. Proof of Lemma 2: The Jacobian matrix for (32)-(35) is

J =

⎡⎢⎢⎣
11 −−(1− )



1 0 (1− )(∆−∆)

−−0  22 −(∆−∆) 0

0 0 −1−− −0
0 0 −1 −0 −−

⎤⎥⎥⎦
where 11 = ++(1−)1 and 22 = ++0 . We seek the roots of |J| = 0,
where

|J| =

¯̄̄̄
¯̄̄̄ 11− −−(1− )



1 0 (1− )(∆−∆)

−−0  22− −(∆−∆) 0

0 0 −1−−− −0
0 0 −1 −0 −−−

¯̄̄̄
¯̄̄̄

= 1

¯̄̄̄
¯̄ 11− −−(1− )



1 (1− )(∆−∆)

−−0  22− 0

0 0 −0

¯̄̄̄
¯̄

− ¡0 +  +  + 
¢ ¯̄̄̄¯̄ 11− −−(1− )



1 0

−−0  22− −(∆−∆)

0 0 −1−−−

¯̄̄̄
¯̄

= −10
¯̄̄̄

11− −−(1− )


1

−−0  22−
¯̄̄̄

+
¡
0 +  +  + 

¢ ¡
1 +  +  + 

¢ ¯̄̄̄ 11− −−(1− )


1

−−0  22−
¯̄̄̄

= ( +  + )
¡
0 + 1 +  +  + 

¢ ¯̄̄̄ 11− −−(1− )


1

−−0  22−
¯̄̄̄

It is clear there are two negative eigenvalues, the values of  that zero the first two

factors: 1 = − ( + )  0 and 2 = −
¡
0 + 1 +  + 

¢
 0. The other two

eigenvalues are the roots of the determinant of the 2× 2 matrix:

0 =
¡
 +  + 0  − 

¢ £
 +  + (1− )1 − 

¤− ¡ + 0 
¢ £
 + (1− )1

¤
= ( − )

2
+ ( − )

£
 + 0  +  + (1− )1

¤
= ( − )

£
 + 0  +  + (1− )1 +  − 

¤


Hence, the other two eigenvalues are positive: 3 =   0 and 4 = + 0 +  +

(1− )1 +   0. ¥
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