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Abstract

We propose tests for hypotheses on the parameters for deterministic trends. The model
framework assumes a multivariate structure for trend-stationary time series variables. We de-
rive the asymptotic theory and provide some relevant critical values. Monte Carlo simulations
suggest which tests are more useful in practice than others. We apply our tests to examine if
monthly temperatures in The Netherlands, measured from 1706 onwards, have a trend and if
these trends are the same across months. We find that the January and March temperatures
have the same upward trend, that the September temperature has decreased and that the tem-
peratures in the other months do not have a trend. Hence, only winters in The Netherlands
seem to get warmer.
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1 Introduction

In several empirical situations it is found that time series data contain a deterministic trend, while

they are otherwise stationary. An example in macroeconomics concerns differences between real

output for pairs of countries (see Hobijn and Franses (2000) among others) or pairs of regions

within the U.S. (see Carlino and Mills (1993), Loewy and Papell (1995) and Tomljanovich and

Vogelsang (2001) among others), where such a trend-stationary series indicates some degree of

convergence. Other examples can be found in disciplines such as tourism and marketing, where

tourist arrivals and sales often display upward trending patterns. Finally, environmental data like

temperatures may also display trends, and if these are upward moving this can be taken as evidence

of global warming. See Bloomfield (1992), Woodward and Gray (1993), Zheng and Basher (1999)

and Fomby and Vogelsang (2000) among many others.

In some of the above cases it may be of interest to examine if two or more trend-stationary time

series have the same slope. This would allow for testing whether a pair of countries are converging

with the same speed as another pair. Also, one may want to test whether temperatures across

countries have the same upward moving trend. In this paper we propose tests for such and related

hypotheses. We should note that while there has been recent research on univariate trend function

inference and modeling (see Perron (1991), Canjels and Watson (1997), Vogelsang (1997,1998)),

multivariate trend modeling and inference has received little attention1.

The outline of our paper is as follows. In Section 2, we discuss the model representation,

parameter estimation, and the test statistics of interest. A key issue is the estimation of the

covariance matrix, for which we aim to compare three different approaches, amongst which the

familiar HAC estimator. In Section 3, we derive the relevant asymptotic theory. We tabulate

useful critical values. Additionally, we discuss asymptotic power of the tests in a special case. In

Section 4, we rely on Monte Carlo simulations to examine the finite sample performance of the test

statistics. We observe that the tests work best for a limited number of variables under scrutiny.

Additionally, we find that the HAC-based tests have serious size distortions, while our new tests

perform satisfactorily. In Section 5, we apply our tests to three centuries of monthly temperatures

for The Netherlands. We find that the January and March temperatures have the same upward

1It should be noted that the asymptotic theory for multivariate time series regressions developed by Park and
Phillips (1988) includes our model as a special case where no covariates are included. However, they do not consider
hypotheses involving cross equation restrictions on the linear trend parameters as we do here.
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trend, that the September temperature has decreased over time and that the temperatures in the

other months do not have a trend. Hence, only winters in The Netherlands seem to get warmer.

2 The model and test statistics

In this section we present the model, parameter estimation and the relevant test statistics.

2.1 Representation

Consider n trend-stationary time series denoted by y1,t to yn,t with t = 1, 2, . . . , T , and assume

that they can be represented by

y1,t = µ1 + β1t+ u1,t

y2,t = µ2 + β2t+ u2,t

. . .

yn,t = µn + βnt+ un,t.

(1)

Define the three n×1 vectors ut, µ and β by (u1,t, u2,t, . . . , un,t)0, (µ1, µ2, . . . , µn)0 and (β1,β2, . . . ,βn)0,
respectively. It is assumed that a functional limit theorem applies to ut, that is,

T−
1
2

[rT ]X
t=1

ut ⇒ ΛWn(r), (2)

where ⇒ denotes weak convergence, Wn(r) is an n× 1 standard independent Wiener process, and
[rT ] is the integer part of rT . See, for example, Phillips and Durlauf (1986) for conditions under

which (2) holds. We denote Ω as the long-run variance of ut, that is,

Ω = ΛΛ0 =
∞X

j=−∞
Γj,

where Γj = Cov[utu0t−j]. The hypotheses of interest in this paper are

H0 : Rβ = r

H1 : Rβ 6= r,
(3)

where R is a q × n matrix, and r is a n× 1 vector.
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2.2 Estimation

The parameters in (1) can be estimated by applying ordinary least squares (OLS) equation by

equation, which results in bµ and bβ. If the errors are second order stationary (a typical condition
under which (2) will hold), then from the classic results of Grenander and Rosenblatt (1957), OLS

is asymptotically equivalent to GLS (and MLE under Gaussian errors). In addition, because (1) is a

seemingly unrelated regression (SUR) with the same regressors in each equation, OLS is equivalent

to the SUR estimator, which is the GLS estimator for i.i.d. errors with different error variances.

Thus, OLS has some nice optimality properties.

It will be convenient to express bβi as follows. Define t̄ = T−1PT
t=1 t and et = t− t̄, then

bβi =
Ã

TX
t=1

et2!−1 TX
t=1

etyi,t,
for i = 1, 2, . . . , n. These estimators can be summarized into the n×1 vector bβ = (bβ1, bβ2, . . . , bβn)0.
As usual we obtain

bβ − β = Ã TX
t=1

et2!−1 TX
t=1

etut. (4)

To derive the asymptotic distribution of (4), note that

T−3
TX
t=1

et2 → 1
12 , (5)

where → denotes convergence, and that

T−
3
2

TX
t=1

etut ⇒ Λ

Z 1

0
(r − 1

2)dWn(r) = Λ
h
1
2Wn(1)−

R 1
0 Wn(r)dr

i
. (6)

For later it will be useful to define the process

Vn(r) = (r − 1
2)Wn(r)−

R r
0 Wn(s)ds−Wn(1)

R r
0 (s− 1

2)ds, (7)

where

Vn(1) = [
1
2Wn(1)−

R 1
0 Wn(r)dr], (8)
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follows from the fact that
R 1
0 (s− 1

2)ds = 0. Using (5), (6) and (2.2), we obtain

T
3
2 (bβ − β) = ÃT−3 TX

t=1

et2!−1 T−3/2 TX
t=1

etut ⇒ 12ΛVn(1). (9)

It is easy to show that 12ΛVn(1) is distributed as N (0, 12Ω). Therefore, inference regarding

β can be carried out in the usual way provided a consistent estimator of Ω is available. Under

regularity conditions similar to those required for (2) to hold, Ω can be consistently estimated using

the class of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators,

see Andrews (1991). Here we focus on the Bartlett kernel (see Newey and West (1987)) estimator

defined as

bΩHAC = bΓ0 + T−1X
j=1

(1− j

ST
)(bΓj + bΓ0j), (10)

where bΓj = T−1
PT
t=j+1 butbu0t−j and ST is the truncation lag or bandwidth. For bΩHAC to be

consistent, ST must increase as the sample increases but at a slower rate. Andrews (1991) showed

that the rate T
1
3 minimizes the approximate MSE for bΩ. In the Monte Carlo simulations and

empirical work that follows, we choose ST using the data-dependent method suggested by Andrews

(1991) based on the VAR(1) plug-in formula.

We now consider alternatives to using consistent estimates of bΩ. Following Kiefer, Vogelsang
and Bunzel (2000) and Kiefer and Vogelsang (2000), suppose we set ST = T in (10). Let bΩST=T
denote this estimator of Ω. Although ST = T does not result in a consistent estimator of Ω, valid

testing is still possible because bΩST=T is asymptotically proportional to Ω as is shown below. The
advantage of bΩST=T is that it uses a specific bandwidth and this choice of bandwidth is captured
by the first-order asymptotics.

The asymptotic behavior of bΩST=T is as follows. Following Kiefer and Vogelsang (2001) and
using the fact that

PT
j=1 but = 0, it holds that
bΩST=T = bΓ0 + T−1X

j=1

(1− j

T
)(bΓj + bΓ0j) = 2T−2 TX

t=1

bSt bS0t, (11)

where bSt =Pt
j=1 buj . In the appendix we prove that

T−
1
2 bS[rT ] ⇒ ΛbVn(r), (12)
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where bVn(r) = Wn(r)− rWn(1)− 12Vn(1)
R r
0 (s− 1

2)ds. It directly follows from (11), (12) and the

continuous mapping theorem that

bΩST=T = 2T−1 TX
t=1

T−1/2 bStT−1/2 bS0t ⇒ 2Λ

µZ 1

0

bVn(r)bVn(r)0dr¶Λ0. (13)

We also consider an alternative to bΩST=T which is constructed using etbut instead of but. In
a standard application of HAC estimators to the regressions given by ((1)), etbut would be used.
Because etbut is not a vector of stationary time series, establishing consistency of a HAC estimator
in this case would be difficult if even feasible. However, if we use ST = T , the asymptotic behavior

of the HAC estimator can be derived. Specifically, define

eΩST=T = eΓ0 + T−1X
j=1

(1− j

T
)(eΓj + eΓ0j), (14)

where

eΓj = T−1 TX
t=j+1

[(t− t̄)but][(t− j − t̄)bu0t−j ]. (15)

Again, using Kiefer and Vogelsang (2001), we can write

eΩST=T = 2T−2 TX
t=1

eSt eS0t, (16)

where eSt =Pt
j=1(j − t̄)buj . In the appendix we prove that

T−
3
2 eS[rT ] ⇒ ΛeVn(r), (17)

where eVn(r) = Vn(r)− 12Vn(1) R r0 (s− 1
2)
2ds. It directly follows from (16), (17) and the continuous

mapping theorem that

T−2eΩST=T = 2T−1 TX
t=1

T−3/2 eStT−3/2 eS0t ⇒ 2Λ

µZ 1

0

eVn(r)eVn(r)0dr¶Λ0. (18)

2.3 Test statistics

To test the null hypothesis in (3) against the relevant alternative hypothesis, we consider three

joint tests for the restrictions in R. The first two tests are F−tests which we compute using the
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Bartlett HAC estimator with bandwidth T . These tests rely either on eΩST=T or on bΩST=T . The
first test statistic is

F ∗1 = T (Rbβ − r)0
"
R(T−1

TX
t=1

et2)−1eΩST=T (T−1 TX
t=1

et2)−1R0#−1 (Rbβ − r)/q,
where eΩST=T is defined in (16). The second F−test we consider is

F ∗2 = (Rbβ − r)0
"
R(

TX
t=1

et2)−1bΩST=TR0
#−1

(Rbβ − r)/q,
where bΩST=T is defined in (11).

Naturally, if there is only a single restriction to test, that is q = 1, then one can consider a

t−test. In the present notation, these tests are

t∗1 =
T
1
2 (Rbβ − r)h

R(T−1
PT
t=1
et2)−1eΩST=T (T−1PT

t=1
et2)−1R0i 12 ,

and

t∗2 =
(Rbβ − r)h

R(
PT
t=1
et2)−1bΩST=TR0i 12 ,

respectively.

The standard alternative to F ∗1 and F ∗2 is a Wald test based on bΩHAC defined as
WHAC = (Rbβ − r)0 "R( TX

t=1

et2)−1bΩHACR0#−1 (Rbβ − r).
Likewise, we defined the standard HAC t−test as

tHAC =
(Rbβ − r)h

R(
PT
t=1
et2)−1bΩHACR0i12 .

3 Asymptotic theory and critical values

In this section we develop the asymptotic theory for the tests. We also compute useful critical

values. Finally, we discuss asymptotic power.
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3.1 Asymptotic distributions

Assumption (2) is sufficient to obtain the asymptotic null distributions of F ∗1 and F ∗2 . The asymp-

totic distributions of these tests are summarized in the following Theorem and Corollary.

Theorem 1 Let the data be generated by (1) and suppose assumption (2) holds. Then, as T →∞,

F ∗1 ⇒ Vq(1)
0
·
2

Z 1

0

eVq(r)eVq(r)0dr¸−1 Vq(1)/q,

F ∗2 ⇒ Vq(1)
0
·
1

6

Z 1

0

bVq(r)bVq(r)0dr¸−1 Vq(1)/q.

Corollary 1 Let the data be generated by (1) and suppose assumption (2) holds. If q = 1, then as

T →∞,

t∗1 ⇒
V1(1)³

2
R 1
0
eV1(r)2dr´12 ,

t∗2 ⇒
V1(1)³

1
6

R 1
0
bV1(r)2dr´12 .

Note that F ∗1 and F ∗2 are quadratic forms involving the normal random vector Vq(1) and random

matrices that reflect the use of eΩST=T and bΩST=T .
Finally, if bΩHAC is a consistent estimator of Ω, then the asymptotic distribution of the Wald

testWHAC is χ2 with q degrees of freedom. When q = 1, t−tests based on bΩHAC are asymptotically
distributed as N(0, 1).

3.2 Critical values

The critical values for the t∗1, t∗2, F ∗1 and F ∗2 need to be obtained through Monte Carlo simulation.

The asymptotic critical values were simulated using 50,000 replications. The Wiener processes were

approximated by normalized sums of i.i.d N(0, 1) errors using 1,000 steps. The critical values for

the t∗1 and t∗2 tests are given in Table 1. Right tail critical values are given. The left tail critical
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values follow from symmetry around zero. The critical values for the F ∗1 test are given in Table 2,

where we tabulate the critical values for tests for q restrictions, where q runs from 1 to 30. Similarly

obtained critical values for the F ∗2 test are given in Table 3.

3.3 Asymptotic power

One way to compare and contrast the new tests with each other and with standard HAC-based

tests is to examine asymptotic power for local alternatives. To keep the analysis transparent, we

consider the case of q = 1 and focus on the regression

y1,t = µ1 + β1t+ u1,t (19)

Let σ21 = γ0 +
P∞
j=−∞ γj, where γj = Cov(u1,t, u1,t−j). Then, under assumption (2),

T−
1
2

[rT ]X
t=1

⇒ σ1W1(r).

Consider the one-sided hypothesis H0 : β1 ≤ β0 against H1 : β1 > β0. We can obtain nonde-
generate limiting distributions for the t−tests under the local alternative β1 = β0 + cT−

3
2 . Thus,

β1 converges to β0 at rate T
− 3
2 .

The following theorem gives the limiting distribution of the tests under the local alternative.

The proof is given in the appendix.

Theorem 2 Suppose the data are generated by (19) and that assumption (2) holds. Suppose t−tests
are constructed for testing H0 : β1 ≤ β0 against H1 : β1 > β0. Suppose β1 = β0 + cT−

3
2 , then, as

T →∞,

tHAC ⇒ δ + 12V1(1)√
12

,

t∗1 ⇒
δ + 12V1(1)³

288
R 1
0
eV 21 (r)dr´1/2 ,

t∗2 ⇒
δ + 12V1(1)³

24
R 1
0
bV 21 (r)dr´1/2 ,

where δ = c/σ1.
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Using Theorem 3, asymptotic power can be computed by simulating the distributions under the

local alternative for various values of δ and computing rejection probabilities using the asymptotic

null critical values. Using the same simulation methods used to compute null critical values, we

computed asymptotic power for δ ∈ [0, 20]. Power with a nominal level of 5% is plotted in Figure

1. Clearly, power is highest for tHAC , followed by t∗2 and then t∗1. The reason that t∗1 and t∗2 have

slightly lower power is because they use ”standard errors” with sampling variability that does not

vanish as T increases. However, as we will show in the next section, tHAC is generally more size

distorted in finite samples. Thus, t∗1 and t∗2 trade off power in exchange for better size.

4 Finite sample performance

In this section we examine the finite sample performance of the F ∗1 and F ∗2 tests and compare them

to WHAC . We generate data according to (1) with n = 12 (to match the empirical application)

where the errors are modeled as AR(1) processes, that is

ui,t = ρui,t−1 + ei,t,

with ei,t i.i.d. N(0, 1) and ui,0 = 0. For the sake of simplicity, we use the same AR(1) coefficient

for all series. We consider the following null hypotheses:

H1
0 : β1 = 0,

H2
0 : β1 = β2 = 0,

H3
0 : β1 = β2 = β3 = 0,

H4
0 : β1 = β2 = . . . = β11 = 0,

for q = 1, 2, 3, 11, respectively. To explore the finite sample size of the tests, we generate data

under these null hypotheses and we set the intercepts and other slopes to zero as the three tests

are exactly invariant to those parameters. To compare power of the tests, we generate data under

the alternatives

H1
1 : β1 = β,

H2
1 : β1 = β2 = β,

H3
1 : β1 = β2 = β3 = β,

H4
1 : β1 = β2 = . . . = β11 = β,
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respectively. The results are summarized in Tables 4 to 7. We use T = 100 and 2,000 replications

in all cases. We only report results for ρ = 0, 0.2, 0.4, 0.6, 0.8 and β = 0, 0.05, 0.10, 0.20. We

implement the tests both with and without VAR(1) prewhitening (see Andrews and Monahan

(1992)). Empirical rejection probabilities under the null hypotheses were computed using 5%

asymptotic critical values. Empirical rejection probabilities under the alternatives were computed

using 5% empirical finite sample critical values (obtained from the null distributions). Thus, finite

sample power is size corrected so that power comparisons are meaningful.

In Table 4 we give the results for H1
0 . Several patterns emerge. First, in nearly all cases,

empirical null rejection probabilities of F ∗1 and F ∗2 are closer to 0.05 thanWHAC . This is especially

true as ρ increases. Second, prewhitening improves the size of all the tests. This result should be

taken with a grain of salt as the prewhitening filter exactly matches the autocorrelation structure

of the errors, which is an unlikely situation in practice. Third, and as expected given finite sample

results in Kiefer et al. (2000) and Kiefer and Vogelsang (2000), the size-corrected power ofWHAC is

higher than F ∗1 and F ∗2 . This higher power comes at the expense of greater size distortion. Fourth,

the size of F ∗1 and F ∗2 are very similar while F ∗2 clearly has higher power. This suggests that F ∗2
would be preferred over F ∗1 in practice.

The dominance of F ∗2 over F ∗1 is continued in Tables 5, 6 and 7. F ∗2 always has higher power

than F ∗1 , except when ρ = 0.8, in which case the empirical null rejection probabilities of the two

tests are similar. And, when prewhitening is used, F ∗2 tends to be less size distorted.

Table 6 shows that while F ∗1 and F ∗2 have reasonable size, especially for ρ ≤ 0.6 when prewhiten-
ing is used, WHAC tends to over-reject even for ρ close to zero. All the tests have over-rejection

problems for large q as Table 7 shows. WHAC is particularly bad with rejection probability of 0.158

and 0.419 for ρ = 0 and ρ = 0.2 (without prewhitening). F ∗1 and F ∗2 are less distorted, but still

over-reject. Prewhitening does not help much, especially when ρ is large. F ∗2 clearly dominates F ∗1
when q = 11.

Finally, as our empirical example in the next section concerns 288 observations, we simulate

the size of the three tests for various values of ρ. In general, size distortions are less severe for all

the tests compared to T = 100. We only report results for the q = 11 case in Table 8. F ∗2 has

reasonable size for ρ ≤ 0.6 when prewhitening is used. WHAC , on the other hand, still tends to

over reject even for ρ close to zero.
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5 Monthly trends in Dutch temperatures

We now use the tests developed in this paper to analyze monthly trends in temperature series for The

Netherlands for the years 1706 to 1993. We obtained monthly averages of temperatures measured in

degrees centigrade for The Netherlands from the Royal Netherlands Meteorology Institute. Using

this data, we can ask how the apparent increase in global temperatures has impacted temperatures

in The Netherlands. In particular, we are interested in learning whether global warming has

uniformly affected temperatures in The Netherlands across the months of the year or whether

there are seasonally varying patterns.

We disaggregate the data into 12 annual temperature series corresponding to each month of the

year. We fit model (1) to the series using OLS. Of direct interest are the point estimates of the

βi coefficients as they measure the average annual increase of temperature over time. The point

estimates are reported in Table 9, together with measures which indicate that there is almost no

serial correlation in the residuals2. Notice that the point estimates are not uniform over the months.

The largest positive trends are in the January, March and December series. Perhaps surprisingly,

August and September have negative trends. The remaining months have mostly positive but small

trends.

To put the point estimates in perspective, consider the largest bβi (January) which is 0.0069.
This suggests that January temperatures have increased 0.0069 degrees centigrade per year, or 0.69

degrees per 100 years. This is slightly higher that the annual global increase of temperatures that

has been consistently estimated in the 0.004 to 0.006 range in the global warming literature3. The

March point estimate of 0.0038 is closer to the annual global rate.

In terms of statistical evidence, the January and March slopes are statistically larger than zero

at the 5% or 10% levels, depending on the test used. The September slope is statistically significant

and less than zero. All other months have point estimates that are not significantly different from

zero. The point estimates of the slopes suggest that The Netherlands have experienced warming

in the winter similar in magnitude to the global average but cooling in the late summer.

In Tables 10 to 13 we report additional tests of various hypotheses of interest. Table 10 confirms

that the slopes are not all zero and Table 11 confirms that they are not all equal. Of course, given
2This contrasts with the case of annual global temperature data where the errors exhibit positive serial correlation.

See Woodward and Gray (1993) or Fomby and Vogelsang (2000).
3See Bloomfield (1992), Woodward and Gray (1993), Zheng and Basher (1999) and Fomby and Vogelsang (2000)

for point estimates.
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our simulation evidence, rejections using WHAC have to be viewed with some caution given the

over-rejection problem. Table 12 reports tests of the null hypothesis that three consecutive months

have zero slopes. In most cases, the tests suggest no warming or cooling except in the winter

(December-February) where the point estimates indicate warming. Table 13 reports tests of the

null hypothesis that three consecutive months have the same slopes. In most cases, the tests do not

reject this null which is consistent with all slopes being zero. The exceptions are January-March,

December-February and July-September. In all these cases we have months with large positive or

negative slopes grouped with a month with a zero slope or slope of opposite sign.

Finally, Tables 14 to 16 test whether the winter months that indicate positive trends have equal

trends. The tests are computed pairwise. The tests suggest that the point estimates for December

and March are consistent with the same slope. But, there is some evidence that the January and

December slopes are different.

Overall, our empirical results strongly suggest that changes in temperatures over the past 300

years in The Netherlands vary considerably across the months. There is evidence of warming in

the winter, especially January, and cooling in the summer, especially September.

6 Conclusions and Direction for Future Research

In this paper we develop tests that can be used to test general linear hypotheses regarding the linear

trend slope parameters of a vector of trend stationary time series. As an alternative to traditional

Wald tests based on HAC robust standard errors, we recommend the use of a F -tests based on the

approach of Kiefer et al. (2000) and Kiefer and Vogelsang (2001). One of the new tests has much

better finite sample size with comparable but slightly lower to the HAC based Wald test.

We apply the tests to monthly temperature data for the Netherlands. We find that winters in

the Netherlands are getting warmer at about the same rate as the entire earth, but summers are

in fact experiencing slight cooling. Clearly, at least for the Netherlands, global warming is not

having a uniform impact across the months or seasons.

Given that little research has been done on multivariate trend function inference, there are

many directions to extend the approaches in this paper. The most obvious and simple extension

would be to consider kernels other than the Bartlett kernel. More interesting extensions include

models with unit root or near unit root errors, models with cointegrated errors, and models with

higher order trends or trends with structural change.
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7 Appendix

This appendix contains the proofs of the various results derived in this paper.

Proofs of (12) and (17): Simple algebra along with (2) and (9) gives

T−
1
2 bS[rT ] = T− 1

2

[rT ]X
t=1

but
= T−

1
2

[rT ]X
t=1

(eyt − bβet)
= T−

1
2

[rT ]X
t=1

(βet+ ut − ū− bβet)
= T−

1
2

[rT ]X
t=1

(ut − ū)− T 3
2 (bβ − β)T−2 [rT ]X

t=1

et
⇒ Λ[Wn(r)− rWn(1)− 12Vn(1)

Z r

0
(s− 1

2)ds]

= ΛbVn(r),
which proves (12). Similarly, using (2), (5), (6) and (9) it follows that

T−
3
2 eS[rT ] = T− 3

2

[rT ]X
t=1

etbut
= T−

3
2

[rT ]X
t=1

et(eyt − bβet)
= T−

3
2

[rT ]X
t=1

et(βet+ ut − ū− bβet)
= T−

3
2

[rT ]X
t=1

et(ut − ū)− T 3
2 (bβ − β)T−3 [rT ]X

t=1

et2
⇒ Λ

·Z r

0
(s− 1

2)dWn(s)− (
R r
0 (s− 1

2)ds)Wn(1)− 12Vn(1)
R r
0 (s− 1

2)
2ds

¸
= ΛeVn(r),

which proves (17).

Proof of Theorem 1: Simple algebra under H0 gives

F ∗1 = T
3
2 (R(bβ − β))0 "R(T−3 TX

t=1

et2)−1T−2eΩST=T (T−3 TX
t=1

et2)−1R0#−1 T 3
2 (R(bβ − β))/q. (20)
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Using (5), (9) and(13) it follows that

F ∗1 ⇒ [RΛVn(1)]
0
·
2RΛ

Z 1

0

eVn(r)eVn(r)0drΛ0R0¸−1 [RΛVn(1)]/q.
We can write RΛWn(r) as Λ∗Wq(r), where Λ∗ is a q × q matrix with Λ∗Λ∗0 = RΛΛ0R0 because

Wn(r) is a vector of independent Gaussian random variables. Therefore, direct algebra allows us

to write RΛVn(r) as Λ∗Vq(r), and RΛeVn(r) as Λ∗ eVq(r). Using these representations gives
F ∗1 ⇒ [Λ∗Vq(1)]0

·
2Λ∗

Z 1

0

eVq(r)eVq(r)0dr Λ∗0¸−1 [Λ∗Vq(1)]/q
= Vq(1)

0
·
2

Z 1

0

eVq(r)eVq(r)0dr¸−1 Vq(1)/q.
Using similar arguments as for F ∗1 , it follows from (5), (9) and(18) that

F ∗2 = T
3
2 [R(bβ − β)]0 "R(T−3 TX

t=1

et2)−1bΩST=TR0
#−1

T
3
2 [R(bβ − β)]/q

⇒ [RΛVn(1)]
0
·
1

6
RΛ

Z 1

0

bVn(r)bVn(r)0drΛ0R0¸−1 [RΛVn(1)]/q
= Vq(1)

0
·
1

6

Z 1

0

bVq(r)bVq(r)0dr¸−1 Vq(1)/q.

Proof of Theorem 2: Under the local alternative we have

bβ1 − β0 = cT−3
2 + (

TX
t=1

et2)−1 TX
t=1

etut. (21)

Therefore, using (5) and(6) it immediately follows that

T
3
2 (bβ1 − β0) = c+

Ã
T−3

TX
t=1

et2!−1 T−3/2 TX
t=1

etut ⇒ c+ 12σ1V1(1). (22)

Simple algebra gives

t∗1 =
T

3
2 (bβ1 − β0)

[(T−3
PT
t=1
et2)−1T−2eΩST=T (T−3PT

t=1
et2)−1] 12 ,

t∗2 =
T

3
2 (bβ1 − β0)

[(T−3
PT
t=1
et2)−1bΩST=T ] 12 ,
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and

tHAC =
T

3
2 (bβ1 − β0)

[(T−3
PT
t=1
et2)−1bΩHAC ] 12 .

Because eΩST=T , bΩST=T and bΩHAC are exactly invariant to β1, their limits are the same as under
the null hypothesis. Therefore, using (22), we have

t∗1 ⇒
c+ 12σ1V1(1)

[288σ21
R 1
0
eV1(r)2dr] 12 ,

t∗2 ⇒
c+ 12σ1V1(1)

[24σ21
R 1
0
bV1(r)2dr] 12 ,

and

tHAC ⇒ c+ 12σ1V1(1)

[12σ21]
1
2

.

Simple algebra further completes the proof.

Table 1: Asymptotic critical values
for t∗1 and t∗21

0.90 0.95 0.975 0.99
t∗1 3.315 4.566 5.820 7.416
t∗2 3.898 5.222 6.482 8.100
1 The tests concern a two-sided alterna-
tive hypothesis.
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Table 2: Asymptotic critical values
of F ∗1 for q restrictions
q 0.90 0.95 0.975 0.99
1 20.81 33.63 48.42 72.23
2 26.27 38.10 51.08 71.04
3 30.97 42.38 54.66 73.40
4 34.90 46.75 59.35 76.75
5 38.63 49.82 61.88 78.29
6 42.76 54.68 67.53 83.98
7 47.29 59.32 71.77 88.54
8 50.74 62.87 74.33 90.29
9 54.63 67.17 80.14 95.76
10 58.26 70.99 83.31 100.1
11 61.82 74.51 87.45 103.3
12 66.02 79.17 92.49 109.2
13 69.26 82.45 95.61 113.1
14 72.73 86.02 98.94 115.0
15 75.98 88.70 102.5 119.8
16 79.34 93.04 106.7 124.1
17 82.98 96.55 110.4 127.1
18 86.52 101.3 114.9 133.0
19 90.36 105.5 119.6 138.4
20 93.16 108.1 122.3 141.3
21 96.39 111.1 125.1 144.3
22 99.96 114.6 129.7 147.4
23 103.1 117.9 133.2 150.9
24 107.3 122.3 137.3 156.8
25 110.4 125.9 140.9 160.7
26 114.1 129.4 144.1 163.6
27 117.4 133.5 148.8 167.9
28 120.3 136.3 151.5 171.6
29 123.6 139.6 155.7 175.5
30 126.7 143.5 158.9 179.2
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Table 3: Asymptotic critical values
of F ∗2 for q restrictions
q 0.90 0.95 0.975 0.99
1 20.14 41.53 58.57 83.96
2 28.90 40.68 53.58 73.50
3 30.95 41.45 52.86 68.67
4 33.26 43.84 54.60 69.30
5 35.51 45.43 55.86 70.14
6 38.26 48.39 58.91 73.36
7 41.22 51.35 61.62 75.87
8 43.50 53.25 63.18 76.71
9 46.36 56.86 67.24 80.55
10 49.05 58.90 68.92 93.06
11 51.56 62.08 71.92 85.85
12 54.54 65.01 74.95 88.65
13 56.49 67.07 77.41 92.66
14 59.43 69.98 80.32 93.61
15 61.65 72.32 82.74 97.02
16 64.33 74.83 85.63 99.79
17 66.95 77.89 88.15 102.1
18 69.69 80.75 91.93 106.0
19 72.52 84.24 95.18 109.2
20 74.35 86.17 97.20 112.2
21 76.74 87.99 99.32 113.2
22 79.45 91.12 102.6 116.1
23 81.77 93.27 104.6 118.3
24 84.53 96.56 108.5 123.7
25 86.94 99.07 110.8 125.3
26 89.57 102.0 113.7 128.6
27 91.88 104.5 116.5 131.6
28 94.40 106.8 119.2 134.2
29 96.89 109.4 121.3 136.7
30 99.41 111.8 124.2 140.0
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Table 4: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for a single zero
restriction on β (q = 1)1

No prewhitening VAR(1) prewhitening
ρ β F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

0 0 0.047 0.043 0.061 0.039 0.035 0.064
0.005 0.227 0.270 0.305 0.228 0.267 0.293
0.010 0.622 0.743 0.804 0.629 0.736 0.792
0.020 0.980 0.998 1.000 0.984 0.998 0.999

0.2 0 0.052 0.048 0.086 0.039 0.037 0.066
0.005 0.161 0.194 0.210 0.173 0.189 0.205
0.010 0.465 0.548 0.618 0.473 0.544 0.608
0.020 0.925 0.976 0.996 0.937 0.978 0.995

0.4 0 0.058 0.054 0.106 0.040 0.036 0.069
0.005 0.117 0.134 0.135 0.127 0.141 0.132
0.010 0.298 0.359 0.396 0.310 0.364 0.387
0.020 0.753 0.851 0.914 0.783 0.859 0.906

0.6 0 0.063 0.062 0.134 0.040 0.036 0.080
0.005 0.092 0.091 0.100 0.088 0.098 0.096
0.010 0.173 0.194 0.223 0.178 0.205 0.216
0.020 0.480 0.537 0.618 0.476 0.567 0.616

0.8 0 0.088 0.097 0.192 0.041 0.038 0.098
0.005 0.068 0.071 0.062 0.065 0.064 0.068
0.010 0.093 0.106 0.102 0.090 0.106 0.103
0.020 0.184 0.212 0.232 0.193 0.215 0.231

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter ρ. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

1 The critical values for the F ∗1 and F
∗
2 tests can be found in Table 2

and Table 3 for q = 1, respectively.
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Table 5: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for two zero
restrictions on β (q = 2)1

No prewhitening VAR(1) prewhitening
ρ β F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

0 0 0.050 0.049 0.070 0.036 0.037 0.074
0.005 0.294 0.335 0.411 0.310 0.348 0.401
0.010 0.773 0.856 0.958 0.805 0.868 0.954
0.020 0.996 1.000 1.000 0.995 1.000 1.000

0.2 0 0.058 0.060 0.107 0.038 0.040 0.081
0.005 0.209 0.222 0.285 0.217 0.240 0.278
0.010 0.615 0.679 0.829 0.646 0.697 0.822
0.020 0.960 0.994 1.000 0.975 0.997 1.000

0.4 0 0.068 0.068 0.138 0.039 0.040 0.091
0.005 0.136 0.139 0.169 0.146 0.146 0.172
0.010 0.389 0.435 0.535 0.426 0.458 0.541
0.020 0.871 0.934 0.990 0.895 0.950 0.990

0.6 0 0.082 0.088 0.198 0.045 0.045 0.112
0.005 0.083 0.086 0.094 0.087 0.094 0.103
0.010 0.204 0.214 0.268 0.218 0.240 0.272
0.020 0.569 0.657 0.785 0.621 0.695 0.782

0.8 0 0.129 0.144 0.330 0.063 0.055 0.181
0.005 0.056 0.060 0.059 0.064 0.063 0.068
0.010 0.085 0.089 0.094 0.094 0.096 0.096
0.020 0.202 0.221 0.245 0.231 0.251 0.260

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter ρ. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

1 The critical values for the F ∗1 and F
∗
2 tests can be found in Table 2

and Table 3 for q = 2, respectively.
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Table 6: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for three zero
restrictions on β (q = 3)1

No prewhitening VAR(1) prewhitening
ρ β F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

0 0 0.049 0.049 0.073 0.042 0.042 0.095
0.005 0.333 0.379 0.488 0.329 0.373 0.477
0.010 0.847 0.916 0.987 0.840 0.914 0.985
0.020 0.996 1.000 1.000 0.997 1.000 1.000

0.2 0 0.063 0.061 0.127 0.042 0.042 0.102
0.005 0.232 0.253 0.332 0.226 0.246 0.312
0.010 0.681 0.757 0.906 0.681 0.759 0.887
0.020 0.982 0.997 1.000 0.985 0.998 1.000

0.4 0 0.077 0.074 0.195 0.049 0.046 0.123
0.005 0.154 0.173 0.197 0.149 0.165 0.197
0.010 0.452 0.520 0.632 0.443 0.512 0.618
0.020 0.916 0.965 0.999 0.912 0.970 0.997

0.6 0 0.108 0.108 0.286 0.061 0.050 0.164
0.005 0.088 0.108 0.111 0.085 0.104 0.101
0.010 0.229 0.265 0.307 0.218 0.254 0.294
0.020 0.656 0.746 0.855 0.647 0.752 0.851

0.8 0 0.188 0.204 0.464 0.101 0.075 0.273
0.005 0.056 0.058 0.061 0.061 0.062 0.067
0.010 0.091 0.107 0.101 0.097 0.109 0.112
0.020 0.242 0.284 0.281 0.251 0.282 0.312

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter ρ. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

1 The critical values for the F ∗1 and F
∗
2 tests can be found in Table 2

and Table 3 for q = 3, respectively.
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Table 7: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for eleven zero
restrictions on β (q = 11)1

No prewhitening VAR(1) prewhitening
ρ β F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

0 0 0.066 0.059 0.158 0.121 0.070 0.322
0.005 0.655 0.684 0.856 0.577 0.629 0.789
0.010 0.993 0.995 1.000 0.984 0.994 1.000
0.020 1.000 1.000 1.000 0.999 1.000 1.000

0.2 0 0.128 0.116 0.419 0.168 0.099 0.408
0.005 0.435 0.448 0.560 0.359 0.426 0.535
0.010 0.950 0.966 0.998 0.914 0.953 0.996
0.020 1.000 1.000 1.000 0.999 1.000 1.000

0.4 0 0.266 0.221 0.702 0.273 0.150 0.543
0.005 0.239 0.258 0.254 0.208 0.226 0.281
0.010 0.798 0.805 0.860 0.717 0.748 0.886
0.020 0.997 0.999 1.000 0.993 0.997 1.000

0.6 0 0.504 0.460 0.920 0.490 0.311 0.750
0.005 0.123 0.135 0.122 0.114 0.109 0.126
0.010 0.421 0.429 0.386 0.364 0.375 0.472
0.020 0.929 0.948 0.936 0.891 0.913 0.980

0.8 0 0.849 0.824 0.999 0.841 0.705 0.956
0.005 0.073 0.067 0.065 0.067 0.066 0.067
0.010 0.142 0.141 0.137 0.140 0.124 0.142
0.020 0.495 0.464 0.447 0.419 0.431 0.482

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter ρ. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

1 The critical values for the F ∗1 and F
∗
2 tests can be found in Table 2

and Table 3 for q = 11, respectively.
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Table 8: Empirical size of the three tests, without and
with prewhitening. Testing for eleven zero restrictions
on β (q = 11) for 288 observations1

No prewhitening VAR(1) prewhitening
ρ F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

0 0.045 0.047 0.079 0.040 0.038 0.116
0.2 0.074 0.068 0.199 0.049 0.040 0.138
0.4 0.118 0.098 0.324 0.063 0.047 0.180
0.6 0.193 0.162 0.529 0.099 0.064 0.272
0.8 0.431 0.373 0.850 0.260 0.154 0.532

The cells contain the finite sample empirical rejection prob-
abilities (at a 5 % significance level). The number of replica-
tions is 2000, and the sample size is 288. All series have AR(1)
errors with parameter ρ. The Wald test is implemented us-
ing a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

1 The critical values for the F ∗1 and F
∗
2 tests can be found in

Table 2 and Table 3 for q = 11, respectively.

Table 9: Single equation estimation results for monthly temperatures in The Netherlands.1

No prewhitening VAR(1) prewhitening
Month bβ bρ1 pval t∗1 t∗2 tHAC t∗1 t∗2 tHAC
January 0.0069 −0.049 0.812 5.3279∗ 7.3991∗∗ 3.7998∗∗∗ 5.4271∗ 7.3771∗∗ 3.9302∗∗∗

February −0.0004 −0.048 0.209 −1.0673 −1.0871 −0.2651 −1.0329 −1.0733 −0.2756
March 0.0038 0.086 0.313 3.6930 6.2973 2.8415∗∗∗ 4.0011 6.1929∗ 2.6925∗∗∗

April 0.0003 0.094 0.077 0.5562 0.8601 0.3108 0.5775 0.8497 0.2894
May 0.0011 0.030 0.529 2.8487 3.5735 1.1132 3.7023 3.4118 1.1369
June 0.0005 −0.016 0.250 1.5635 1.3860 0.5508 1.6306 1.3589 0.5613
July 0.0006 0.017 0.821 2.0568 2.4954 0.6893 2.3626 2.4767 0.6770
August −0.0004 0.118 0.298 −0.9808 −1.2882 −0.4830 −1.0523 −1.2816 −0.4521
September −0.0019 −0.038 0.990 −4.0678 −5.6466∗−2.3998∗∗∗−3.8418 −5.6399∗−2.4126∗∗∗
October 0.0004 0.136 0.278 0.5327 0.8221 0.4181 0.5657 0.8168 0.3880
November 0.0006 0.083 0.190 0.3967 0.6886 0.5507 0.3965 0.6850 0.5375
December 0.0028 0.003 0.994 1.8537 3.1072 1.7254∗ 1.8718 3.1037 1.7397∗

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level
1 The sample runs from January 1706 to December 1993. bρ1 denotes the estimate of the first order residual au-
tocorrelation. The pval is the p−value of the Ljung-Box test of the null of no serial correlation using residual
autocorrelations up to 10 lags.
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Table 10: Joint tests for the restriction that all months have
slope equal to zero.1

Test statistic No prewhitening VAR(1) prewhitening
F ∗1 123.8∗∗∗ 135.2∗∗∗

F ∗2 72.52∗∗ 70.84∗∗

WHAC 41.74∗∗∗ 46.77∗∗∗

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the F ∗1 and F

∗
2 tests can be found in Table

2 and Table 3 for q = 12, respectively.

Table 11: Joint tests for the restriction that all months have
the same slope1

Test statistic No prewhitening VAR(1) prewhitening
F ∗1 95.14∗∗ 86.79∗∗

F ∗2 67.84∗∗ 59.09
WHAC 41.43∗∗∗ 46.70∗∗∗

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the F ∗1 and F

∗
2 tests can be found in Table

2 and Table 3 for q = 11, respectively.

Table 12: Joint tests that the trend slopes in three sequential
months are equal to zero.1

No prewhitening VAR(1) prewhitening
Months F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

Jan.-Mar. 31.36 39.69 27.18∗∗∗ 24.52 38.97 28.27∗∗∗

Feb.-Apr. 14.45 22.61 11.12∗∗ 15.31 22.35 11.11∗∗∗

Mar.-May 10.07 18.72 9.388∗∗ 13.68 17.99 9.136∗∗

Apr.-Jun. 7.960 7.230 1.427 10.18 6.030 1.513
May-Jul. 2.926 6.874 1.716 5.389 6.042 1.842
Jun.-Aug. 8.785 7.430 1.425 8.942 7.366 1.509
Jul.-Sep. 32.72 39.15 6.817 22.50 36.84 7.404
Aug.-Oct. 34.27 33.05 6.712 28.81 30.74 6.861
Sep.-Nov. 29.02 30.01 7.245 28.85 29.18 7.364
Oct.-Dec. 6.281 9.052 3.087 6.014 8.816 3.145
Nov.-Jan. 37.03 33.48 16.52∗∗∗ 35.35 32.97 16.41∗∗∗

Dec.-Feb. 74.90∗∗∗ 64.99∗∗ 19.72∗∗∗ 71.08∗∗∗ 64.44∗∗ 20.07∗∗∗

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the F ∗1 and F

∗
2 tests can be found in Table 2 and

Table 3 for q = 3, respectively.
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Table 13: Joint tests for the equality of trend slopes in three se-
quential months.1

No prewhitening VAR(1) prewhitening
Months F ∗1 F ∗2 WHAC F ∗1 F ∗2 WHAC

Jan.-Mar. 26.44 51.22∗∗ 15.75∗∗∗ 25.24 51.12∗∗ 17.36∗∗∗

Feb.-Apr. 14.72 33.27 10.12∗∗∗ 17.25 32.77 10.75∗∗∗

Mar.-May 15.00 26.44 6.244 17.73 25.74 6.516∗∗

Apr.-Jun. 2.690 2.019 0.394 2.472 1.934 0.381
May-Jul. 1.385 0.847 0.262 1.583 0.829 0.250
Jun.-Aug. 9.862 10.25 1.318 9.258 10.13 1.356
Jul.-Sep. 42.88∗∗ 58.17∗∗ 5.103 26.26 54.92∗∗ 5.521
Aug.-Oct. 35.42 38.54 4.811 35.09 35.25 4.575
Sep.-Nov. 16.06 19.65 5.603 17.25 18.87 5.258
Oct.-Dec. 9.120 13.11 1.866 8.744 12.79 1.891
Nov.-Jan. 31.84 39.54 8.233∗∗ 29.24 38.89 8.683∗∗

Dec.-Feb. 62.97∗∗ 61.69∗∗ 13.96∗∗∗ 64.31∗∗ 61.73∗∗ 15.05∗∗∗

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the F ∗1 and F

∗
2 tests can be found in Table 2 and

Table 3 for q = 2, respectively.

Table 14: Pairwise two-sided t∗1 tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.1

Month January March December
January n.a. 5.412 6.384∗∗

March 5.683 n.a. 1.340
December 6.488∗∗ 1.507 n.a.

*** Significant at the 0.01 level, ** at the 0.05
level.

1 The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.
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Table 15: Pairwise two-sided t∗2 tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.1

Month January March December
January n.a. 5.330 6.437
March 5.400 n.a. 2.207
December 6.402 2.051 n.a.

*** Significant at the 0.01 level, ** at the 0.05
level.

1 The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.

Table 16: Pairwise two-sided tHAC tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.1

Month January March December
January n.a. 1.527 1.933
March 1.529 n.a. 0.512
December 1.751 0.481 n.a.

*** Significant at the 0.01 level, ** at the 0.05
level.

1 The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.
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