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Abstract The paper develops general tools to analyze the prices in dynamic equilibria

with heterogeneous prior beliefs and learning in an environment with risk–neutral agents,

short–selling constraints and the dividend process following a hidden Markov process. Par-

ticularly it analyzes conditions for speculative bubbles to arise in such an environment. I

introduce the concept of recursive equilibrium, which uses current beliefs as state variables.

I give the precise definition of the speculative bubble as a difference between the price and

the market fundamental, with market fundamental being the maximum across the agents of

buy-and-hold forever individual valuation of the asset. Then I show that any sequential mar-

ket equilibrium price must be at least of the magnitude of that of the recursive equilibrium.

Since in this environment the fundamental value of the asset is not affected by the particu-

lar equilibrium outcome, then this implies that the magnitude of the speculative bubble in

equilibrium is also bounded below by that of the recursive equilibrium. The main result is

to prove that a recursive equilibrium generates a sequential market equilibrium (Theorem

1) and to propose a simple operator, which characterizes the recursive equilibrium price as

its fixed point. This operator is shown to be a monotone contraction, which gives not only

uniqueness but also provides a simple criterion for the existence of a speculative bubble in

equilibrium. The paper is closed by two illustrative examples.
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1 Introduction

This paper provides a theoretical insight into the possibility of speculation in asset mar-

kets, driven purely by heterogeneous prior beliefs about the relevant dividend process.

The question of speculative trade is inevitably linked to so called market bubbles. His-

torically people give that name to a particular behavior of the price of a commodity or an

asset, which was characterized by a significant growth of the price without any apparent

fundamental reason, often followed by a collapse. Formally, a bubble is typically understood

in the economic literature as the departure of an asset price from its fundamental value.

What is problematic with this definition, however, is that there is no broadly accepted def-

inition of the fundamental value. In this work I provide one definition without claiming

any superiority over the others. In my opinion it naturally matches the environment of this

particular model but would not work in many other environments.

The most famous and the most cited historical example was the Dutch tulip mania in

1636-37. Since then there have been many other notable examples of bubbles, with the most

recent ones including the Japanese asset pricing bubble and the dot-com bubble.

All of these bubbles were called speculative bubbles, following the folk belief that they

were generated by some traders buying an asset or commodity in order to profitably resell

it in the future, without actually believing it has any significant intrinsic value.

In the context of rational expectation models, having rational traders behaving in this

way would require either some sort of market imperfection (some agents who will be buying

the asset in the future are unable to participate in the market now) or agreement to disagree

type of behavior (some agents expect other agents to become over-optimistic in the future).

In this paper I will focus on the disagreement based speculative trade.

I will be analyzing both speculative trade and the bubbles in a context of a model with

risk neutral agents having heterogeneous beliefs, and facing short selling constraints. Both

speculation and the bubble, or the fundamental value, will be given a precise meaning and

it will be clear that both phenomena are very closely related.
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By speculative trade I will understand a dynamic general equilibrium outcome, in which

there is a contingency where an agent who currently holds the asset is paying a price that is

higher then his subjective net present value of holding it forever. This means this particular

trader buys the asset with the intention to re-sell it at some future date.

The bubble will be defined as an equilibrium outcome, in which the current price of an

asset is higher than the fundamental value, which is defined as the maximum of any agent’s

subjective present value of holding it forever.

Here, I will be solely focused on the risk neutral environment, in which agents need

not trade for any insurance purposes. With risk neutrality, when agents have homogeneous

beliefs, even with short selling constraints, there cannot be any essential trade (agents are

indifferent in terms of trading or not). This is the case even with heterogeneous signaling,

as is implied by the ”no-trade theorem,” cf. Milgrom and Stokey (1982). Once we introduce

heterogeneous beliefs the situation is not so clear. One could expect the heterogeneous priors

would just make the most optimistic agent hold the asset forever. Obviously what might

happen is that there is not a permanent optimist, but even if there is one, there is still some

disagreement about the exact probabilities of various future events, not just fundamentals.

Agents might be trying to exploit that disagreement to bet against each other, with the only

tool to do that being to trade the asset. It seems very natural and following the popular

understanding of the word speculation to call such a trade speculative. And my definition

indeed exactly captures this type of trade in the risk neutral environment. I will discuss the

issues associated with heterogeneous priors in more detail in the next subsection.

Note that in environments with risk aversion, one could easily construct examples in which

the price is higher than the fundamental even with homogeneous beliefs. This is because

the short-selling constraint makes the full insurance or smoothing impossible. Even though

the price might be considered by agents higher than their marginal valuation, they cannot

permanently reduce their asset holdings because of the binding short-selling constraints in

the future. They also do not want to reduce the asset holding only in the current period
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because that would reduce the consumption smoothing. According to my definition however,

this would also be a speculative trade, although clearly the mechanisms pushing agents to

trade in this way would be different than in the case of heterogeneous belief-driven trade.

I will now go over the contents of this paper. The model developed here is based on

the paper by Harrison and Kreps (1978). In their model the equilibrium price is above any

agent’s buy-and-hold forever valuation of the asset, hence there is a bubble according to the

definition below (Harrison and Kreps call it a speculative premium rather than a bubble).

This bubble is generated by a speculative trade driven by differences in subjective beliefs

accompanied by a short sale constraint.

They consider an example with two groups of risk neutral agents. The agents trade one

risky asset of supply 1. There is a short sale constraint. Dividends follow a 2-state Markov

chain and can take value 0 or 1 in each period. The agents differ in their beliefs about the

transition matrix. Agents of type one assign relatively high probabilities of switching between

the states (dividends) while agents of type two perceive the states as more persistent. Both

types are certain that their transition matrix is correct. The numerical values are chosen

so that in each state the present expected value of the stream of all future dividends (the

fundamental value) is higher according to the agents of group two.

This would suggest that it should be the agents of type two who permanently hold

the asset in equilibrium and also, given risk neutrality, the price should be exactly their

fundamental value. Surprisingly, only if the dividend is 1 agents of group two hold the asset.

If the dividend is 0 agents of type one buy it. Why is it so? The mechanism is quite simple.

Type one agents buy the asset in state 0 (when the dividend is 0), because they think there

is a good chance of switching to the other state next period. Further, they (rationally)

expect that the price will be high if the dividend is 1, since type two agents assign a high

fundamental value to the asset in that state. Moreover we get that the equilibrium price is

higher than any agent’s fundamentals in each state. Throughout Sections 3 and 4 I will go

over the Harrison and Kreps model in more detail, using it as an illustrative example for my
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model.

The result of Harrison and Kreps is simple and quite beautiful but unrealistic in some

respects. The asymmetry of agents’ subjective beliefs persists in spite of commonly observed

histories. It is this feature which makes the speculation so highly persistent (indeed it lasts

forever).

The problem in this example is that it is unclear how robust it would be to adding

learning. One could expect that if agents were not dogmatic any initial disagreement would

eventually disappear. This might be expect to remove speculation in two ways. One would

be just asymptotic removal, coming from the convergence of posteriors. The other would be

if the knowledge that other agents will be learning would not significantly reduce the size of

speculation even in the beginning as agents would not be able to count for a profitable resale

due to the anticipated learning process of the others. The difficulty with verifying these

statements is that adding learning to the environment with heterogeneous beliefs makes

solving for equilibrium much more difficult. Even though some work has been done in

asset pricing with learning in the context of verifying the market selection hypothesis (cf.

Blume and Easley (2006) Sandroni (2000), or more recently, Beker and Espino (2009)) that

methodology only applies to frictionless environments.

This paper attempts to build a methodology to analyze the asset pricing with hetero-

geneous beliefs and the dynamic effects of learning in environment with market friction,

namely short selling constraint. In this case the focus is on speculative bubbles and their

dynamical features, but this methodology can be also used more broadly. It uses recursive

techniques, so for that purpose the environment needs to be time homogeneous, which might

be considered a significant constraint. To offset for that I propose an environment which is a

little bit more general than standard Markov, which is sometimes called hidden Markov. It

means agents believe there is some underlying regime process, which is Markov and cannot

be directly observed. The current state of that process determines the current law of the

dividend process. This way it is possible to capture various aspects of the way people tend
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to interpret the same signals. One can for instance consider an example where two regimes

are most of the time generating very similar laws for dividends, and only differ on some rare,

tail events. Conditional on observing these rare events, agents, who concentrate their priors

on these different regimes, might react in terms of short run predictions in a very different

ways even though for a long time they had been perceived to make similar forecasts. This

might ultimately give rise to some pattern of speculative bubbles which arise as a result of

rare events.

Using hidden Markov structure allows at the same time a relatively simple way of keeping

track of beliefs updating. All the information about the agents’ predictions for the future

is completely described by their beliefs about the current position of the hidden state. This

allows for the application of recursive equilibrium approach, in which agents’ trading strate-

gies (and prices) depend only on the current belief profile rather than the whole history. I

formally introduce the notion of belief-based recursive equilibrium. To my knowledge this

idea is pretty original.

This allows me to map the consumers’ problems of such economies into the stochastic

dynamic programming techniques a’la Stokey et al. (2004). The main result showing that

mapping is Theorem 1. This provides a powerful tool for numerical computation of such

equilibria and offers a useful analytical tool for checking up if a given environment features

speculation.

An important supporting result is the one provided by Proposition 4, which states that

recursive equilibrium is not just any sequential equilibrium, but it actually is a one with

the lowest possible prices. This result is important in the context of analyzing speculation,

namely if we have speculation in recursive equilibrium, then it must be the case in any other

equilibrium.

In the end I propose two illustrative examples. In one example I prove that if there are

only two hidden states then there is no speculation in any recursive equilibrium, no matter

what initial beliefs are. In another setup with three hidden states I show that, for some
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particular initial belief, the equilibrium price has to feature a bubble.

An interesting feature of this example is that it is significantly different from the one

of Harrison and Kreps. Here agents have exactly the same transition matrix. They only

differ in their beliefs about the current position of the regime. The fact that this leads

to speculation is pretty significant, because learning about the current regime is much more

difficult than learning about the transition matrix. The thing is that the regime changes over

time, while the transition matrix stays the same. This will lead to the proposed persistence

of the speculative behavior.

Now, I will briefly discuss various issues associated with using heterogeneous prior beliefs.

First, it is worth pointing out why it is crucial that the difference in beliefs must be coming

from heterogeneous priors and not from heterogeneous signals.

In this class of models, as in Rational Expectation Equilibrium (REE) models, it follows

from the famous agreeing to disagree (cf. Auman (1976) ) and no-trade (cf. Milgrom

Stokey (1982) ) theorems that the price has to reflect any important private information,

in particular ruling out agents’ betting against their posterior beliefs, which in particular

implies there cannot be any speculation. In other words and agent cannot take advantage of

his private information because the rest of the market would learn that information instantly

from the price.

The existence of speculative trade in the context of REE models is related to the value

of information. There is a line of research that focuses on the value of information. The

most influential attempt to give information a value was done by making a market game a

positive sum game. Clearly if the game is of a positive sum, then the no trade theorem is not a

problem anymore because the market participants do not need to use the private information

against each other. They can coordinate in some fashion to exploit that information and

share the surplus. Important papers in this spirit include Grossman and Stiglitz (1980),

Hellwig (1980) and Kyle(1985). These papers consider a market game, in which there are

noise traders, who trade for the reason external to the model. In other words, their utility
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function is not explicitly analyzed and they provide a stochastic supply, which is independent

of the price. This gives that game a positive sum. If some of the agents have some information

about the behavior of the noise traders they can use that information against them without

making other strategic agents worse off.

Unsurprisingly, Grossman and Stiglitz (1982) and Hellwig (1982) obtain the result that

as the noise goes to zero, the value of information goes to zero and the price becomes fully

revealing. This just confirms that in the context of the models where heterogeneity is coming

from differentiated signals, in order to get speculation one needs to significantly depart from

the rationality of some agents.

Using unexplained heterogeneous priors allows avoiding the problems related to the no-

trade theorem (agents trading with each other because they know that their beliefs differ, not

their signals). Nevertheless, there are some objections in economic literature concerning using

heterogeneous priors. Besides the obvious one, that if one is willing to assume heterogeneous

priors one can explain pretty much everything, there is a more troubling point, called the

market selection hypothesis. It is associated with the lack of learning in Harrison and Kreps

mentioned above. The market selection hypothesis is a long standing tenet in economic

theory, which states that even if agents start with heterogeneous priors, after a sufficiently

long period of trading, the agents who started with beliefs that are the farthest from the

truth should either learn or be removed from the market. In other words, in well–established

markets the traders should have essentially the same beliefs. As compelling as it may sound,

the market selection hypothesis was never convincingly proved or disproved in the economics

literature, with many papers showing examples going either way (see Sandroni (2000) or

Blume and Easley (2006) for a detailed market selection hypothesis literature overview).

Another aspect of using heterogeneous priors is necessity of dealing with the true data

generating process on top of what agents believe it to be. This issue is related to the market

selection hypothesis but going a little bit beyond, more into the nature of what economic

modeling really is. If one takes a stand that economic modeling should be about how agents
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preferences affect their behavior in various circumstances, the idea of the true distribution

seems to be somewhat irrelevant. We do observe only a single trajectory anyway. On the

other hand if one believes in the stochastic nature of the physical world, than he should also

be willing to accept that the stochastic nature of the reality should be added to the way

agents adjust their beliefs. This objection is not exactly relevant to the model presented

in this paper, which focuses on mechanics how current beliefs translate into prices, but any

application of this model will require to specify what the true data generating process is in

order to make any statistical predictions.

I will close this introduction with a brief overview of the most relevant literature on

speculation, driven by heterogeneous beliefs.

Following Harrison and Kreps (1978) mentioned before, Morris (1996) considers the ef-

fects of allowing for learning in the original model. He considers a special case of Harrison

and Kreps, with a iid dividend process. Using some parametric classes of invariant distri-

butions for the priors (like β-distributions) he gets a nice explicit formula for the learning

dynamics. Also he gets a nice criterion for having speculation in equilibrium. He indeed

gets some speculative behavior but the numerical experiments show that the speed of the

convergence of the equilibrium price to the fundamental value is very fast. Hence this paper

addresses only the second of the two issues associated with adding learning mentioned before,

namely the one about the current level of bubble being robust to adding learning.

An interesting attempt to control the convergence of equilibrium prices to the fundamen-

tals is Bossaerts (1995). Here there is no dividend bearing, infinitely lived asset. There are

only 1-period future contracts with risky return. The payoffs of these contracts are iid over

time. There are countably many generations of agents. The beliefs are shared and updated

within generations. Each period a new generation of agents joins the market and stays there

forever. The new generation comes with its own initial beliefs, which are immediately up-

dated by the up to date stream of returns. He assumes that the returns are normal with

mean zero and the unknown variance, and that the beliefs about the variance are inverted
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gamma-2 distributions. This specification allows for an easy analytical treatment and a

flexible control over the equilibrium price dynamics. It is easy to get that the initial price

exceeds the rational expectation one. The conditions for the convergence of the prices to the

rational expectation values are given. For some choice of beliefs we can get no convergence,

which gives a powerful tool to control the rate of convergence. All of this is done at the

expense of having new coming generations with more and more biased initial beliefs. Also

an important role is played by the fact that the agents’ problem is not dynamic (the future

contract is only for 1 period).

The most recent paper in that spirit is the one of Scheinkman and Xiong (2003). In their

model the (cumulative) dividend follows a diffusion process, with drift ft, which is called a

fundamental variable and is not observed by the agents, they only know it follows another

diffusion process. Even though they use continuous time diffusion process techniques, their

model can be treated almost as a special case of mine (after appropriate discretization of their

setup or redesigning mine to cover the continuous time case). There is one crucial difference

though. Given the normal environment of them, which is easy to deal with analytically, it is

pretty hard to obtain a speculation in the case when the agents only observe the cumulative

dividend as a common signal. To fix that problem Scheinkman and Xiong consider additional

signal processes sAt and sBt , which are both diffusion processes with ft as their drift part. As

for the innovations part, A believes that the one of sAt is correlated with the one for the process

ft while agent B thinks that it is the one of sBt . So agent A even though he can observe both

signals, he thinks his signal has a better quality than the signal of agent B and vice versa.

The model stated in that way can be explicitly solved analytically and features speculation.

The problem is that it requires an additional signalling structure (besides dividends), and

also even though agents are updating their beliefs about the underlying fundamental process,

ft, they are not learning about the informativeness of the signals and always use their own

one for updating.
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2 The Model

2.1 Economy

There are 2 agents, who are endowed with zero units of consumption good at each time

period, t = 0, 1, . . . they are both risk neutral and have a discount factor β.

There is one unit of risky asset in this economy, which agent can trade each period

in general equilibrium fashion with no short sales allowed. The asset gives to its owner a

dividend dt each period. Each agent starts with some initial holding of the asset, γ̄i0, such

that γ̄1
0 + γ̄2

0 = 1.

There is an underlying regime process, at, taking value in some state space A. We assume

at is Markov and it cannot be directly observed by the agents.

The dividend, dt, is generated independently each period from a distribution which de-

pends on the current regime, at ∈ A. The distribution associated with regime at we denote

Φat .

Now let us turn to describing these processes formally.

First, to fix ideas, I will denote (Ω,F) an abstract measurable space over which all the

random variables in this paper will be defined.

Let the set of possible regimes, A, has a structure of the Polish space and the regime

process, (at)t=0,1,... be a stationary Markov process with the transition function q : A → ∆(A)

assumed Borel-measurable, with ∆(A) denoting the linear space of all Borel probabilistic

measures over A endowed with weak*-topology.

Let D ⊆ R denote the set of possible dividends (assume it is Borel-measurable), and let

{Φa}a∈A be a family of probability distributions over D (i.e. Φa ∈ ∆(D) for each a ∈ A)),

such that Φ· : A → ∆(D) is Borel-measurable (with respect to weak*-topology on ∆(D)).

We will also need to assume (in order to be able to use Bayes’ rule) that Φa has a density

function with respect to some regular measure on R, µ (usually either discreet or Lebesgue).

Denote this density by φa.
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Having specified ā0 ∈ A, the family Φ ∈ B(A, {ζ ∈ ∆(D)|ζ << µ}), and the transition

function q ∈ B(A,∆(A)) (I follow the convention of denoting the linear space of Borel-

measurable functions by B(·, ·)) we denote by Prā0,Φ,q a probability measure over (Ω,F)

which is consistent with the Markov structure of the process at and with the described

structure of the process dt (i.e. such that a0 = ā0 with probability 1, at is Markov with the

transition function q and dt is drawn independently each period from the distribution Φat).

Formally, for each A0 ∈ B(A), . . . , At ∈ B(A), D1 ∈ B(D), . . . , Dt ∈ B(D) we have:

Prā0,Φ,q(a0 ∈ A0, . . . , at ∈ At, d1 ∈ D1, . . . , dt ∈ Dt) =

=

∫
A0,...,At

Φa1(D1) . . .Φat(Dt)δ{ā0}(da0)q(a0, da1) . . . q(at−1, dat)

=

∫
A0,...,At

D1,...,Dt

φa1(d1) . . . φat(dt)δ{ā0}(da0)q(a0, da1) . . . q(at−1, dat)µ(dd1) . . . µ(ddt)

Now let’s turn to agent’s information structure. They both can observe dividend dt each

period and none of them can observe at. Denote by (Fdt )t the filtration generated by the

process dt.

In particular the agents don’t know the initial regime, a0 and also they don’t know

the family of distributions Φ· or the transition function q. We will assume that Φ· and q

can take values in some Borel sets of admissible values, Φ ⊆ B(A, {ζ ∈ ∆(D)|ζ << µ}),

and Q ⊆ B(A,∆(A)), respectively. Hence the agents formulate beliefs about the value of

(a0,Φ·, q).

Let Prπ be a measure that a player with beliefs π ∈ ∆(A × Φ × Q) assigns to (Ω,F).

This is clearly given by:

Prπ(F ) =

∫
A×Φ×Q

Prā0,Φ,q(F )π(dā0, dΦ, dq) (1)
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for any F ∈ F . Let Eπ be the expected value operator associated with that measure. Denote

the initial beliefs of player i by πi0 ∈ ∆(A×Φ×Q).

The timing is as follows. In the beginning of period t the new position in the Markov

process at is established, then dividend dt is generated and paid to the current owner of the

asset. After the dividend is paid the agents can trade on the centralized market for price pt,

subject to the short sale constraint.

Now we are ready to define (competitive) equilibrium.

Definition. An equilibrium (given initial beliefs, π1
0, π

2
0) consists of the processes: an allo-

cation, (ĉit)t , asset holdings, (γ̂it)t, and prices (pt)t such that prices are Fdt -adapted, and:

• For i = 1, 2, taking (pt)t as given, (ĉit)t and (γ̂it)t solve:

maxEπi0
∑

βtcit (2)

s.t. cit + ptγ
i
t+1 ≤ ptγ

i
t + γitdt

s.t. cit, γ
i
t+1 — Fdt -measurable

s.t. γi0 = γ̄i0, γ
i
t ≥ 0

• Asset market clears: γ1
t + γ2

t = 1

It is worth noting at this point, that it is an implicit feature of this general equilibrium

environment, that agents are facing prices as functions of all potential histories not beliefs.

Even though the equilibrium prices, in order to clear the market, have to convey the infor-

mation about all the agents beliefs, agents do not need to know the beliefs of the others.

That information, however, can be often inferred from the prices. In either case in this Wal-

rasian type of equilibrium, where agents take prices as given the structure of higher order

beliefs seems to be irrelevant. In order to consider this equilibrium as a rational expectations

equilibrium, the whole hierarchy of beliefs needs to be specified. Specifically, we can assume

the common knowledge of beliefs.
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Another technical issue associated with the definition above is that there might be a set

of future contingencies, which is believed by an agent to be of zero probability, on which

his behavior is inconsistent with Bayesian learning. In this paper I will be always assuming

to use the version of conditional probability which is consistent with Bayes’ rule, so any

resulting equilibria will not have this problem.

2.2 Speculative trade

In this setup, it is the most natural way to define speculative trade as the situation in

which the equilibrium price exceeds the fundamental valuation of the asset for the agent is

an actual holder. By fundamental valuation of agent i we understand the discounted stream

of all the future dividends expected by agent i. This is the highest price he would be willing

to pay for the asset if he was forced to keep it forever after the purchase.

It is a natual definition because agents are risk neutral and are sharing the discount

factor, hence agents do not need the asset to smooth consumption or for insurance. If they

decide to purchase the asset for the price which is higher than their subjective fundamental

value it is because they use it as a betting device against the market which they perceive as

not pricing the asset properly in the future. They understand the market does not price the

asset properly because there are some other traders with fundamentally wrong beliefs.

This definition however is not the most practical one because to check if there is a

speculative trade one would need to analyze the behavior of all the traders. A simpler

statistic which can measure the strength of speculative trade is a speculative bubble.

Definition. The fundamental value of the asset for agent i at time t, given history dt ≡

(d1, . . . , dt) is:

V i
t (dt) ≡ Eπi(

∞∑
τ=t+1

βtdt|dt)

Definition. Speculative bubble is a current excess of the equilibrium prices over the market
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fundamental value,

s(dt) ≡ p(dt)−max
i
V i
t (dt)

Note that whenever s > 0 we do have a speculative trade, but not necessarily the other

way round. Also note that the magnitude of the bubble is measuring how much the agents

value the opportunity to bet against each other provided by the asset, and not necessary

the volume of the speculative trade. For the remaining of this work I will be focusing on

the speculative trade which is associated with a positive bubble, and i will often abuse the

terminology by using speculative trade and a bubble interchangeably.

Example. Now let us see how the example of Harrison and Kreps fits into this notation.

In their model the dividend itself follows a 2-state Markov chain (can be either 0 or 1).

Agents differ in what they think the transition matrix is. Agent 1 thinks the transition

matrix is:

Q1 =

 1/2 1/2

2/3 1/3


agent 2 thinks it is:

Q2 =

 2/3 1/3

1/4 3/4


To map it into my notation it is enough to take A = D = {0, 1}, Φ = {Φ} with Φ0 = δ{0}

Φ1 = δ{1} (i.e. the current regime coincides with the current dividend and both agents agree

about it). We also have Q = {Q1, Q2}. As for a0 we may assume the agents know it as it

coincides with the dividend hence the agent’s beliefs about this one coincide and put the

whole measure on its true value. Hence the initial beliefs are just measures over A × Q,

specifically π1
0 puts all the measure on (ā0, Q

1) and π2
0 puts all the measure on (ā0, Q

2)

(where a0 is the true value of a0), i.e. πi0 = δā0 ⊗ δQi

We can see that since agents have disjoint supports in their beliefs they will not be
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learning the transition matrix over time. We will see in the next section that this lack of

dynamics in the beliefs is crucial for having an explicit solution for equilibrium prices in

the Harrison and Kreps example. In this case it is also straightforward to compute the

fundamental values. It is clearly only the function of last period dividend (for each agent)

because it is the sole factor to determine the future distribution of dividends: V i(dt) = V i(dt).

Denoting V i ≡ [V i(0), V i(1)]′ and using recursiveness and Markov property we get that it

has to satisfy:

V i = βQiV + β

 0

1


so

V i = β(I − βQi)−1Qi

 0

1


In case of β = 3/4 we get:

V 1 =

 4/3

11/9

 =

 1.33

1.22

 V 2 =

 16/11

21/11

 =

 1.45

1.91

 (3)

3 Recursive Equilibrium

Since we assume rationality of agents (given their own initial beliefs) they must do learn

from the observed signal in the Bayesian way. This creates certain dynamics of beliefs. I

want to make new beliefs be only dependent on the last period beliefs and the current period

dividends (rather than the whole history). To achieve that we introduce some new notation

for the updated beliefs, and understand the current beliefs to be a distribution over the

current position of the Markov process, at rather than the initial one. This will lead me to

the notion of recursive equilibrium, which will appear to be a powerful tool in analysis of
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the equilibria in this model. That doing so makes the model consistent with the Bayesian

learning requires some formal argument. It will be done in this section by proving that a

recursive equilibrium can be translated to an equilibrium.

First let us define the belief update operator, λ, which is crucial for applying the stochastic

dynamic programming techniques. It maps the previous period beliefs into the current one,

taking into account the current realization of the dividend d.

Definition 1 Given π ∈ ∆
(
A×Φ×Q

)
, and d ∈ D define a measure λd(π) ∈ ∆

(
A×Φ×Q

)
,

by

λd(π)(A× Φ×Q) ≡ Prπ(a1 ∈ A ∧ φ ∈ Φ ∧ q ∈ Q|d1 = d)

for each measurable A ⊆ A,Φ ⊆ Φ, Q ⊆ Q, and some particular version of the conditional

probability. Without loss of generality, throughout this paper I will be always using the version

of the conditional probability which is given by Bayes’ rule.

Definition 2 A (symmetric) recursive equilibrium consists of a value function V : [0, 1] ×

∆
(
A × Φ × Q

)2 → R, policy function, Γ : [0, 1] × ∆
(
A × Φ × Q

)2 → R+, and pricing

function, p : ∆
(
A×Φ×Q

)2 → R, such that:

V (γ, π1, π2) = max
γ′≥0

{
(γ − γ′)p(π1, π2) + βEπ1 (

V (γ′, λd1(π1), λd1(π2)) + γ′d1

) }
Γ(γ, π1, π2) ∈ argmax

γ′≥0

{
(γ − γ′)p(π1, π2) + βEπ1 (

V (γ′, λd1(π1), λd1(π2)) + γ′d1

) }
and for each γ, π1, π2, d we have:

Γ(γ, π1, π2) + Γ(1− γ, π2, π1) = 1

It should be noted that in this case the symmetry reflects the fact that only one value

function is used for both agents. When it is used for agent 1 it reads V (γ, π1, π2) and when for

agent 2 it becomes V (γ, π2, π1). Also note that whenever d1 appears under the expectation
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associated with measure π, (e.i. Eπf(d1) with f being any measurable real function) it refers

to the first period dividend distributed according to the probability distribution Prπ defined

in (1).

For notational simplicity it is useful to denote the beliefs process by πit, which is defined

recursively via:

πi1 ≡ λd1(πi0)

πit+1 ≡ λdt+1(πit)

Theorem 3 Given some initial beliefs, π1
0, π

2
0 ∈ ∆

(
A×Φ×Q

)2
, if V : [0, 1]×∆

(
A×Φ×

Q
)2 → R+, Γ, p : ∆

(
A×Φ×Q

)2 → R constitute a recursive equilibrium then the processes:

p∗t ≡ p(π1
t , π

2
t ), γ∗it+1 ≡ Γ(πit, π

−i
t ), c∗it ≡ pt(γ

i∗
t − γi∗t+1) + γi∗t dt constitute a sequential market

equilibrium, given beliefs π1
0, π

2
0 if the following transversality condition holds:

lim
t→∞

βtEπi0
(
V (γi∗t , π

i
t, π
−i
t ) + γi∗t dt

)
= 0

for i = 1, 2.

The proof will follow from the following lemma:

Lemma 4 For each s ∈ N, d ∈ D, A0, . . . , As ⊆ A, Φ ⊆ Φ, Q ⊆ Q, such that

A0, . . . , As,Φ, Q are measurable subsets, we have almost surely:

Prπ(a1 ∈ A0 ∧ . . . ∧ as+1 ∈ As ∧ φ ∈ Φ ∧ q ∈ Q|d1)

= Prλ
d1 (π)(a0 ∈ A0 ∧ . . . ∧ as ∈ As ∧ φ ∈ Φ ∧ q ∈ Q)

This lemma states that all the future distribution of the relevant processes at the next

period is, from the perspective of player i, completely described by the updated measure

πi1 = λd1(πi0). This argument extends by induction to any future period: all the information
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about agent i’s subjective future distributions of all the processes is completely encoded in

πit. This legitimates the introduction of the recursive equilibrium in this environment.

The proof of Theorem 3 as well as that of Lemma 4 are relegated to the appendix as they

are purely technical.

3.1 Characterization of recursive pricing rule

Using linearity of preferences and no short sales condition, we can argue that a pricing

function p : ∆
(
A × Φ × Q

)2 → R is the pricing rule of some recursive equilibrium iff it

satisfy the following first order condition to the Bellman equation:

p(π1, π2) = max
i=1,2

βEπi(p(λd1(π1), λd1(π2)) + d1)

In order to organize the notation let’s define the following operators, T, T (1), T (2) :

B
(
∆
(
A×Φ×Q

)2
,R
)
→ B

(
∆
(
A×Φ×Q

)2
,R
)
, with:

T (i)p(π1, π2) ≡ βEπi
{
d1 + p

(
λd1(π1), λd1(π2)

)}
i = 1, 2

Tp ≡ max
i=1,2

T (i)p

With this notation, the equation for prices becomes:

p = Tp (4)

so we are just looking for a fixed point of T .

Also note, that the the fixed point of operator T (i) is the fundamental value for agent i,

V i.

Example of Harrison and Kreps (1978) – cont. Now we can see how much the lack

of learning facilitates the solution of the functional equation. The formula for operator T (i)
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becomes (note that without loss of generality we can treat prices as a function of a current

dividend since so are the beliefs):

T (i)p(d) = βEπi
{
d1 + p

(
d1)
)}

=



β {(1/2)p(0) + (1/2)(1 + p(1))} for d = 0, i = 1

β {(2/3)p(0) + (1/3)(1 + p(1))} for d = 0, i = 2

β {(2/3)p(0) + (1/3)(1 + p(1))} for d = 1, i = 1

β {(1/4)p(0) + (3/4)(1 + p(1))} for d = 1, i = 2

This allows us for almost immediate guess the solution to (4), which in the case of β =

3/4 is p∗(0) = 24/13 = 1.85 and p∗(1) = 27/13 = 2.04, which is clearly higher than the

corresponding maximal fundamental values derived in (3).

Let us investigate some properties of T .

Lemma 5 Operators T ,T (i) are all β-contractions w.r.t. the sup-norm.

Proof. A direct application of Blackwell’s sufficient conditions.

Lemma 6 If p is continuous, then Tp is continuous.

As a corollary we get:

Theorem 7 If β < 1 then there is the unique bounded solution, p∗ to the functional equation

(4). Moreover, p∗ is continuous and p∗ = limt→∞ T
tp (in the sup norm).

It is worth noting, that there is no hope for more general regularity conditions for the price

system beyond continuity. The following examples will show the lack of differentiability, while

any kind of convexity seems meaningless in this setup (at least in general). Nevertheless,

the following monotone property of operator T appears to be useful.
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Lemma 8 If Tp ≥ p for some price system p, then T 2p ≥ Tp. Hence also p∗ ≥ p

Proof. For any beliefs π1, π2 we have:

T 2p(π1, π2) = βmax
i=1,2

∫
D
pπ

i

(d′)(d′ + Tp(λd
′
(π1), λd

′
(π2)))dd′

≥ max
i=1,2

∫
D
pπ

i

(d′)(d′ + p(λd
′
(π1), λd

′
(π2)))dd′

= Tp(π1, π2)

with pπ
i
(d′) denoting probability density of next period dividend according to an agent with

beliefs πi i.e.

pπ
i

(d′) =

∫
A×Φ×Q

∫
A
φa′(d

′)q(a, da′)πi(da, dφ, dq)

As a corollary we get a useful fact.

Theorem 9 If we define the fundamental pricing rule by pF = maxi=1,2 V
i then if for some

beliefs (π1, π2), TpF (π1, π2) > pF (π1, π2), then p∗(π1, π2) > pF (π1, π2), i.e. we have specula-

tion in equilibrium for those initial beliefs.

Proof. It is clear, that for fundamental pricing we have TpF ≥ pF . From the previous

lemma we get, that T 2pF ≥ TpF hence using this lemma again we get that p∗ ≥ Tpf . Hence

by our assumption p∗(π1, π2) ≥ TpF (π1, π2) > pF (π1, π2)

This theorem gives us an easy tool to check if we have a speculative bubble in a given

economy. Just take an initial guess for pricing system to be pf = maxi=1,2 V
i (the highest

fundamental value). Then iterate it once. Obviously we must have Tpf ≥ pf (if the agents

are promised to be able to resell the asset at the highest fundamental price next period then

in the current period they must be willing to pay at least their fundamental values). If we get

Tpf = pf then pf is the solution to the functional equation (4) i.e. p∗ = pf and the bubble

is always zero. Otherwise there are some beliefs, π1, π2 for which Tpf (π1, π2) > pf (π1, π2),
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which by proposition 2 implies that p∗(π1, π2) ≥ Tpf (π1, π2) > pf0(π1, π2), which means

that we have a positive bubble, and hence a speculative trade, in equilibrium.

Now, I will show that the price in the bounded recursive equilibrium provides a lower

bound for the set of all sequential market equilibria. This justifies the use of applying

recursive equilibrium in the contest of speculative trade. If there is a speculative bubble in

the recursive equilibrium it is also positive in any sequential market equilibrium.

Proposition 1 For any initial beliefs π0, if p is a sequential equilibrium price system, and

p∗ is the bounded recursive equilibrium price, then for almost every history, dt, we have

p(dt) ≥ p∗(πt(d
t)).

Proof. If (pt(d
t)) is an equilibrium price system, then it has to satisfy the first order

conditions of (2), which, taking into account the fact that the market clearing condition

must hold (i.e., γit > 0 for at least one agent), leads to:

pt(d
t) = max

i=1,2
βEπi0

[
pt+1(dt+1) + dt+1|dt

]
. (5)

Define inductively a sequence of functions, pn : ∆
(
A×Φ×Q

)2 → R, by

p∗0(π) ≡ 0

p∗n+1(π) ≡ max
i=1,2

βEπ
[
d1 + p∗n

(
λd1(π)

)]
.

Then by Proposition 7, we have p∗ = limn→∞ p
∗
n. I will show by induction that pt(dt) ≥

p∗n(dt, π
1
t (dt), π

2
t (d

t)), for each n, dt.

For n = 0 this is obvious. Suppose that pt(d
t) ≥ p∗n(dt, πt(d

t)) for some n and all t and

dt. Then, using (5) and Lemma 4 (recursively, t times) we get
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pt(d
t) = max

i=1,2
βEπi0

[
dt+1 + pt+1

(
dt+1

)
|dt
]

≥ max
i=1,2

βEπi0
[
dt+1 + p∗n

(
πt+1(dt+1)

)
|dt
]

= max
i=1,2

βEπit(d
t)
[
d1 + p∗n

(
λd1(πt(d

t))
)]

= p∗n+1(πt(d
t)).

4 Examples

In this section I will consider the environment in which the agents’ only potential dis-

agreement is about the current regime.

I present two examples. The first one has 2-state regime process where the states are

stable in the sense that in each of them probability of staying in it is bigger then moving out

of it. In that case I prove that no speculative trade (and hance no bubble) can exist.

In the second example I consider 3-state regime process. There are two “good” states and

one “bad” state. In good states agents get relatively high probability of dividend (around

2/3) but if the state is bad the probability of dividend is 0. The “high” regimes are different

in terms of probability of switching to the “bad” regime. These probabilities are both low

but one is smaller than the other. Agents initially think they are in a “good” regime but of

a different type. Here I will be able to show how Theorem 9 can be easily applied to show

that there is a generic speculative pattern (for some open set of parameter values). In that

example we will also see that the speculation may persist arbitrarily long even though the

agents are learning.
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4.1 A Simplified Environment

Here the agents agree upon the value of the transition function as well as upon the

distribution of dividends. They just disagree about the current regime. Formally this means

that we consider the class of models in which: A = {a1, . . . , an}, D = {0, 1}, Φ = {φ} with

φaj(1) = 1 − φaj(0) ≡ φj, Q = {q}, with q =


q11 . . . q1n

...
. . .

...

qn1 . . . qnn

 (Markov chain transition

matrix).

In words this setup means that there is an underlying A-valued Markov chain in the

economy, a0, a1, . . . , at, . . . with the known transition matrix, q. Each period dividend dt is

paid with probability φj which is determined solely by the current position in the Markov

chain, at = aj. The agents formulate beliefs about the initial position of the Markov chain,

a0. They both know the value of φ and q, and over time they beliefs evolve in the Bayesian

fashion. The current beliefs of agent i are πi = [πi1, . . . , π
i
n] ∈ ∆(A) ' ∆n−1.

In this setup the updating dynamics as well as finding the fundamental values become

relatively easy. It is straightforward to see that the fundamental value of agent i, V i = πi ·V ,

where V = [V1, . . . , Vn]′ is the vector of fundamental values for each initial position in the

Markov chain. V is the solution to

(I − βq)V = βqφ

The fundamental price becomes:

pf = max
i=1,2

πiV

Given the initial beliefs πi and the current period dividend, d′ the new beliefs are (using
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Bayes’ rule):

λ(d′|πi) =


[

φ1
∑n
j=1 qj1π

i
j∑n

j′=1 φj′
∑n
j=1 qjj′π

i
j
, . . . ,

φn
∑n
j=1 qjnπ

i
j∑n

j′=1 φj′
∑n
j=1 qjj′π

i
j

]
if d′ = 1[

(1−φ1)
∑n
j=1 qj1π

i
j∑n

j′=1(1−φj′ )
∑n
j=1 qjj′π

i
j
, . . . ,

(1−φn)
∑n
j=1 qjnπ

i
j∑n

j′=1(1−φj′ )
∑n
j=1 qjj′π

i
j

]
if d′ = 0

(6)

Also it will be useful to have the explicit expression for the probability of dividend next

period, d′ = 1, given the current beliefs are πi:

Prπ
i{d′ = 1} = πiqφ (7)

The formula for operator T becomes:

Tp(π1, π2) = βmax
i=1,2

[
Prπ

i{d′ = 1}(1 + p
(
λ
(
1|π1

)
, λ
(
1|π2

))
+
(

1− Prπ
i{d′ = 1}

)
p
(
λ(0|π1), λ

(
0|π2

) )]

4.2 Example with no speculation

Here we will see a situation in which we will actually solve the functional equation. The

solution will be (as one may expect) the fundamental valuation by the agent for whom it’s

the highest (given beliefs).

Proposition 3. If A = {h, l} and q =

 qhh qhl

qlh qll

 =

 1− ε1 ε1

ε2 1− ε2

 satisfies ε1 + ε2 ≤

1 < 1, then the equilibrium price is equal to the fundamental price: p∗ = pF for all beliefs.

This proposition states that if we have only 2 regimes there will be no speculation. It

seems that only two regimes cannot give enough room for disagreement if we have only 2

signals (the dividend either paid or not).

Proof.

Since we have only 2-state Markov chain, the beliefs can be just represented by one

26



number: probability of being in a given state. To fix ideas let it be state h. Hence the beliefs

are: πi ∈ [0, 1], i = 1, 2 and satisfy: Prπ
i{a0 = h} = πi.

As usual, denote: φ = [φh, φl]
′ to be the vector of the probabilities of the dividend in

regime.

I will show that the equilibrium price is just the fundamental price, i.e. Tpf = pf (for all

beliefs).

Without loss of generality assume that the fundamental vector V = [Vh, Vl]
′ satisfies

Vh > Vl (otherwise just relabel the states). We have then

pf (π1, π2) = max
i=1,2
{πiVh + (1− πi)Vl}

= (max
i=1,2

πi)Vh + (1−max
i=1,2

πi)Vl

by symmetry of the agents, wlog I can always assume π1 ≥ π2 (otherwise just renumber

them), which leads us to

pf (π1, π2) = π1Vh + (1− π1)Vl (8)

Now I will show that λd(π) is increasing in π for d = 0, 1 (in words: agent who was

more optimistic in the first period will always remain more optimistic in the next period, no

matter which dividend occured). By (6) we have:

λd(π) =


φh[(1−ε1)π+ε2(1−π)]

φh[(1−ε1)π+ε2(1−π)]+φl[ε1π+(1−ε2)(1−π)]
for d = 1

φl[(1−ε1)π+ε2(1−π)]
φl[(1−ε1)π+ε2(1−π)]+φh[ε1π+(1−ε2)(1−π)]

for d = 0

(9)

A bit of algebra gives:

∂

∂π
λd(π) =

1− ε1 − ε2

(appropriate denominator expression 6= 0)2
> 0 d = 0, 1
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so indeed for ε1, ε2 < 1/2 λd(π) is increasing in π. Hence π1 ≥ π2 implies that also λd(π1) ≥

λd(π2).

Another thing I am going to need is Prπ
1

(d′ = 1) ≥ Prπ
2

(d′ = 1) (always assuming

π1 ≥ π2), which is easy to verify using (7). Also I will need λ1(π) > λ0(π), which is

intuitively obvious and straightforward to check from (9).

This gives us:

Tpf = βmax
i=1,2

{
Prπ

i{d = 1}
[
1 + pf

(
λ1(π1), λ1(π2)

)]
+
(

1− Prπ
i{d = 0}

)
pf (λ0(π1), λ0(π2))

}
= βmax

i=1,2

{
Prπ

i{d = 1}
(
1 + λ1(π1)Vh + (1− λ1(π1))Vl

)
+
(

1− Prπ
i{d = 0}

) (
λ0(π1)Vh + (1− λ0(π1))Vl

)}
= βPrπ

1{d = 1}
(
1 + λ1(π1)Vh + (1− λ1(π1))Vl

)
+ (1− Prπ

1{d = 0})
(
λ0(π1)Vh + (1− λ0(π1))Vl

)
= T 1V 1

= V 1

= max
i=1,2
{V 1, V 2}

= pf

where the second line comes from (8), the third uses the fact that Prπ
1

(d′ = 1) ≥ Prπ
2

(d′ = 1)

and λ1(π) > λ0(π). Then we use the fact that V i is the fixed point of operator T i. this

allows us to conclude that pF is the equilibrium price for all beliefs.
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4.3 Example with speculation

Let A = {h1, h2, l}, φ = [Φ1,Φ2, 0]′ and

q =


qh1h1 qh1h2 qh1l

qh2h1 qh2h2 qh2l

qlh1 qlh2 qll

 =


1− ε1 0 ε1

0 1− ε2 ε2

0 0 1


This setup means that we have 2 ’good’ regimes, h1, h2, and one ’bad’ regime, l. In

regime h1 the probability of dividend is Φ1 > 0 and the probability of switching to the bad

regime is ε1. In regime h2 the probability of dividend is Φ2 and the probability of switching

to the bad regime is ε2. In bad regime l there are no dividends (Φ3 = 0) and this state is

absorbing.

In this setup we can readily get an interesting result.

Proposition 2 If Φ1, ε
1,Φ2, ε

2 are such that V1 = V2, π1 = (1, 0, 0), π2 = (0, 1, 0), and

Φ1 6= Φ2 (the agents’ valuations are exactly the same but the beliefs differ) then we have

speculation, namely p∗(π1, π2) > pF (π1, π2) = V1 = V2.

This proposition says, that whenever the parameters are such that both agents’ valua-

tions of the asset are exactly the same but their beliefs about the probabilistic structure of

dividends differers in any way, then there must be some speculation going on. The intuition

behind this result is that if agents agree upon the discounted present value of the stream

of the future dividends, then in order to have different probabilistic structure of them one

of them must have a higher probability of dividend in ’his’ good state (Φi), which must be

compensated by a lower higher probability of switching into the low state (εi). Also, a simple

algebra shows that the agent with the higher Φi must also have a higher probability of seeing

a dividend the next period. This means that his willingness of buying the asset today and

selling it for its fundamental value tomorrow must be higher than that of the other agent.

We know that any agent’s willingness to buy it today with the option of resell it tomorrow
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must be at least his own fundamental value, Vi. Finally, using that V1 = V2 we conclude

that the agent with the higher Φi must be willing to pay for the asset more than V1 = V2,

hence we must have speculation.

Proof Without loss of generality assume Φ1 > Φ2. We have:

V =


V1

V2

V3

 =


β(1−ε1)Φ1

1−β(1−ε1)

β(1−ε2)Φ1

1−β(1−ε2)

0


Hence the condition V1 = V2 implies (after some rearrangements):

Φ2

Φ1

=
1

1−ε2 − β
1

1−ε1 − β

Then by Φ1 > Φ2 we get that:

1

1− ε2
− β < 1

1− ε1
− β

which implies ε1 > ε2. Also note, that we can rearrange the condition V1 = V2 in another

way to get:

(1− ε1)Φ1

(1− ε2)Φ2

=
1− β(1− ε1)

1− β(1− ε2)

But because ε1 > ε2, the RHS of the above is bigger than 1 hence we have:

(1− ε1)Φ1 > (1− ε2)Φ2
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Now we will see that T 1pF (π1, π2) > T 2pF (π1, π2). Using the definition of T i we get:

T ipF (π1, π2) = β
[
Prπ

i

(d′ = 1)(1 + max{λ1(π1)V, λ1(π2)V }) + Prπ
i

(d′ = 0) max{λ0(π1)V, λ0(π2)V }
]

= β

[
(1− εi)Φi(1 + V1) + (1− (1− εi)Φi) max

{
(1− ε1)(1− Φ1)

1− (1− ε1)Φ1

V1,
(1− ε2)(1− Φ2)

1− (1− ε2)Φ2

V2

}]
= β

[
(1− εi)Φi(1 + V1) + (1− (1− εi)Φi) max

{
(1− ε1)(1− Φ1)

1− (1− ε1)Φ1

,
(1− ε2)(1− Φ2)

1− (1− ε2)Φ2

}
V1

]

Since (1−ε1)(1−Φ1)
1−(1−ε1)Φ1

, (1−ε2)(1−Φ2)
1−(1−ε2)Φ2

< 1, and (1 − ε1)Φ1 > (1 − ε2)Φ2 then indeed we must have

T 1pF (π1, π2) > T 2pF (π1, π2). We also must have that T 2pF (π1, π2) ≥ V2 (if agent 2 is

promised to be paid at least his own valuation tomorrow, then his willingness to pay for

the asset must be at least his own valuation today, which is V2). Hence we have shown

that T 1pF (π1, π2) > T 2pF (π1, π2) ≥ V2 = V1 = pF (π1, π2). Now by Proposition 2 we get

p∗(π1, π2) > pF (π1, π2) hence we have speculation in equilibrium.

One can expect that this speculation may persist very long. Each time the agents observe

d = 1 they know they cannot be in the state l, so system is reset (we are back to the initial

beliefs, which we know lead to speculation). Indeed this speculation will last till we are

finally settled in state l.

5 Conclusion

In this paper I construct a model of speculation which looks like a promising tool in

modeling long lasting speculative behavior when investors are learning from data. The

idea is that investors, even though they learn from data, sometimes have to wait for some

particular stream of signals to learn about certain aspects of the underlying regime. In the

last example we saw that each time the agents observe dividend 1 the system is almost reset.

Hence in order to achieve convergence of beliefs they need to observe a sufficiently long

stream of zeros, so that both agents get convinced that a bad regime really occurred (once

it happens their beliefs are pretty much the same because we have only one bad regime).
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It is clear that when calibrating this model we can use more regimes in order to be able

to capture some more sophisticated states which can be distinguished only after observing

some very specific sequence of signals. For such signals we may need to wait very long.

This creates the persistence of speculation, which is somehow hidden before that particular

sequence occurs. This would be a good explanation for bursting of market bubbles. Doing

so seems like a natural direction of future research.

Appendix

Remaining proofs

Proof of Lemma 4. First note, that since we defined:

λd(π)(A× Φ×Q) = Prπ(a1 ∈ A ∧ φ ∈ Φ ∧ q ∈ Q|d1 = d)

=
∫
φ∈Φ

∫
q∈Q

∫
a1∈A

∫
a0∈A

π(da0,dφ,dq)q(a0,da1)φa1 (d1)∫
φ∈Φ

∫
q∈Q

∫
a0,a1∈A2 π(dat,dφ,dq)q(a0,da1)φa1 (d1)

for each measurable A ⊆ A,Φ ⊆ Φ, Q ⊆ Q, then each time we integrate with respect to the
measure λd(π), we can do the following replacement under any integral (the quotes will not
be needed under an actual integral):

λd(π)(da1,dφ,dq)”=”

∫
a0∈A

π(da1,dφ,dq)q(a0,da1)φa1 (d1)∫
φ∈Φ

∫
q∈Q

∫
a0,a1∈A2 π(da1,dφ,dq)q(a0,da1)φa1 (d1)

Using this we have:

Prλ
d(π)(a0 ∈ A0 . . . , as ∈ As, φ ∈ Φ, q ∈ Q) =

=
∫
φ∈Φ

∫
q∈Q

∫
(a0,...,as)∈A0×As

λd(π)(da0,dφ,dq)q(a0,da1)

=
∫
φ∈Φ

∫
q∈Q

∫
(a1,...,as+1)∈A0×...×As

∫
a0∈A

π(da0,dφ,dq)q(a0,da1)φa1 (d1)∫
φ∈Φ

∫
q∈Q

∫
a0,a1∈A2 π(da1,dφ,dq)q(a0,da1)φa1 (d1)

=
∫
φ∈Φ

∫
q∈Q

∫
a0∈A

∫
(a1,...,as+1)∈A0×...×As

π(da0,dφ,dq)q(a0,da1)φa1 (d1)∫
φ∈Φ

∫
q∈Q

∫
a0,a1∈A2 π(da1,dφ,dq)q(a0,da1)φa1 (d1)

= Prπ(a1 ∈ A0, . . . , as+1 ∈ As, φ ∈ Φ, q ∈ Q|d1 = d)

Proof of Theorem 3. It is straightforward to check that the proposed allocation
satisfies feasibility, budget feasibility as well as measurability assumptions. The only thing
which requires an argument is that the proposed agents’ plans, (γ∗it )t maximize their utilities,
given prices. We shall do it only for agent 1 (the other follows by symmetry). The proof here
follows along the lines of the proof of theorem 9.2 of Stokey et al. (2004) with an adjustment
for slight change in their Markov environment (our environment is technically not Markov
but thanks to Lemma 1 we may treat it as if it was).

Clearly in any solution to an agent’s problem the budget constraint is satisfied
with the equalities, therefore wlog we may assume agent 1 is choosing only γ1 ≡
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(γ1
1 , γ

1
2(d1), γ1

3(d2) . . .) ≥ 0 (following Stokey et al. (2004) we call it a plan) to maximize:

u(γ, γ1
0 , π

1, π2) ≡ lim
T→∞

uT (γ, γ1
0 , π

1, π2)

where uT (γ, γ1
0 , π

1, π2) ≡ Eπ1
0
∑T

t=0 β
t[pt(γ

1
t − γ1

t+1) + γtdt] taken as given γ1
0 = 0.

Denote Γ to be the set of feasible plans for asset holdings for agent 1 (i.e. satisfying
γ1
t ≥ 0, Fdt -measurability and such that u is well defined, potentially allowing for ±∞).

Following the notation of Stokey et al. (2004) we denote:

V ∗(γ1
0 , π

1
0, π

2
0) = sup

γ∈Γ
u(γ, π1

0, π
2
0) (10)

for each γ1
0 ≥ 0.

We will show that V (γ1
0 , π

1
0, π

2
0) = V ∗(γ1

0 , π
1
0, π

2
0) and that proof will imply that γ∗1 attains

the sup in (10). First we prove that

V (γ1
0 , π

1
0, π

2
0) ≥ u(γ, γ1

0 , π
1
0, π

2
0) (11)

for all γ ∈ Γ, and then we will see that

V (γ1
0 , π

1
0, π

2
0) = u(γ∗i, γ1

0 , π
1
0, π

2
0) (12)

We have for any γ1 ∈ Γ,

V (γi0, π
1
0, π

2
0) = max

γ′≥0

{
(γi0 − γ′)p(π1

0, π
2
0) + βEπ1

0
(
V (γ′, λ(d1|π1

0), λ(d1|π2
0)) + γ′d1

)}
≥ (γi0 − γ1

1)p(π1
0, π

2
0) + βEπ1

0
(
V (γ1

1 , λ(d1|π1
0), λ(d1|π2

0)) + γ1
1d1

)
=(γi0−γ1

1)p(π1
0 ,π

2
0)+βEπ

1
0

(
maxγ′≥0

{
(γ1

1−γ′)p(π1
0 ,π

2
0)+βEλ(d1|π1

0)
(
V (γ′,λ(d1|π1

0),λ(d1|π2
0))+γ′d1

)}
+γ1

1d1

)
=(γi0−γ′)p(π1

0 ,π
2
0)+βEπ

1
0

(
maxγ′≥0

{
(γ1

1−γ′)p(π1
0 ,π

2
0)+β

(
V (γ′,λ(d2|π1

0),λ(d2|π2
0))+γ′d2

)}
+γ1

1d1

)
≥(γi0−γ′)p(π1

0 ,π
2
0)+βEπ

1
0

(
(γ1

1−γ1
2)p(π1

0 ,π
2
0)+β

(
V (γ1

2 ,λ(d2|π1
0),λ(d2|π2

0))+γ1
2d2

)
+γ1

1d1

)
= u1(γ1, γ1

0 , π
1, π2) + β2Eπ1

0
(
V (γ1

2 , π1(d2|π1
0), λ(d2|π2

0)) + γ2
1d2

)
Here, line 4 follows from Lemma 1 and the law of iterated expectations. Note some notational
complication in line 3 caused by the fact that d1 under the second expectation is a dummy
variable for that expectation and is a different d1 then that out of that expectation. Indeed
d1 under the second expectation refers to the period 2 from the perspective of initial beliefs,
but it is the first period from the perspective of updated second period beliefs — actually
thanks to Lemma 1 we can replace that d1 with d2 in line 4.

Now we may continue this process to obtain by induction that

V (γi0, π
1
0, π

2
0) ≥ uT (γ1, γ1

0 , π
1, π2) + βTEπ1

0
(
V (γ1

T , λ(d2|π1
0), λ(d2|π2

0)) + γ1
TdT

)
for all T . Now, using the assumption that V ≥ 0 we conclude that (11) holds. Having
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(11) we can go over the above derivation replacing in each line γ′ with the respective γ∗1t
(now getting the equality in each line by the construction of γ∗1t which comes from the policy
function for V ) to obtain (12). To do so we need to use the assumed transversality condition.
But this means that the plan γ∗1 attains the maximum for agent one’s problem.
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