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Abstract: This paper develops a general framework to study the economic impact of infectious diseases
by integrating epidemiological dynamics into a continuous time neo-classical growth model. There is
a two way interaction between the economy and the disease: the incidence of the disease affects labor
supply and investment in health capital can affect the incidence and recuperation from the disease. Thus,
both the disease incidence and the income levels are endogenous. The dynamics of the disease make the
control problem non-convex and thus, a new existence theorem is given. We fully characterize the local
dynamics of the model. A disease free steady state always exists, but it can become unstable and there
can be multiplicity of steady states. If the disease is endemic, the optimal health expenditure can be
positive or zero depending on the parameters of the model. We show there can be an endogenous positive
relationship between output and health expenditures.
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1 Introduction

This paper intends to provide a canonical theoretical framework modeling the joint determination of
both income and disease prevalence by integrating epidemiological dynamics into a continuous time neo-
classical growth model. It allows us to address the issue of what is the optimal investment in health from
a social planner’s point of view when there is a two way interaction between the disease transmission
and the economy: the disease transmission affects the labor force and thus, economic outcomes, while
economic choices on investment in health expenditures affect the disease transmission. It sheds light on
explaining two important empirical facts. One is the correlation between economic variables and disease
incidence. The literature tries to quantify the impact of infectious diseases on the economy, which mainly
focus on solving the endogeneity issue of disease prevalence (see Acemoglu and Johnson (2007), Ashraf,
et al (2009), Bell, et al (2003), Bleakley (2007), Bloom, et al (2009), Young (2005)), but the results are
rather mixed. We show the reduced form estimation by assuming linear relationship is not well justified
as non-linearity is an important characteristic of models associated with the disease transmission, and
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nonlinearity in disease transmission can become a source of non-linearities in economic outcomes. The
other empirical fact is the rising health expenditure share along with income growth in U.S. and other
OECD countries. We show the rising health expenditure is economically justified in a very standard
economic model without resorting to non-standard preferences (life extension in utility, see Hall and
Jones (2007)), complicated institutional or insurance structures, technological progress, etc. We find that
variations in the discount rate (which could be interpreted as change in longevities) and birth rate can lead
to both rising health expenditure and income growth. Observationally it may appear that expenditures
on health are a luxury good, but the mechanism is through changes in marginal productivities and not
preferences.

This paper is related to some of the theoretical literature on the optimal control of diseases which
develops models to evaluate welfare gains of disease control and eradication (e.g. Barrett and Hoel
(2004), d’Albis and Augeraud-Véron (2008), Geoffard and Philipson (1997), Gersovitz and Hammer
(2004), Goenka and Liu (2010)). The difference between this paper and other literature are: first, most of
other papers address optimal private health expenditure and under-investment problem due to externality
inherent in disease controlling problem. In this paper we would like to know what is the best that society
can do in controlling the disease transmission by taking into the externality. Thus, we look at the social
planning problem (see Hall and Jones (2007) which takes a similar approach for non-infectious diseases).
We show a steady state with disease prevalence and zero health expenditure could even be optimal as
it depends on the relative magnitude of marginal product of physical capital investment and health
expenditure. Second, these papers model either disease dynamics or the accumulation of capital, but not
both. In modeling the interaction between infectious diseases and the macroeconomy, we expect savings
behavior to change in response to changes in disease incidence. Thus, it is important to incorporate this
into the dynamic model to be able to correctly assess the impact of diseases on capital accumulation and
hence, growth and income. As the prevalence of diseases is affected by health expenditure, which is an
additional decision to the investment and consumption decision, this has to modeled as well. Without
modeling both physical and health capital accumulation and the evolution of diseases at the same time,
it is difficult to understand the optimal response to disease incidence!. As the literature does not model
both disease dynamics and capital accumulation explicitly, the existing models are like a black-box: the
very details of disease transmissions and the capital accumulation process that are going to be crucial
in understanding their effects and for the formulation of public policy, are obscured. We find that even
when the strong assumption of log-linear preferences is made (which is usually invoked to justify fixed
savings behavior) there can be non-linear and non-monotonic changes in steady state outcomes.

In order to model the disease transmission explicitly we integrate the epidemiology literature (see An-
derson and May (1991), Hethcote (2000), Hethcote (2009)) into dynamic economic analysis. In this paper
we examine the effect of the canonical epidemiological structure for recurring diseases - SIS dynamics
- in a continuous time growth model. SIS dynamics characterize diseases where upon recovery from
the disease there is no subsequent immunity to the disease. This covers many major infectious diseases
such as flu, tuberculosis, malaria, dengue, schistosomiasis, trypanosomiasis (human sleeping sickness),
typhoid, meningitis, pneumonia, diarrhoea, acute haemorrhagic conjunctivitis, strep throat and sexually
transmitted diseases (STD) such as gonorrhea, syphilis, etc (see Anderson and May (1991)). As men-
tioned above, in our model we endogenize the epidemiological parameters by making them dependent on
health capital: increases in health capital reduce the infectivity rate and increases the recovery rate from
the disease.

In analyzing optimal behavior there are two sources of difficulties. First, the disease dynamics are non-
convex reflecting the externalities inherent in disease transmission. This implies that Arrow-Mangasarian
sufficiency conditions in optimal control problems may not hold.? In this paper, we address the issue
directly. We show that a solution to the optimal control problem does indeed exist. The conditions we use
are weaker than those in the literature (Chichilinksy (1981), d’Albis et al. (2008), Romer (1986)). Second,
the system dynamics is of high dimension. Thus, we can only examine the local stability properties of
the system. We show that there is a trans-critical bifurcation of the disease free steady state: As the net
birth rate falls the disease free steady state ceases to be locally stable. A steady state where disease is
endemic emerges and becomes locally stable. In Goenka and Liu (2010) there is a one way interaction,

IThe model in Delfino and Simmons (2000) is an exception but it also uses fixed savings behavior and thus does not
permit welfare comparisons. It does not include health capital.

2Gersovitz and Hammer (2004) rely on simulations to argue that the first order conditions are in fact sufficient, while
d’Albis and Augeraud-Véron (2008) assume that the disease dynamics are convex so that the problem does not arise in the
first place.



the disease affects the labor force participation, but not vice versa. The dynamics are two dimensional
which allowed analysis of the global dynamics.

We find that there are multiple steady states: a disease free steady state always exists. It is unique
when the net birth rate is high. The basic intuition is that individuals enter the economy at a faster rate
than they contract the disease so that eventually it dies out. As the net birth rate decreases (holding
the discount rate constant), there can be a steady state where the disease is endemic but there is no
expenditure on health. Here due to the relatively high birth rate, the marginal returns to investing
physical capital always dominate that of health capital: The high birth rates imply that there is low
per capital physical capital on the one hand and the cost of an additional worker falling ill is low. As
the net birth rate decreases further the rate of return dominance ceases to hold and in the endemic
steady state there are positive health expenditures. Further decreases in the net birth rate increase
health expenditures. The intuition is that it becomes increasing costly for society if an additional worker
falls ill, and thus, social health expenditures increase. The negative relationship between birth rates and
income is well known (see for example Brander and Dowrick (1994)). We also characterize the optimal
solutions for combinations of the discount rate (which indexes longetivity) and the net birth rate, and
thus are able to study how the optimal health expenditures change as either is varied. We show that
in an endemic steady state it is socially optimal not to invest in health capital if the birth rate and the
discount rate is sufficiently high, while there are positive health expenditures if these are low.

In this paper we abstract away from disease related mortality. This is a significant assumption as it
shuts down the demographic interaction. This assumption is made for two reasons. First, several SIS
diseases have low mortality so there is no significant loss by making this assumption. These include
several strains of influenza, meningitis, STDs (syphilis, gonorrhea), dengue, conjunctivitis, strep throat,
etc. Secondly, from an economic modeling point of view we can use the standard discounted utility
framework with an exogenous discount rate if mortality is exogenous. In the paper we also consider the
effect of changes in the discount rate on the variables of interest. As has been noted in the literature,
increase in longetivity reduces discounting, and thus captures some effects of change in mortality.

The paper is organized as follows: Section 2 describes the model and in Section 3 we establish existence
of an optimal solution. Section 4 studies the steady state equilibria, and Section 5 contains the stability
and bifurcation analysis of how the nature of the equilibria change as parameters are varied. Section
6 does comparative statics of steady states while varying discount and birth rates, and the last section
concludes.

2 The Model

In this paper we study the canonical deterministic S1.S model which divides the population into two
classes: susceptible (S) and infective (I) (see Figure 1). Individuals are born healthy but susceptible can
contract the disease - becoming infected and capable of transmitting the disease to other, i.e. infective.
Upon recovery, individuals do not have any disease conferred immunity, and move back to the class of
susceptible individuals. Thus, there is horizontal incidence of the disease. This model is applicable to
infectious diseases which are absent of immunity or which mutate rapidly so that people will be susceptible
to the newly mutated strains of the disease even if they have immunity to the old ones. As there is no
disease conferred immunity, there typically do not exist robust vaccines for diseases with STS dynamics.
There is homogeneous mixing so that the likelihood of any individual contracting the disease is the same,
irrespective of age. Let S(t) be the number of susceptibles at time ¢, I(¢) be the number of infectives and
N(t) be the total population size. The fractions of individuals in the susceptible and infected class are
s(t) = S(t)/N(t) and i(t) = I(t)/N(t), respectively. Let a be the average number of adequate contacts
of a person to catch the disease per unit time or the contact rate. Then, the number of new cases per
unit of time is (af/N)S. This is the standard model (also known as frequency dependent) used in the
epidemiology literature (Hethcote (2009)). The basic idea is that the pattern of human interaction is
relatively stable and what is important is the fraction of infected people rather than the total number:
If the population increases the pattern of interaction is going to be invariant. Thus, only the proportion
of infectives and not the total size is relevant for the spread of the disease. The parameter « is the
key parameter and reflects two different aspects of disease transmission: the biological infectivity of the
disease and the pattern of social interaction. Changes in either will change . The recovery of individuals
is governed by the parameter v and the total number of individuals who recover from the disease at time
tis yl.
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Figure 1: The transfer diagram for the SIS epidemiology model

Many epidemiology models assume total population size to be constant when the period of interest is
short, i.e. less than a year, or when natural births and deaths and immigration and emigration balance
each other. As we are interested in long run effects, we assume that there is a constant birth rate b, and
a constant (natural) death rate d.

Assumption 1 The birth rate b and death rate d are positive constant scalars with b > d.

Thus, the SIS epidemiology we have described so far is the same in the epidemiology literature and
given by the following system of differential equations (Hethcote, 2009):

dS/dt = bN — dS — aSI/N +~I

dI/dt = aSI/N — (y+d)I

AN/dt = (b— d)N

S,I,N > 0Vt;Sg, Iy, Ng > 0given with Ny = Sg + I.

Since N(t) = S(t) + I(t), we can simplify the model in terms of the susceptible fraction s;:

S =(1—=s)(b+7v— as) (1)

with the total population growing at the rate b — d. In this pure epidemiology model, there are two
steady state equilibria ($; = 0) given by: s} = 1 and s = HT“’. We notice s7 (the disease-free steady
state) exists for all parameter values while s} (the endemic steady state) exists only when b'fTV < L
Linearizing the one-dimensional system around its equilibria and the Jacobians are Ds|s: = a —~v —b
and Ds|s; = v+ b—«a. Thus, if b > «a — v the system only has one disease-free steady state, which is
stable, and if b < a — «y the system has one stable endemic steady state and one unstable disease-free
steady state (refer to Figure 2). Hence, there is a bifurcation point, i.e. b = o — y, where the existence
and stability of the equilibria changes. Equation (1) can be solved analytically ® and these dynamics are
global.

In this paper, we endogenize the parameters a and v in a two sector growth model. The key idea
is that the epidemiology parameters, «,~, are not immutable constants but are affected by (public)
health expenditures. As there is an externality in the transmission of infectious diseases, there may
be underspending on private health expenditures, and in any case due to the contagion effects, private
expenditures may not be sufficient to control incidence of the disease*. We want to look at the best
possible outcome which will increase social welfare. Thus, we study the social planner’s problem and in
this paper concentrate on public health expenditures (see the discussion in Hall and Jones (2007) who
also concentrate on the planning problem). In this way, the externalities associated with the transmission
of the infectious diseases can be taken into account in the optimal allocation of health expenditures.

3Since s¢ = (1 — s¢)(b+~ — ast), with initial value so < 1, is a Bernoulli differential equation, we can solve it and get an

ela—(v+b)]t 1
o o= = forb#a—v)and st =1 — ————
aCrm el Ot e — 2y ( ) att =55
4The literature on rational epidemics as in Geoffard and Philipson (1996), Kremer (1996), Philipson (2000) looks at
changes in epidemiology parameters due to changes in individual choices. Individual choice is more applicable to disease

which transmit by one-to-one contact, such as STDs.

explicit unique solution: s =1 — (for b=a —1).
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Figure 2: The bifurcation diagram for SIS model

There is a population of size N(t) growing over time at the rate of b — d. Each individual’s labor is
indivisible: We assume infected people cannot work and labor force consists only of healthy people with
labor supplied inelastically.> Thus, in time period ¢ the labor supply is L(t) = N(t) — I(t) = S(t) and
hence, L(t) inherits the dynamics of S(t), that is,

Ly = (1=1)(b+~—aly),

in terms of the fraction of effective labor [, = L;/N;. We allow for health capital to affect the epidemiology
parameters, hence, allowing for a two-way interaction between the economy and the infectious diseases.
We endogenize them by treating the contact rate and recovery rate as functions of health capital per
capita hy. This takes into account intervention to control the transmission of infectious diseases through
their preventive or therapeutic actions. When health capital is higher people are less likely to get infected
and more likely to recover from the diseases. We assume that the marginal effect diminishes as health
capital increases. We further assume that the marginal effect is finite as health capital approaches zero:
a small public health expenditure will not have a discontinuous effect on disease transmission.

Assumption 2 The epidemiological parameter functions a(hy) and y(he): Ry — Ry satisfy:

1. a(ht) is a C% function with o/(hy) < 0, & (hy) > 0, limy, o [/ (ht)| < 00, limp, 00 @' (hy) — 0,
a(ht) —a as hy — 0 and Oé(ht) — « as hy — +o00;

2. 7(hy) is a C function with +'(he) = 0, 7" (h) < 0, limp, 07 (he) < 00, limp, ey (h1) = 0,
v(h¢) — v as hy — 0 and y(ht) — 7 as hy — +00. 6

We assume physical goods and health are generated by different production functions. The output is
produced using capital and labor, and is either consumed, invested into physical capital or spent in health
expenditure. The health capital is produced only by health expenditure.” For simplicity, we assume the
depreciation rates of two capitals are the same and § € (0,1). Thus, the physical capital k; and health
capital h; are accumulated as follows.

ki = f(ke,le) — cp — my — Oky — k(b — d)
ht = g(mt) — (Sht — ht(b — d)

The physical goods production function f(ky, ;) and health capital production function g(m;) are the
usual neo-classical technologies. The health capital production function is increasing in health expenditure
but the marginal product is decreasing. The marginal product is finite as health expenditure approaches
zero as discussed above.

5See Goenka and Liu (2010) for a model with an endogenous labor supply. This paper shows the dynamics are invariant
to introduction of endogenous labor supply choice under certain conditions.

6For analysis of the equilibria C?2 is required and for local stability and bifurcation analysis at least C® is required. Thus,
for simplicity we assume all functions to be smooth functions.

7This health capital production function could depend on physical capital as well. If this is the case, there will be an
additional first order condition equating marginal product of physical capital in the two sectors and qualitative result of
the paper still hold. We assume that the production function of health capital does not depend on labor or in effect that
its production is more capital intensive than the production of the consumption good to avoid problems associated with
factor intensity reversals.



Assumption 3 The production function f(k;,ly) : R — Ry

1. f(-,-) is C* and homogenous of degree one;
2. f1 >0, f11 <0, fo >0, faa <0, fi2 = fo1 >0 and fi1fa2 — f12f21 > 0;
3. limkt_>0+f1 = 00, limkt_,oofl =0 and f(O,lt) = f(k't,O) =0.

Assumption 4 The production function g(m:) : Ry — Ry is C° with ¢’ > 0, ¢” < 0, lim,,, g’ < ©
and g(0) = 0.

We further assume that all individuals are identical. Utility function depends only on current con-
sumption, ¢, is additively separable, and is discounted at the rate 6 > 0.

Assumption 5: The instantaneous utility function u(cy) : Ry — R4 is C° with v/ > 0, v” < 0 and
lim,, g+u = o0.

As discussed above, we look at the optimal solution where the social planner maximizes the discounted
utility of the representative consumer. Given concavity of the period utility function, any efficient al-
location will involve full insurance.® Thus, the consumption of each individual is the same irrespective
of health status and we do not need to keep track of individual health histories. The social planner’s
problem is

max/ u(c)e dt
0

c,m

subject to

fk,l)—c—m— 0k —k(b—d)
g(m) — 6h — h(b— d)

(1= 1)(b+7(h) — a(b))
0,m>0,h>0,0<1<1

ko > 0,hg > 0,1y > 0 given.
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It is worthwhile noting here that we have irreversible health expenditure as it is unlikely that the
resource spent on public health can be recovered. For simplicity, we drop time subscript ¢ when it is
self-evident.

3 Existence of an optimal solution

In the problem we study, the law of motion of the labor force is not concave reflecting the increasing

returns of infections. This can be seen from the Hessian:
2a(h) —('(h) =/ (R)l) — /(1 = 1)

—(Y'(h) =/ (R)l) =’ (1 =1)  (A=1"(h) =" (h)])
9*H* = 0.9

In addition the maximized Hamiltonian, H*, may not be concave as it is possible that “53;
Thus, the Arrow sufficiency conditions do not apply. Hence, we directly show the existence of a solution
with less stringent conditions in the literature, which is appropriate for the problem at hand. The
argument for existence of solutions relies on compactness of the feasible set and some form of continuity
of objective function. We first prove the uniform boundedness of the feasible set (which are assumptions

8 Alternatively instead of maximizing the representative agent’s welfare we could maximize the total welfare by using
i e 0te(b=Dt Nou(cy)dt (see the discussion in Arrow and Kurz (1970)). It is equivalent to having a lower discount factor.
The qualitative results of this paper still remain although the optimal allocation may vary slightly.

9See Gersovitz and Hammer (2004) for more on sufficiency conditions in SIS dynamics models.



in Romer (1986) and in d’Albis et al (2008)) that deduces the Lebesgue uniformly integrability. Let us
denote by L' (e~%) the set of functions f such that [, |f(t)|e~"dt < co. Recall that f; € L' (e~") weakly
converges to f € L*(e™%) for the topology o(L(e=%), L>) (written as f; — f ) if and only if for every
g€ L™, [7 fige%dt converges to [, fqe %'dt as i — oo. (written as [ fige %'dt — [ fqe0dt).
When writing f; — f*, we mean that for every t € [0, 00),lim; o fi(t) = f*(%).

We make the following assumption:
Assumption 5 There exists k > 0,k # oo such that —k < k/k:

This reasonable assumption implies that it is not possible that the growth rate of physical capital
converges to —oo rapidly and is weaker than those used in the literature (see, e.g, Chichilnisky (1981),
LeVan and Vailakis (2003), d’Albis et al (2008)). LeVan and Vailakis (2003) use this assumption in
a discrete-time optimal growth model with irreversible investment: 0 < (1 — d)k; < kypq or =0 <
(ki1 —kt)/ke (0 > 0 is the physical depreciation rate in their model, and thus is equivalent to x). Let us
define the net investment : I = k+(6+b—d)k = f(k,1) —c—m. A.6 then implies there exist k > 0, k # oo
such that I + [k — (6 + b —d)]k > 0.

If the standard assumption 2 (v) in Chichilnisky (1981) holds (non-negative investment, I > 0) then
A.6 holds with kK = 6 + b — d. Therefore, assuming non-negative investment is stronger than A.6 in the
sense that x can take any value except for infinity. We divide the proof into two lemmas. The first lemma
proves the relatively weak compactness of the feasible set. For this we show that the relevant variables
are uniformly bounded and hence, are uniformly integrable. Using the Dunford-Pettis Theorem we then
have relatively weak compactness of the feasible set.

Lemma 1 Let us denote by K = {(c,k, h,l,m,k,h, 1)} the feasible set satisfying (2)-(6). Then K is
relatively weak compact in L*(e=%*).

Proof. See Appendix A for the proof. m

Since K is relatively compact in the weak topology o(L! (e‘“}, L), asequence {c;, ki, hi, li, m;, ki, hi. lz}
in KC has convergent subsequences (denoted by {c;, ks, h;, l;, m;, ki, hi, 1;} for simplicity of notation) which
weakly converge to limit points in L'(e=%).

The following Lemma shows that the control variables and derivatives of state variables weakly con-
verge in the weak topology o(L!'(e=%), L>), while the state variables converge pointwise.

Lemma 2 i) Let ki,hi,li,ki,hi,ii in K and suppose that ki — k* h; — h*,l; — I*. Then k; —
k* hi — h*,1; — I* asi — oo. Moreover, k; — k*, h; — h*,l; — I* for the the topology o(L'(e~), L>°).

i) Let x;= (ci,my, ki, hy, [;) and suppose that x,— x* in o(L* (=), L>). Then there exists a function
N : N — N and a sequence of sets of real numbers {w;n) | i = n,..,N(n)} such that w;,y > 0 and

ZN(") Wi(n) = 1 such that the sequence v, defined by v, = Zﬁ(:) Wi(n)Xi converges pointwise to X* as

i=n
n — oQ.

Proof. i) For any x; € K and ; — z*. We first claim that, for ¢ € [0, 00), fot x;dt — fg x*dt. Note that
x; — z* for the topology o(L'(e~%), L>°) if and only if for every q € L™, fooo xiqe” % dt — fooo x*qge=%dt.

Pick any ¢ in [0, 00) and let

1 .
_ ﬁ1f8€[0,t]
q(s)_{ 0if s > t.

Therefore, ¢ € L> and we get fg zids = [ wiqge™%ds — [ a*qe™%ds = fg x*ds .

Now, given that k; — k* and k; — y* weakly in L' (e=%). By the claim, for all ¢ € [0,00) we have
fg kids — fot y*ds . This implies, for a fixed ¢, k; — fg y*ds + ko. Thus fot y*ds + ko = k*. Therefore,
k* = y* or k; — k*. The same reasoning applies for ~ and [ to get the conclusion.

ii) A direct application of Mazur’s Lemma. m

We are now in a position to prove the existence of solution to the to the social planner’s problem.

Theorem 6 Under Assumptions A.1-A.6, there exists a solution to the social planner’s problem.



Proof. Since u is concave, for any & > 0, u(c) — u(¢) < u'(¢)(c; — €). Thus, if ¢ € L*(e%) then
S5~ u(c)e=?"dt is well defined because

/OOO u(C)eetdtS/ooo[u(E)u’(a)g]eatdt+u/(5) /OOO S

Let us define S %</ sup.cx fo u(c)e % dt. Assume that S > —oo (otherwise the proof is trivial). Let
¢; € K be the maximizing sequence of fooo u(c)e™%dt so lim;_, o0 fooo u(c;)e %dt = S.

Since K is relatively weak compact, suppose that ¢; — ¢* for some ¢* in L'(e~%). By Mazur’s Lemma,
there is a sequence of convex combination

N() N (n)
Tn = Y Witn)Citn) = Wity 20, Y win) = 1.

Because u is concave, we have

lim sup w(z,) = lim sup u( Z Wi(n)Ci(n))
< lim sup [u(c Z Wi(n)Ci(n) — €")] = u(c").

Since this holds for almost ¢, integrate w.r.t e~ dt to get
o0 o0
/ lim sup w(z,)e % dt §/ u(c*)e % dt.
0 n—o00 0

Using Fatou’s lemma we yield

lim sup/ u(mn)e_(’tdtg/ lim sup u(xn)e_etdtg/ u(c*)e % at. (7)
0 0 0

n—oo n—oo

Moreover, by Jensen’s inequality we get

lim sup / u(zy,)e % dt > lim sup Z w; n)/ u(cin) e Odt. (8)
n—o00 J0 n—oo %
But since [ u(ci(m))e”%dt — S, (7) and (8) imply [, u(c*)e %dt > S.

So it remains to show that ¢* is feasible (because K is only relatlvely weak compact, it is not straight-
forward that ¢* € K).

The task is now to show that there exists some (k*,I*,h*,m*) in IC such that (¢*,k*,I*, h*, m*)
satisfies (2)-(6).

Consider a feasible sequence (k;(n); li(n); Pi(n)> Mi(n)) in K associated with c;(,,) we have

N(n)
¢ = lim x, = lim Z Wi(n)Ci(n)

n—oo n—oo
i=n

IN

N(n)
Y wi [F I ki, im igy) = (8+b —d) lim_ ki)

Nm) N(m)
— lim Z wl(n)kl(n) — lim Z wi(n)mi(n).



According to Lemma 2, there exists k*,[* such that lim,, o ki) = K™, limp, oo lin) = 1"

By Lemma 2, I%i(n) — k* and since M(n)) in K, there exists m* such that m;(,,) — m*. Thus it follows
from Mazur’s Lemma that

N(n) N(n)
lim Z wl(n)kl(n) — k lim Z Wi(n)Mi(ny — M*

n—oo n—)oo

Therefore, '
< fE5 1) — k" —m* = 0k* — k" (b—d).

Since [; — f*, by Mazur’s Lemma, there exists v, = Zﬁ(:) wi(,L)ii(n) — [* as n — oo. Thus,
N(n) N(n)
I* = lim > wimylitny < Jim > Wit (X = L)) (b + ¥ (i) = hig)lin))]-

In view of Lemma 2 , h,, — h*,l,  — I* asn — oo and y(h a(h,,,) are continuous, we get

i(n))’

Z'*

IN

N(n
Z Wi (L= 17) (b + 7 (h) — a(h*)I7)]
(1 )b+~ (h7) = alh)I").

Applying a similar argument and using Jensen’s inequality yields

. Ny Nn)
*= i ) . < i ) ) _ ) _h. _
N(n) N(n)
< g(lim Y wigmig) — lim Z Witn) (0 +b = d)hiy)

= g(m*) —6h* — h*(b—d).

The proof is done. =

We have proven that the control variables ¢, m and derivatives of state variables weakly converge
in the weak topology o(L'(e~%), L>), while the state variables converge pointwise (Lemma 2). The
problem is that even if we have a weakly convergent sequence, the limit point may not be feasible. For
pointwise convergent sequences, the continuity is all that is necessary to prove the feasibility. Therefore,
concavity is not needed for state variables. Theorem 1 shows that the limit point is indeed optimal in
the original problem. For weakly convergent sequence, Mazur’s Lemma is used to change into pointwise
convergence. Jensen’s inequality is used to eliminate the convex-combination-coefficients to prove the
feasibility. Thus, concavity with respect to control variables is crucial. Our proof is adapted from work
of Chichilnisky (1981), Romer (1986) and d’Albis et al (2008) to SIS dynamic model with less stringent
assumptions and a nonconvex technology. Chichilnisky (1981) used the theory of Sobolev weighted space
and imposed a Caratheodory condition on utility function, Romer (1986) made assumptions that utility
function has an integrable upper bound, satisfies a growth condition and d’Albis et al (2008) assumed
feasible paths are uniformly bounded and the technology is convex with respect to the control variables.

4 Characterization of Steady State Equilibria

To analyze the equilibria, we look at first order conditions to the optimal solution. This is valid as we
know that these conditions are necessary and a solution exists, and thus a solution must satisfy these
conditions. Note that we allow for corner solutions. As we will see for some parameters there is a unique
(steady state) solution to the first order conditions. For others, there are multiple steady state solutions.



. From the Inada conditions we can rule out k& = 0, and the constraint [ > 0 is not binding since
Il =0+~ > 0 whenever [ = 0. The constraint o > 0 can be inferred from m > 0, and hence, can be
ignored. Now consider the central planner’s maximization problem with irreversible health expenditure
m > 0 and the inequality constraint [ < 1. The current value Lagrangian for the optimization problem
above is:

L = ule)+M[fk,1)—c—m—38k—k(b—d)]+ X2g(m)—
~Sh— h(b—d)] + As(1— D0+ y(R) — a(A)) + pa (1 — 1) + pam

where A1, Ao, A3 are costate variables, and pq, pe are the Lagrange multipliers. The Kuhn-Tucker
conditions and transversality conditions are given by

u'(c) = A1, )
m(A1 =g ) =0 m>0 A —Xag' >0 (10)
Xi=-M(fi—6-0—(b—d) (11)
Xo=Xa(0+0+b—d) —Xs(1 =)y — ') (12)
X3 =—Aifo+A3(0+b+v+a—2al)+ (13)
pp >0 1-1>0 yu(1-1)=0 (14)

(15)

lim e %Nk =0 lim e % \h =0 lim e % )\50 = 0.

t—o0 t—oo t—oo

T s = 3 0

The system dynamics are given by equations (2)-(6) and (9)-(15). If x is a variable, we use z* to
denote its steady state value. In the epidemiology literature and Goenka and Liu (2010), « is the key
parameter which is varied. In this paper « is endogenous. Thus, we characterize steady state equilibria
in terms of the pair of exogenous parameters (b,8) € [d, 00) x (0, 00).

Define [ := min{lﬂ%, 1}, k such that fi(k,l) =6 +b—d+ 6 and k such that fi(k,1) =0 +b—d+ 6.
Clearly k > k for each (b,6).

Proposition 1 Under A.1 — A.6,

1. There exists a unique disease-free steady state with I* = 1, m* = 0, h* = 0, and k* = k for any
(b,0) € [d,00) x (0,00);

2. There exists an endemic steady state (I* < 1) if and only if b < @ — v and there is a solution
(=, k*,m*, h*) to the following system of equations:

gy _ A b
PO =

Ak ) =6+0+b—d

gm*) = (6 +b—d)h*

m (6, 1%) = falk IV (1) () = 0
m* >0

Rk 1) 2 0 1) (0)g ("),

where we define lj(h*) = (1791+)(£(7h(*};_)b7_0;((£*))l ).

Proof. From [ = 0 we have either I* = 1 (disease-free case) or [* = 7322)*")’1’ < 1 (endemic case).

Case 1: [* = 1. Since Ay = X\p(§+b—d+60) =0, A5 = 0. As ¢’ is finite by assumption, \i — \jg’ =
u’(¢*) > 0, which implies m* = 0 by equation (10). Since g(0) = 0, h* = 0 from equation (3). From
A1 = 0, k* = k. So the model degenerates to neo-classical growth model. Moreover [* = 1 exists for all
parameter values.

Case 2: I* < 1. This steady state exists if and only if there exists A* > 0 such that [* = vgz’]‘l)j)-b <1

and (I*, k*,m*, h*) is a steady state solution to the dynamical system (3)- (4), (9)- (15). For the former,
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by assumption A.2, [(h) is increasing in h. So if 72 1, that is, b < @ — v, we could find h > 0 such
that endemic steady state exists. For the latter, since {* < 1, u; = 0. From X2 = 0 and Xg = 0, we have:

W () fo(k™, %) (1= 1)/ (h7) — o' (R7)I7)
Su(k* 1) 0+ a(h*) —b—~(h*)

A5 =

So equation (10) could be written as equations (19)-(21). Moreover by letting & = 0, X\; = 0 and [ = 0
we have equations (16)-(18). m

Therefore, the economy has a unique disease-free steady state in which the disease is completely
eradicated and there is no need for any health expenditure. In this case, the model reduces to the
standard neo-classical growth model. Note that the disease-free steady state always exists. Furthermore,
when birth rate is smaller than @ —+, in addition to the disease-free steady state, there exists an endemic
steady state in which the disease is prevalent and there is non-negative health expenditure. The L.H.S. of
equation (21) is the marginal benefit of physical capital investment while the R.H.S. is marginal benefit
of health expenditure. To see this, on the R.H.S. the first term fa(k*,1*) is the marginal productivity
of labor, the middle term lj(h*) can be interpreted as the marginal contribution of health capital on
labor supply and the last term ¢’(m*) is the marginal productivity of health expenditure. Essentially we
can think there is an intermediate production function which transforms one unit of health expenditure
into labor supply through the effect on endogenous disease dynamics. Equations (19)-(21)says that if the
marginal benefit of physical capital investment is higher than the marginal benefit of health expenditure,
there will be no health expenditure (m* = 0).

We want to characterize the endemic steady state further.
Assumption 7 a(a”(y+b) —v"a) > 2d/(a/(y + b) — ¥ ).

By assumption 7 we can show

Oly(h)
oh
_(a=y=bt0)(a—y=ba(@"(y+b) —7"a) = 2d/(a’'(y +b) =7 a)] + ab(a’(y + b) —~'a)(' —7')

ly(h) =

ad(a—vy—b+6)2
< 0

From equations (16)-(18), we could write (I*, k*, m*) as a function of h. We have [*(h) given by equation

(16) with 61;}(1}‘) = "Yla*gfrb)a’ > 0. m*(h) > 0 is given by equation(18) with '%gh( ) ‘L*g’m)d > 0. k*(h)
is determined by equation (17), that is, at the steady state marginal productivity of physical capital equals

to the marginal cost. Since f; is strictly decreasing and lies in (0, +o00) for each [*(h), we can always
find a unique k;*(h) and L () — 5,20 ( )/f11 > 0. Since 220 ( )l (h)) _ fuafea—tfrafo O ;Lh) <0,

fi1
ly(h) <0 and 2 ( (h)) = g'am (h) < O the R.H.S. of equation (21) decreases as h increases. That
is, we have dlmmlshmg margmal product of health capital under assumption 7, which guarantees the
uniqueness of endemic steady state.

From equation (20), there are two cases: m* = 0 and m* > 0. The first is termed as the endemic
steady state without health expenditure and the second the endemic steady state with health expenditure.
For the endemic steady state without health expenditure, h = 0 implies h* = 0. Equation (21) reduces
to

filk, 1) = fo(k, 1)l5(0)g'(0), (22)

where 15 (0) := W. Due to diminishing marginal product of health capital mentioned above,

a unique endemic steady state without health expenditure exists if and only if equation (22) is satisfied.
Otherwise an endemic steady state with health expenditure exists.

Lemma 3 For each fized b € [d,@ — ), there exists a unique 0(b), which is determined by fi(k,1) =
f2(k,1)I5(0)g'(0), such that:

1. If é(b) > 0, then an endemic steady state without health expenditure exists if 0 > é(b) and an
endemic steady state with health expenditure exists if 6 < 6(b);

11



2. Ifé(b) <0, then an endemic steady state without health expenditure exists .

Proof. An endemic steady state without health expenditure exists if and only if equation (22) is
satisfied. Lets fix any b € [d,@ — v), L.H.S. of (22) is increasing in § while R.H.S. of (22) is decreasing
in 0. So for each b there exists a unique 6(b) such that fi(k,1) = fa(k,1)I5(0)g’(0). Note f(b) could be
non-positive. Case 1: 6(b) is positive. If 6 > 0(b), equation (22) is satisfied and an endemic steady state
without health expenditure exists. Otherwise an endemic steady state with health expenditure may exist.
Case 2: O(b) is non-positive. Then equation (22) is satisfied for all discount factors and only an endemic
steady state without health expenditure exists. m

This result shows that while the disease is endemic it may be socially optimal not to spend any
resources on health capital. This is because the marginal productivity of physical capital is higher than
that of health expenditures. Furthermore, there is expenditure on health when the discount rate is low
(people are more patient) and the birth rate is low. Next we want to study the properties of the function

0(b) for b € [d, @ — 7).

Assumption 8 FElasticity of marginal contribution of health capital on labor supply with respect to birth
rate is small, that is, 7‘92&8;?31) < b[% — f{f}z — f”%};?’;f“].lo

Lemma 4 é(b) is decreasing in b. And as b — @ — 1, é(b) approaches a non-positive number.

Proof. Since k is given by fi(k,l) =d+b—d+ 6, we have
ok 1 Ok _ 1 fio

— =—and - =——

a0 fu ab fii o @fin

Moreover, function 0(b) is determined by

fa(k, 1)
J1(k, 1)

H=1- 15(0)g'(0) = 0.

By the implicit function theorem, A(b) is continuous and

OH _ fafi— fuf Ok

_ by
90 [FT

I 89900>&

15(0)g'(0)

and

OH a - el
=" (af21 +J;j£{‘11}1 fafiz }?2) 1,(0)'(0) _% g(bo)g/(o) <0

under A.8. Thus, we have 80/0b < 0, that is 0(b) is decreasing in b.

Let b — @ — . Forany 6 > 0,1 — 1, [;(0) — 0 and R.H.S. of equation (22) goes to 0. However
L.H.S. of equation (22) equals to § + b — d + 0, which is strictly positive as b approaches @ — 7. So as
b — @— 1, equation (22) is satisfied for all § > 0, which means 0(b) goes to some non-positive number as
b—a—7. =

From the Figure 4, it is easy to see the graph 9(6) intersects the horizontal axis at the point which
lies on the left side of b = @ — 7. Let us denote 6(d) as the intersection point of both the function 6(b)

and vertical axis b = d. As the function é(b) is a one-to-one mapping, we could write its inverse mapping
as b(0) for 6 € (0,6(d)] and define b(#) = d for 6 > 6(d).

Proposition 2 Under A.1—A.8, for each 6 > 0 a unique endemic steady state without health expenditure
exists if and only if b(0) < b <& —~. The steady state is given by I* =1, m* =0,h* =0 and k* = k.

dlg(0)/0b b
1,(0)/b (1—=a)(6+b—d+0) "

<

10Under Cobb-Douglas production function f(k,1) = Ak®I1~%, the assumption reduces to

oLL0) _  15(0)  (1-Da’(0) 1(0)
As =5~ = —30-D ~ a(@ra—b—y T ara—b—y

’
, the assumption is then given by 75(11*D — a(wg)iocz/(o);) + 0+aib—~/

WM, which is shown to be satisfied for a wide range of parameter values.
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Proof. The proof follows from Proposition 1 and Lemmas 3, 4. It is easily seen from Figure 4. m

Proposition 3 Under A.1 — A.8, for each 8 > 0 a unique endemic steady state with health expenditure

exists if and only if d < b < 13(9) The steady state is given by [* = ng;)*?b, and k*, h* and m* determined
by:

AT =64+b—d+ 0
fa(K*, 1)y (R")g' (m*) =6 +b—d+6
glm*)=(6+b—d)h".

Proof. The proof follows from Proposition 1 and Lemmas 3, 4. Moreover as m* > 0, equation (21)
holds at equality. It implies marginal productivity of physical capital equals the marginal productivity of
health capital. As [*,k*, m* could be written as function of h, we only need to show there always exists
a solution h* to the following equation:

fa(k* (h), 17 (h))lg(h)g'(m™ (h)) = 6 +b—d + 6 (23)

Since limp, .o faly(h)g'(m) = 0 and limp,_q faly(h)g'(m) = fa(k,1)1;(0)g'(0) > fi(k,l) =0+b—d+6
if b e [d,b(0)), equation (23) always has a solution. That is, under A.1-A.8 there exists endemic steady
state with health expenditure if b € [d,b(f)). Moreover, since R.H.S. of equation (23) decreases as h
increases, there exists a unique endemic steady state with health expenditure. m

Hence, an endemic steady state without health expenditure exists only when marginal productivity
of physical capital is no less than marginal productivity of health capital. In other words, despite the
prevalence of the disease, if marginal productivity of physical capital investment is greater than marginal
productivity of health capital, there will be no investment in health. Thus, the prevalence of the disease is
not sufficient (from purely an economic point of view) to require health expenditures. It is conceivable that
in labor abundant economies with low physical capital this holds, and thus, we may observe no expenditure
on controlling an infectious disease while in other richer economies there are public health expenditures
to control it. The endemic steady state without health expenditure is the same as a neo-classical steady
state but with only a smaller labor force. Thus, there is lower consumption and production in the steady
state. By investing in health expenditure we are able to control infectious disease. Compared with the
disease-free case the economy has lower physical capital and a smaller labor force. The production will
be lower, and and there is expenditure allocated for health expenditure. Thus, clearly the consumption
will be lower. It does not make too much sense to compare welfare for two endemic steady states as they
do not coexist.

5 Local Stability and Bifurcation

The dynamical system is given by equations (2)- (4), (9)- (15) and there are three equilibria. In order
to examine their stability we linearize the system around each of the steady states. To simplify the
exposition we make the following assumption.

Assumption 9: The instantaneous utility function u(c) = logc.

Substituting Ay = v/(¢) = 1/c into equation (11), we get

é=c(fr —6—0—(b—d). (24)

5.1 The Disease-Free Case

At the disease-free steady state, A\; > A2g’. Since all the functions in this model are smooth functions,
by continuity there exists a neighborhood of the steady state such that the above inequality still holds.
Thus, m* = 0 in this neighborhood. Intuitively around the steady state the net marginal benefit of
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health investment is negative: the disease is eradicated and health investment only serves to reduce
physical capital accumulation and hence, lower levels of consumption, and thus no resources are spent
on eradicating diseases. As m* = 0 in the neighborhood of the steady state, we have a maximization
problem with only one choice variable - consumption and the dynamic system reduces to:

k= f(k,1)—c—06k—Fk(b—d)
h = —6h — h(b— d)
[=1—=1)(b—a(h)l+~(h))
¢=c(fi—d6—0—(b—d)),

with three state variables and one choice variable. This can also be simply derived by substituting m = 0
into the original dynamic system. By linearizing the system around the steady state, we have:

0 0 f3 -1

- 0 —6—(b—d 0 0
Ji = 0 0 a—(y+b) 0
i 0 c* fia 0

The eigenvalues are Ay = —§ — (b —d) < 0, Ay = w <0, Ay = LA 1] “922_% > 0, and
Ay =@ — (y+b). The sign of A4 depends on b. We notice if b =@ — v, J1 has a single zero eigenvalue.
Thus, we have a non-hyperbolic steady state and a bifurcation may arise. In other words, the disease-free
steady state possesses a 2-dimensional local invariant stable manifold, a 1-dimensional local invariant
unstable manifold and 1-dimensional local invariant center manifold . In general, however, the behavior
of trajectories in center manifold cannot be inferred from the behavior of trajectories in the space of
eigenvectors corresponding to the zero eigenvalue. Thus, we shall take a close look at the flow in the
center manifold. As the zero eigenvalue comes from dynamics of [, and the dynamics of [ and h are
independent from the rest, we could just focus on the dynamics of [ and h. By taking b as bifurcation
parameter and following the procedures given by Wiggins (2002) and Kribs-Zaleta (2003), we are able to
calculate the dynamics on the center manifold (See the Appendix B for details):

s=aae — %5), (25)

where b= b — (@—1).

The fixed points of (25) are given by z = 0 and z = %l;, and plotted in figure 3. We can see the
dynamics on the center manifold exhibits a transcritical bifurcation at b = 0. Hence, for b < 0, there
are two fixed points; z = 0 is unstable and z = %l; is stable. These two fixed points coalesce at b= 0,
and for b > 0, z = 0 is stable and z = %l; is unstable. Thus, an exchange of stability occurs at b=0,
i.e., b =a — . Therefore, for the original dynamical system if b > @ — -, there is a 3-dimensional stable
manifold and a 1-dimensional unstable manifold, and if b < @—+, there is a 2-dimensional stable manifold
and 2-dimensional unstable manifold. Moreover, while physical capital, health capital and labor force are
given at any point in time, the consumption can jump. Thus, if b > @ — ~y, the system is locally saddle
stable and has a unique stable path; and if b < @ — ~, the system is locally unstable.

5.2 The Endemic Case Without Health Expenditures

For the endemic steady state with no health expenditures, A\; > Aog’ and m* = 0. By continuity, this will
also hold in a small neighborhood of the steady state. Thus, it is similar to the disease-free case except
that [* < 1. Linearizing the system around the steady state:

0 0 1 1
0 —5—(b—d) 0 0
=10 @A) — a1 a—(r+b) 0
cfi 0 c* flo 0

The eigenvalues are A1 = =6 — (b —d) < 0, Ay = 49702%45% <0, A3 = OryO7 ATy ”Gtw > 0, and
Ay = (y+0b) —@ < 0. So it has 3-dimensional stable manifold and 1-dimensional unstable manifold.
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Figure 3: The transcritical bifurcation diagram

Since the system has three state variables and one choice variable, it is locally saddle stable and has a
unique stable path. Moreover, this corresponds to the stable steady state z = %b when b < 0 in figure 3.

This also explains why when b decreases and crosses 0, the stable disease-free steady state undergoes a
bifurcation into one unstable disease-free steady state and one stable endemic steady state without health
expenditure.

5.3 The Endemic Case With Health Expenditures

For the endemic case with health expenditures, the dynamical system is given by equations (2)- (4), (9)-
(15) with Ay = Agg’, m* > 0 and I* < 1. Simplifying, the system is reduced to:

b= F(k,1) —c—m ok — k(b —d
= g(m) — h — h(b — d)
[=(1=1)(b+7(h) —a(h))
é=c(fi—0—(b—d)—0)
m=@%ﬂmm—DW—ww—mﬁﬁg

So = == fa + Xafl = o(2a(h)l — b= (k) — a(h).

Q

We now have a higher dimensional system than the earlier two cases as m > 0, h > 0. Linearizing around
the equilibrium the Jacobian is given by:

0 0 fs 1 -1 0
0 —5—(b—d) 0 0 g 0
0 (1 1)(y* — 1) b++* —a* 0 0 0
Js=| cfi 0 ¢ fiz o o0 0
:] ' —al*l g (1—=1%)(~ l*—a *) g c Z /\3.5
—fcl—}’ =252 1 — o — ') —fC"’f —2\5a" Cffg 0 Cf2§ .
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Let us denote J3 as a matrix (a;;)sxe with the signs of a;; given as follows:

CL11(+) 0 a13(+) -1 -1 0

0 agg(*) 0 0 a25(+) 0

0 az2(+) asz(—) 0 0 0
a41(—) 0 a43(+) 0 0 0
as1(—) as2(+) as3 asa(—) ass(+) ase(—)
ag1(—)  ae2 ags  apa(+) 0 ags(+)

Note that as [* = % < 1, at the steady state ags = b+ ~+v* — a* < 0 and A3 = 0 so we get

fs f3
Ay = = 0.
37 (0 -2 + b+ 4+ a*) (04 ar —b—~%) ”

Thus, the terms ass, age, ags remain to be signed. The characteristic equation, |AI — J3| = 0, can be
expanded and written as a polynomial of \ as

P(A) = AG — D1A5 +D2A4 —D3A3 +D4A2 —DsA+Dg=0

where the D; are the sum of the i-th order minors about the principal diagonal of J3 which are explicitly
defined (See Appendix).

Thus, for D, we have

D = ai1 + ag + ass + aaq + ass + aee
= -0+ +d—a*+ fi+ {2*:39.
c* A}

which are first order minors about the diagonal.

Let denote A; (i = 1..6) the solutions of the characteristic equation, by Vietae’s formula we have
AM+A+A3+As+A5+As=D; =30>0
which implies there exists at least one root A; > 0.
We now prove that, under the following assumption, the system is saddle-point stable.
Assumption 10: The parameters of the model satisfied

e 207 (0+177)

i) (@ =b=7")(" —a") <O -b—7"+a")(y" +a e
_ X+Y+/(X+Y)2+32(X2+Y?)

16

)

i7) 0
where X =6 +b—d, Y =a—~v—0b.

Note that A.10 holds in the leading example given below, A.10 (i) is satisfied when «(h) is constant,
and A.10 (ii) holds when a(h) is large relative to 6.

It follows from A.10 that

. 207(b47)

—(20/*1*—CYI*—’Y/*):’}/*+O( .
[0

0.

Hence, as3 = (fgl(fflﬂ)éyfoiaf?)) - ff2> j,% > 0,a62 = —\5(2a/*1* —4/* —a’*) > 0. With this assumption,

every sign of a;; is defined except for ags = —]; {2
be given in Appendix.

— 2X5a*. The proof of the following proposition will

Proposition 4 Under A.1 - A.10 (i), det J5 < 0 and there exists at least one negative characteristic
700t.

The discussion so far shows that we may have one, three or five number of negative roots and have at
least one positive root. We are interested in the case of at least three negative characteristic roots with
the case of three negative roots giving saddle-point stability. Note that the coefficients of characteristic
equation D; (sum of i-dimension principal minors of Jacobian matrix) (i = 1,2, 3,4, 5, 6) are well defined.
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Lemma 5 Under A.1 - A.10 we have D1Dy — D3 < 0.
Proof. See Appendix m

Proposition 5 Under A.1-A.10.

i) If 30D4— D5 > 0 then there exist three or five negative characteristic roots. As a special case, if
Dy > 0,D5 < 0 then there are exactly three negative roots.

ii) If 30Dy — D5 < 0 and (30 Dy — D3)Ds < 992Dy then there are exactly three negative roots.

Proof. The number of negative roots of P(A) is exactly the number of positive roots of
P(—A) = A® + D A® + DoA* + D3A® + DyA? + DsA + Dg = 0. (26)

We will use the Routh’s stability criterion which states that the number of positive roots of equation (26)
is equal to the number of changes in sign of the coefficients in the first column of the Routh’s table as
shown below:

1 Dy Dy Dg O
Dy Ds Ds 0 O
aq a9 D@ 0 0
by b2 O 0 O
C1 D6 0 0 0
d 0 0 0 O
' Dg 0 0 0 O]
where
DDy — D3 DDy — D5
ay = Dl , a2 = Dl
a1D3 — G,QDl a1D5 — D6D1
by = o by = @
b1a2 — a1b2 Clb2 — leG
= ydp = .
b1 C1

Recall that we have D1 =30 > 0,D5 < 0,D3 < 0,Dg <0 and a1 = %;DS < 0.
Let us see the sign of the first column in the Routh’s table.

1D1a1b101d1D6
+ 4+ - + £ £+ -

If any of by, ¢1,d; are positive, there are at least three changes of sign (Ouly three or five of changes
in sign is possible).

i) Obviously az > 0 in this case.
Suppose that all by, ¢1,d; are negative. That is by < 0 and

bias —a1b ba — 01D
¢ = 102 a12<0,d12012 1 6<0.
bl C1

This implies

bias > a1by=0by >0
c1bs > b1Dg = by <0.

A contradiction.

Thus, at least one of by, c1,d; is positive, i.e. there are three or five negative characteristic roots.
As a special case, if Dy > 0, D5 < 0 then obviously 30Dy — D5 > 0. So we have at least three negative
characteristic roots. On the other hand, we have three changes of sign of the coefficients of P(—A) as
shown below

1 Dy Dy D3 Dy Ds Dg
+ + - + + - -
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Figure 4: The local stability and bifurcation diagram

According to Descartes’ rule as there are three changes in sign of the coefficients of P(—A), P(—A)
has at most three positive roots. That means P(A) has at most three negative roots. Therefore, in this
case, there are exact three negative roots.

i1) In this case, clearly ag < 0, by = ‘“ma;la?[)l < 0, and

a1Ds — DgDy = (D1Dy — D3)Ds — DD} _ (30 Dy — D3)Ds — 962 Dg <

D, D, 0.

Thus by = @Pa=Lel1 > (.

If ¢; < 0,d; < 0, we should have byas > aiby and ci1by > b1 Dg. But this implies by < 0. A
contradiction.

Let us consider the sign of the first column of the Routh’s table:

1D1a1b101d1D6
+ + - - £ = -

Since either ¢; or d; is positive, we only have three number of changes in sign.
So P(A) = 0 has three negative roots. ®

The local stability and bifurcation of the dynamic system are summarized in Figure 4. When the birth
rate b is very high, i.e. greater than @ —~y, there is only a disease-free steady state which is locally stable.
This is the case where disease is eradicated in the long run. When b decreases to exactly @— 1, the stable
disease-free equilibrium goes through a transcritical bifurcation to two equilibria: one is the unstable
disease-free steady state and the other is the stable endemic steady state without health expenditure as
0(b) is equal to 0 at @ — 5. To the left of this point, 6(b) is a decreasing function. Below this function,
when 6 is relatively low, there is the endemic steady state with positive health expenditures, but above
the function, only the endemic steady state without health expenditures exists. These steady states are
stable. The disease free steady state continues to exist but is unstable.

6 Comparative Statics

We now explore how the steady state properties of the model change as the parameters are varied.
The goal of comparative statics is twofold: (1) We show as parameters vary, there is a nonlinearity
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in steady state changes due to the switches in the steady state and the role played by the endogenous
changes in health expenditures. (2) We study the endogenous relationship between health expenditure (as
percentage of GDP) and GDP. This can help understanding the changing share of health expenditures
in many countries. The first points out that non-linearities in equilibrium outcomes, which are often
assume away, may be very important in understanding aggregate behavior. While we are unable to study
global dynamics as it is difficult in the system to derive policy functions (unlike Goenka and Liu (2010)
where the system is only two-dimensional) and thus, are unable to study the full range of dynamics,
the results point out that even steady states may change in a non-linear way. For the second, it should
be emphasized that while we are looking at only public health expenditures on infectious diseases this
methodology can be extended to incorporate non-infectious diseases.

We specify the following functional forms: f(k,l) = Ak~ g(m) = ¢3(m+¢1)¢27¢3¢"f2; a(h) =
a1 +age” " ~(h) =y —y9exp~ 73", The parameter values are chosen as follows: A = 1,a = 0.36,6 =
0.05,0 = 0.05 and b = 0.02,d = 0.005 by convention. Since there are no counterparts for health related
functions in the economic literature we choose the following parameters which satisfy assumptions A.1-
A.9 91 =2,02=0.1,03 =1,a1 = az = 0.023,a3 = 1,71 = 1.01,72 =3 = 1. So we have @ = 0.046 and
v = 0.01. b=a— v = 0.036 and if b > 0.036 only disease free steady state exists. The function 0(b) is
given in Figure 5 for this economy. While sufficient conditions for stability (A.10) may not be satisfied
as the parameters are varied, we check that the stability properties continue to hold in the parameter
range of interest.

6.1 The discount rate 6

As 0 is varied, in the endemic steady state without health expenditure,

dk* 1 dc* 0
— =—<0, and =— <0.
do f11 do fll
The disease prevalence [* = %_b remains unchanged.
In the endemic steady state with health expenditure, we have %’,’Z = 63(8”)”1) > 0 and al ) =

% < 0. Let ¥ = fll(fQQg/(m)l/lle + fQQ/(m)lg + fgg”(m)%—flé) — fi2l’ fgllleg/ > 0. By the
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Figure 6: Varying 6

multi-dimensional implicit function theorem , we have:

7 = P8 T+ fog ()G + fog” (m) Gty — froll (1= fag/ 500) <0,
dh* 1 ol
w0 - @(fn(l - f2g/8799) = fa1g'(m)ly) <0,
dl* dh*
hus, — =1’
and, thus, 7 0 < 0,

< 0.

=(fi —6x — (b—d))

+ (fol' = 0n — (b—d))

a9 do do

Therefore, in the endemic steady state without health expenditure variations in the discount rate have
no effect on the spread of infectious diseases, since without health expenditures the mechanism of disease
spread is independent of individual’s behavior. The smaller discount rate only leads to higher physical
capital and consumption in exactly the same way as in the neo-classical model. In the endemic steady
state with health expenditure, as the discount rate decreases, that is as the people become more patient,
they spend more resources in prevention of infections or getting better treatment. The rise in health
capital leads to a larger labor force, and both physical capital and consumption will increase. We can
see from Figure 6 that the rate of investment in physical capital is increasing while that of health capital
is decreasing as 6 decreases. This leads to an initial increase in the share of health expenditure in GDP
and then an eventual decrease. The intuition is that as people become more patient, they spend more on
health. This has two effects. First, as the incidence of diseases is controlled the increase in the effective
labor force increases the marginal product of capital which leads to the increasing rate of physical capital
investment. Second, as the incidence of diseases decreases, due to the externality in disease transmission
the fraction of infectives decreases. This decreases the rate of investment in health expenditures. This
leads to a non-monotonicity in the share of health expenditures, see Figure 7. This should hold for a
cross section of countries when we consider the expenditure on a given infectious disease.

6.2 The birth rate b

The other two exogenous parameters are the death rate d and the birth rate b. As they enter the
model only in difference, we look at variations in b holding d constant. Thus, increasing b is similar to
increasing the net birth rate (taking into account migration). In the endemic steady state without health
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expenditure,
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db «a db o —afni db fi1 —afi
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This is because a rise of the birth rate has two effects. First, it has a negative effect as more needs to
be invested to maintain the same capital per capita. Second, there is a positive effect: The proportion
of healthy people increases due to more healthy newborns, and thus a higher labor force leads to higher
physical capital and consumption. Hence, the two effects are offsetting and the net effect is unclear in
general.

In the endemic case with health expenditure, by the implicit function theorem

a1, om 1 1, 1 ol
N l/ll Il” Ilil/ _ l/ - /*l/, - /1/79 ?
ab \I/(fzzg g+ fog'ly + fag an e fi2l') + \I,fzfuga e+\1,f2f129 b
- + ?
dh* 1 11 1 ol
- a(fn — f2a19'lp) + aagllé(fmfm — fi1fe)+ a(—fufzg/afg) ?
- - ?
dl* 1 dh*
d th — =_40U(h ?
and then 2 ==+ (h)
where %f = —% T —32(‘?::3102):5))2 R

Therefore, the effect of a rise in birth rate is ambiguous. The basic reasoning is similar to the
endemic case without health expenditure above, but here it becomes more complex by involving changes
in health capital. First, there is a negative effect: The marginal cost of physical capital and health
capital will increase which leads to lower physical capital and health capital. Second, since people are
born healthy the labor force is increasing, which means that the marginal productivity of physical capital
is increasing and hence, physical capital increases. On the other hand the higher labor force causes
marginal productivity of labor to decline and hence, health capital decreases. Third, because of more
healthy newborns, the marginal benefit of health is changing. The marginal benefit of health to labor

"' Note 8l /3b = —a'? > 0, but it is not clear Ol /b takes the positive sign or the negative sign.
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force is increasing (9l’/0b > 0), whereas the discounted marginal benefit of health to labor force 91j/9b
is unclear.

We vary b from 0.5% to 5%, which is the range of birth rates for countries in the world. So if
b € [3.6%,5%)] there is only a disease free steady state, if b € [3.1%, 3.6%] there is an endemic steady
state without health expenditure and if b € [0.5%, 3.1%)] there is an endemic steady state with health
expenditure. We can see from the Figure 8 that as b decreases, from the disease free steady state, the
endemic steady state with no health expenditure emerges, and if it decreases further the endemic steady
state with positive health expenditure emerges. The capital stock decreases, and as b decreases, it starts
increasing due to the increasing health expenditures. This is mirrored in the effect on consumption. One
of the interesting implications of this is that there will be a positive relationship between capital and
hence, output and health capital, and consumption and health capital. Thus, one may be led to think
that there is a causal relationship between income and health capital - that health is a luxury good.
However, the link is through the birth rate. If we were to look at the relationship between net birth rate
and health expenditure there would be the negative relationship which drives the link between income
and health capital. The intuition is that as the net birth rate falls the cost of the marginal worker falling
ill becomes higher and this leads to an increase in health expenditure and hence health capital.

In the literature (see Hall and Jones (2007)) an increase in longetivity is interpreted as a decrease
in the discount rate #. Thus, the comparative statics exercise we do can be interpreted as studying the
effect of increases in longetivity on optimal health expenditures. We find that increases in longetivity
alone cannot explain the observed rising shares of health expenditures. However, when we look at the
changes in the net birth rate (increases in b) we get the endogenous positive relationship between GDP
and the share of health expenditures, see Figure 9. This is similar to the finding of Hall and Jones (2007).
However, unlike their model we do not have to introduce a taste for health. They need to assume that
the marginal utility of life extension does not decline as rapidly as that of consumption declines as income
increases, i.e. there is a more rapid satiation of consumption than life extension. The mechanism in our
model is more direct. Decreases in the net birth rate increases the marginal cost of an additional worker
falling ill. The optimal response is to have increases in health expenditure, i.e. a more aggressive strategy
to control the incidence of the disease. This interacts with the rising per capita capital stock and the
increasing marginal product of capital which cause the GDP to rise as well.

7 The Conclusion

This paper develops a framework to study the interaction of infectious diseases and economic growth by
establishing a link between the economic growth model and epidemiology models. We find that there
are multiple steady states. Furthermore by examining the local stability we explore how the equilibrium
properties of the model change as the parameters are varied. Although the model we present here is
elementary, it provides a fundamental framework for considering more complicated model. It is important
to understand the basic relationship between disease prevalence and economic growth before we go even
further to consider more general models. The model also points the link between the health expenditures
and income - both of which are endogenous - may be driven by parameters of population - as the birth rate
drops the cost of a marginal worker becoming ill increases which leads to a negative relationship between
population growth and health expenditures (controlling for disease induced mortality). An epidemiology
model including control procedures, such as screening, tracing infectors, tracing infectives, post-treatment
vaccination and general vaccination can be used to study the economic cost and benefit analysis of disease
control. Moreover, the prevalence for many diseases varies periodically because of seasonal changes in
the epidemiological parameters. It may also be one of the reasons of economic fluctuations. In addition
the parameters can potentially be estimated and used to analyzed the economic effects of some specific
infectious diseases in detail.

In a companion paper, Goenka and Liu (2010) we examine a discrete time formulation of a similar
model. In that paper, however, there is only a one way interaction between the disease and the economy.
The disease affects the labor force as in this model, but the labor supply by healthy individuals is
endogenous and the epidemiology parameters are treated as biological constants. We find that under
standard assumptions the dynamics of the model with and without endogenous labor are topologically
conjugate. Thus, there may be no loss in generality in using an exogenous labor-leisure choice as in this
paper. Under the simplifying assumption of a one-way interaction, the dynamics become two-dimensional
and we can study the global dynamics. The key result is that as the disease becomes more infective,
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cycles and then eventually chaos emerges. Here, we endogenize the epidemiology parameters. Thus, it
is a framework to study optimal health policy. However, the dynamical system becomes six dimensional
and we have to restrict our analysis to local analysis of the steady state. In Goenka and Liu (2009) we
incorporate learning-by-doing into a similar model as the current paper. We find that the growth rate is
reduced by disease incidence. However, unlike Lucas (1988) the growth rate depend on all the economic
parameters of the model as the human and physical capital choice depends on these. Thus, even small
differences in the disease prevalence or in the economic fundamentals can have long run effects.

8 Appendix A: Existence of Optimal Solution

For the proof we also recall Mazur’s Lemma (Renardy and Rogers (2004)) and the reverse Fatou’s Lemma
as follows.

Let F' be a family of scalar measurable functions on a finite measure space (2,%, 1), F is called
uniformly integrable if { [, |f(t)|du, f € F'} converges uniformly to zero when u(E) — 0.

Dunford-Pettis Theorem: Denote L'(y) the set of functions f such that [, |f|dp < oo and K
be a subset of L'(p). Then K is relatively weak compact if and only if K is uniformly integrable.

When applying Fatou’s Lemma to the non-negative sequence given by g — f,, we get the following
reverse Fatou’s Lemma .

Fatou’s Lemma: Let f, be a sequence of extended real-valued measurable functions defined on a
measure space (Q,3, ). If there exists an integrable function g on 0 such that f, < g for all n, then

limsup,, .. [ fndp < [ limsup,, o frdp.

Mazur’s lemma shows that any weakly convergent sequence in a normed linear space has a sequence of
convex combinations of its members that converges strongly to the same limit. Because strong convergence
is stronger than pointwise convergence, it is used in our proof for the state variables to converge pointwise
to the limit obtained from weak convergence.

Mazur’s Lemma: Let (X,]|| ||) be a normed linear space and let (un)nen be a sequence in X that
converges weakly to some u* in X. Then there exists a function N : N — N and a sequence of sets of real

numbers {wi(ny | i =n,...,N'(n)} such that w;,) > 0 and ngy) Wi(n) = 1 such that the sequence (vn)nen
defined by the convex combination v, = Zﬁ(:)

as 1 — OQ.

wimyw; converges strongly in X to u*i.e.||lv, —u*|| — 0

Proof of Lemma 1
Proof. Since limy_. f1(k,1) = 0, for any ¢ € (0, 0) there exist a constant Ay such that f(k,1) < Ao+ k.
Hence we have

FUk1) < F(k,1) < Ag + Ch. (27)

Since k = f(k,1) —c —m — k(6 + b — d), it follows that
ke < fk,1) < Ao+ Ck.

Multiplying by e <" we get e STk — Cke ST < Age~S™. Thus,

t —(T t _ —(t
oSt = / R 4 kg < / Age—Srdr = —A0T Ao
0 or 0 ¢ ¢

—Ag (Ag+koC)eS?
st

This implies k . Thus, there exists a constant A; such that

k< Aject. (28)

Therefore, note that ¢ < 0, fooo ke=%dt < fooc A=t < +o0.

~ Moreover, since —k < kk and k < Ag + Ck < Ay + CAi1eSt there exists a constant Ao such that
| k |< AgeSt. Thus

/ | k| e %dt < Axe Nt < 400.
0 0
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Because —k < kk and ¢ = f(k,l) — k —m — 6k — k(b — d), it follows from (27) and (28) that

FfE,D)+k(k—06—b+4d)
Ag+(k—0—-b+d+ Ok
Ag+ (k=30 —b+d+()Arest.

c

INIACIA

Thus, we can choose a constant As large enough such that ¢ < Aze$? which implies
(o) o0
0< / ce Ot < / A3l < o0
0 0

Similarly there exists A4 such that m < A4e$t and m € L' (e~%).
Now we prove | /i |, h belong to the space L'(e~%).
Since g(m) < mom!2, there exists a constant By such that h < g(m) < Bye¢t.

Clearly h = fot hdr + ho < fot B1eS7Tdr + ho = %eqt — % + ho which means there exist By such that
h < ByeStor h € L'(e%). Moreover —h < (6+b—d)h because g(m) > 0. Therefore —h < (6+b—d) Bae‘t.
SO‘ h |§ Bgect with B3 = maX{Bl, (6 +b— d)Bz} Thus | h |E Ll(eiet).

Obviously, I € L and lim;_,, le~% = 0. It follows that

/ le 0%t = —l, +9/ le70dt < —l, +9/ e %dt < +o0.
0 0 0

Finally, we will prove that | [ |€ L*(e=%%). Since 0 <[ < 1 and a(h) is decreasing, we have

| IS b+ ()] + |a(h)]
< b+ [y(h)] + |a(0)]
= v(h) + b+ (0).

Since limp, oo 7' (h) — 0, there exists a constant By such that y(h) < By + Ch < By + (Byet. Thus,
there exists By such that| [ |< BseSt. This implies | [ |€ L'(e~%). We have proven that K is uniformly
bounded on L!(e~%).

Moreover, limg_, o0 faoo ke %t dt < limg_, o0 faoo A1e$=9tdt = 0. This property is true for other variables
in IC. Therefore K satisfies Dunford-Pettis theorem and it is relatively compact in the weak topology
o(L'(e7),L>). m

9 Appendix B: Center Manifold Calculation

Here, we introduce the procedure of calculating center manifold instead of the calculation part itself. We
use # = g(x,b) to denote the dynamic system, where = = (k, h,1,c)T € RL,and g: Ry x RL — R is the
vector field. Moreover, we use x* to denote its equilibrium point, and so g(z*,b) = 0. Bifurcation occurs
when b* = @ —~. We assume g(z,b) to be at least C°. We follow the procedure given by Wiggins (2003)
and Kribs-Zaleta (2002):

1. Using z = x —x* and b=b— b*, we transform the dynamical system into I= g(T+ ¥, b+ b*) with
the equilibrium point 2* = 0 and bifurcation point b* = 0. Then we linearize the system at point
0 to get & = D,g(z*,b*)Z + Dpg(a*,b*)b+ R(Z,b), where R(Z,b) is the high order term;

2. Let A = D, g(a*,b*), B = Dyg(a*,b*) and calculate matrix A’s eigenvalues, corresponding eigen-
vectors matrix T'A (placing the eigenvector corresponding to zero eigenvalue first ) and its inverse
TA-L. By transformation & = TA-y, weget y = TA™ - A-TA-y+TA 1. B-b+TA . R(TA-y,b),
where TA™! - A-TA is its Jordan canonical form;

L21f limyn, —ocog’ = 0 holds, there exists a constant Bp such that g(m) < Bo + ¢(m where ¢ € (0,0).Thus, h < g(m) <
CAgeSt.
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3. We separate y into two vectors y1, the first term, and yo, the rest terms, and then we can rewrite
the system as:
yi =Tiy1 + Ri(TA-y,b)
Yy = Taya + Ro(TA - y,b);

Since TA™! - B # 0, we separate it into two vectors A; with only one element, and A, with the
rest, and form a system as:

/

Y rh Ay 0 Y1 Ri(TA-y,b)
b | = 0o o o b+l 0
Y2 0 Ay I Y2 Ro(TA -y,b)
~———
c Yo Ry(TA-y,b)

4. In order to put matrix C' into Jordan canonical form, we make another linear transformation
ypy=TC -z, and get 2 =TC~1.C-TC-2+TC~ - Ry (TA-TC - 2,b), where z = (21, b, 22, 23, 24).
Therefore, we can now write the system as:

z'l =11z + Rl
zh = Tlaz0 + Ry
24 = sz5 + Rs
2 =Tl4z4 + Ry
b =0;

Z1y 225 235 %4,
R1,%2,%35 %4,

21,22, 23, %4,

b)
b)
b)
b)

o~ o~ o~ o~

21, 22, 23, 24,

5. Take z; = h;(z1,b) (i =2,3,4) as a polynomial approximation to the center manifold, and differ-
entiate both sides w.r.t. ¢:

IL;2; + Ri(21, ho, ha, ha,b) = Dy, hi(21,b) [l 21 + Ri(21, ha, hs, ha, b))].
And then solve for the center manifold by equating the coefficient of each order;

6. Finally, we write the differential equation for the dynamical system on the center manifold by
substituting h;(z1,b) in Ry(z1, 22, 23, 24, b), and get the system:

2} =21 + Ry (21, ha(21,b), ha(21,b), ha(z1,b),b)
v =0.

However, in our economic epidemiology model as dynamics of [ and h is independent of the rest of
system dynamics, we could just simply calculate their dynamics on the center manifold, which is given
by:

1~
L =a — =b).
Z1 = az(z a)

10 Appendix C: Stability Analysis

For the determinants calculation, we have:

air = bO,ai3=f3,a14 =a15 = —1,a00=—0 — (b—d),az5 = g'*,a32 =(1- l*)(’Y/* - O/*l*)
1% * (1% 1% 7% 1%
_ * * Kk K% _ « g _f1(7 70[1)9
a3z = b+ —a’ a4 = f,aa3 =" fl5,a5 = —f11fg,,*va52 = Wgn*
fik (20/*[* _ Oé/* _ ,y/*) . gl* fik gl* . fik g/*
asz = ( A= —a ) — fi2 g,Taa54:FanSS:flva%:Egu*
fik2 * Ik 7% /% I f2*2 * %k fék fék
g = _C*7a62:_)\3(2a I — 4" —a )7%3:—0* —2)\3a,a64zc*—27a6626*/\§.
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Let us denote X = § +b—d,Y = a — v — b, we have the following relation will be used in the

calculation. i} .
)\* _ f2 — f2
5T (-2 + b+ +a)  c(0+Y)
azz = —X,az3=-Y (29)
ass = fi=0+0+b—-d)=0+X (30)
age = fQ*:H—b*’Y*+oz*:0+Y (31)
c* A}
fifs g™ 1
Aged54 = A56064 = AE gl o2 (32)
_ **fikg/*_*g,* * —
—a41054 = ¢ fllch,,* = fllg”* fi = as1a55 = a5 (X +0) (33)
Since , ,
=g (11" —a™l") _ aizagsass
0+ a* —b—~* age
we also get
a55066 = (113025032 = (9 + X)((g + Y) (34)
anas6064 = Q41054066 = —as1(X +0)(Y +0). (35)
As Ajc* = %, we have
_ g ( ffz) _ (—g’*fi‘z) (X+0) _
as6t61 = oo\ T )T 1% TUoNEex
A5 g c g Aic
- (g’*f{}) a55066 gl*ff2> faazsazz N <gl*ff2)
- 1% : * - 1% ' * - 1% -A25032-
g 3 g f3 g
Thus,
g fis
G25056062 T 425032053 — A56061 = (25056062 1 25032053 + Wa%a:m
fl* gl* / ’ I / / f1*<20/*l* —a — ’7/*) gl*
a’25[ >\§ g//* 3( & Y « ) + ( )(Py « ) (1 o l*)(’)’/* _ Oé/*l*) f12 g//*
Ix Lk
_|_g /‘/]112 (1 _ l*)(’}/* _ Ol/*l*)].
g
Hence,

32025053 + (56025062 — As6061 = 0. (36)

* /% 1% %

f —9"f
54043025032 = c—iﬁc*ffga25a32 = (_fl*)( g”* 12)CL25CL32 = —(X + 9)@56(161 (37)

The characteristic equation, |AI — J3| = 0 can be expanded and written as a polynomial of A as
P(A) = A® — D1 A% + DyA* — D3A3 4+ DyA? — DsA 4 Dg = 0

where the D; are the sum of the i-th order minors about the principal diagonal of 3.

Thus, for D, we have
Dy = ay1 + az + azz + ass + ass + aes

which are first order minors about the diagonal.

Dy = aii(age + ass + ass + aes) + aa1 + as1

+ass(ass + ass + ags) — as2a25 + asz(ass + ass) + assaes
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Replace

a2 + ass + ass +age = 20
az3 +ass +ags = 20+ X
a55+a66 = 29+(6+b*d)+(a*’}/7b)
= 20+ X+4+Y
we get
Dy = 207 - X204+ X)-Y 20+ X +Y)+ 0+ X)O0+Y) + aq + as; — aszaos

30% — G(X + Y) —X?2-Y? + a41 + as1 — as20a95.

D3 = a11a20a33 + a22a41 + 11022055 + A22a51 — Q11025052 + A11022066

+assaq1 + a11a33055 + 33051 + @11033066 — G41054 1 G41055

+a41066 + 11055066 — 56061 + A51066

+a22a33a55 + A32025053 — 25052033 + 022033066

+a22a55066 + A25056062 — 25052066 + 433055066

We keep only a41, assas2, a25a56a62, G25032053, A56a61 in the expression and replace a1, as2,ass, ags
via X,Y,0 from (29)-(31) and using (33)
Dg = 9[92 — 20(X + Y) — 2(X2 + YQ)] + 29&41 + 29&51 — 29@25@52

+a32a25053 + A25056062 — A1056-

It follows from (36) we have assassass + assasease — ag1ase = 0.

Hence
D3 = 010> —20(X +Y) — 2(X? + Y?)] + 20a41 + 20as, — 20azsass.

Dg = ags [a55a22a33a41 — (25032043051 — 25033041052 + 025032041053
—025054011032043 + G25054013032041 — a54a22a33a41] + a56064022033041

+assazs [0646111@32@43 — (64013032041 + 032043061 + Q33041062 — 03261416163]

Dy, D5 are explicitly computed and the signs depend on X,Y, 0 and ag3 = — I 2M\5a.

c*

By replacing ai1, ass, ass, ags via X,Y, 0 and using (29)-(37) we have :
Dy = an[2XY +agsase + X2 +3X0 — Y0 —Y? + 6% + a5 [-2XY — 20X —30Y — 6% — Y2 + X + 0]
F2XY (X +0)Y +0)+0XY (X +0)+ (0 +Y)0XY — Y (Y 4+ 0)(X +0)
+[=0% + 0Y + Y?)agsase + (0 — Y)aseazsaee + (Y + 20)azsazsass + (2X + Y + 0)aseac
—a56025032063-
Using (29)-(37) we get
Ds = an[-X0X+0)—YOY +0)] —a5: (X +Y +20)(X +Y)0+6%) + a5 X(Y +0)(X +0)
+(Y + Q)QXY(X + (9) + [(Y + 9)9 - 9a41]Ya25a52
+(Y + 0)9&25@32&53 + [(X + Y)0 + 82) + 9(X + 9)}&560,61 — 0Ya56a25a62
+a41(azs5a32a53 + as6a25062) — A25032043051

—asebassazaaes
It is easy to see that

a41(a25032053 + A56025062) — (25032043051
(41056061 — 025032043051 =
asqa41056a61 + (X + 0)assasias

a54
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Thus D5 = Ag — asgfassazsags where Ag > 0 but the sign of Dy is ambiguous since we do not know
sign of ags.

Proof of Proposition 4
Proof.

By using (32) we rewrite Dg as follows :

D¢ = ag6(as5a22a33041 — A25033041052) + A56025(A32043061 + 433041062 — A32041063) + Q66025032 (041053 — A43G51)

a11032(143a25(a56a64 - a66a54) + a13032041025((166a54 - a56a64) + a22a33a41(a56a64 - 0661154)

= a66(a55022033041 — Q25033041 A52) +A56025[a32(A43061 — A41063) + 33041 A62] + 66025032 (041053 — 43a51).

Obviously age(assazeasszasr — azsaszasase) < 0.

Note that asgazs < 0 , azz = (b+~* —a*) = a*(I* — 1) and by concavity of f, fi3 < fi1f3 we have

a56a25[a32(a43a61 — @41063) + A33041062]

@

ascagslasa(—fi5 — ¢ i1 (=72 = 2X5a%) — agsc” f11 A3 (201" — " — ™)

[

aseazs|asa(—f13 + fi1 /32 + 20 fliAsa”) — assc” fii A3 (201" — ™ — ™))
[
¢

*

< assazs|c* fiiN5(2a%azs — asz (21 — 4" — o))
= aseazs|[c fi N5 (2% (1 = 1" )( M) =t (1F = 1)(2aF 1 — A = o))
= aspags[c" fI A (@ (1 —1%) (29" — 201" + 21" — o/* — o'*)]
= a56a250*fik1)\§(04*(1 =M =a™)
f * * *
= )\1 f11>\3( (11 )(’Y/ —a )
39
and
a66a25a32(a41a53 — a43as1)
fr(2a/*1* — —~) q*
= agsazsazz[c” 1 ,,*( (1 sy v o/*l*) — [2) + " flafi ,,*]
gl*
_ f2 /* *f /* f*(2 /*l* Ik l*)
- C*)\* 11 g’ e « v
Hence

056025[032 (043061 - C141@63) + 03361416162] + agea25032 (041%3 - 043%1)

fig*® f3 9"
* * * * * /% /* * * IEES Ix 1%
< SrgEe N (=10 =) 4 S S 2a T~ )
3
91*2 / f2 / / /
= oMl Q=)0 —a”) + =55 (2071 — o™ =47
g c* A3
921*
— g”* ikc*fikl[a*(l —l*)(’}/l* _al*) + (G—b—’y* +O[*)(20/*l* _a/* _7/*)]
2/% 1% *
= e fll@® =b=7")(" —a") + (0 -b—7"+a )(g—a’ ")

a*

< 0 by A.10(i).
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The proof is complete. m

Proof of Lemma 4

Proof.
Dy = aii(age + ass + ass + ags) + as1 + as:
+aza(ass + ass + aes) — as2a2s5 + asz(ass + ass) + assaes
= 292 —X(29+X) — Y(29+X+Y) + (9+X)(9+Y) + aq1 + as1 — as2a25
= [302 —0(X+Y)—X2—Y2] + aq1 + as1 — a5209s5.
and
Dg = 9[92 — 20(X + Y) — 2(X2 + YQ)] + 200,41 + 29(151 — 29@25@52
Thus

D1Dy— D3 =30[30> —0(X +Y) — X2 - Y2 - 09[> —20(X +Y) — 2(X? +Y?)]
+3t9[a41 + a5 — C(,52a25] — [29&41 + 20as, — 29&250,52]
= 9[892 — Q(X + Y) —X?- Y2] + [9&41 + Oas — 9&25(152]

which is negative since fay; + fas; — fagsase < 0 and 86% — (X +Y) — X% —Y? < 0 due to 4.10

(ii).

Furthermore Do < 0, D3 < 0 since

02 —20(X +Y)—2(X2+YH <302 —0(X +Y) - X?-Y? <82 —9(X+Y) - X?-Y? <0.
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