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Abstract

We propose tests for hypotheses on the parameters for deterministic trends. The model
framework assumes a multivariate structure for trend-stationary time series variables. We de-
rive the asymptotic theory and provide some relevant critical values. Monte Carlo simulations
suggest which tests are more useful in practice than others. We apply our tests to examine if
monthly temperatures in The Netherlands, measured from 1706 onwards, have a trend and if
these trends are the same across months. We find that the January and March temperatures
have the same upward trend, that the September temperature has decreased and that the tem-
peratures in the other months do not have a trend. Hence, only winters in The Netherlands
seem to get warmer.
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1 Introduction

In several empirical situations it is found that time series data contain a deterministic trend, while
they are otherwise stationary. An example in macroeconomics concerns differences between real
output for pairs of countries (see Hobijn and Franses (2000) among others) or pairs of regions
within the U.S. (see Carlino and Mills (1993), Loewy and Papell (1995) and Tomljanovich and
Vogelsang (2001) among others), where such a trend-stationary series indicates some degree of
convergence. Other examples can be found in disciplines such as tourism and marketing, where
tourist arrivals and sales often display upward trending patterns. Finally, environmental data like
temperatures may also display trends, and if these are upward moving this can be taken as evidence
of global warming. See Bloomfield (1992), Woodward and Gray (1993), Zheng and Basher (1999)
and Fomby and Vogelsang (2000) among many others.

In some of the above cases it may be of interest to examine if two or more trend-stationary time
series have the same slope. This would allow for testing whether a pair of countries are converging
with the same speed as another pair. Also, one may want to test whether temperatures across
countries have the same upward moving trend. In this paper we propose tests for such and related
hypotheses. We should note that while there has been recent research on univariate trend function
inference and modeling (see Perron (1991), Canjels and Watson (1997), Vogelsang (1997,1998)),
multivariate trend modeling and inference has received little attention'.

The outline of our paper is as follows. In Section 2, we discuss the model representation,
parameter estimation, and the test statistics of interest. A key issue is the estimation of the
covariance matrix, for which we aim to compare three different approaches, amongst which the
familiar HAC estimator. In Section 3, we derive the relevant asymptotic theory. We tabulate
useful critical values. Additionally, we discuss asymptotic power of the tests in a special case. In
Section 4, we rely on Monte Carlo simulations to examine the finite sample performance of the test
statistics. We observe that the tests work best for a limited number of variables under scrutiny.
Additionally, we find that the HAC-based tests have serious size distortions, while our new tests
perform satisfactorily. In Section 5, we apply our tests to three centuries of monthly temperatures

for The Netherlands. We find that the January and March temperatures have the same upward

'Tt should be noted that the asymptotic theory for multivariate time series regressions developed by Park and
Phillips (1988) includes our model as a special case where no covariates are included. However, they do not consider
hypotheses involving cross equation restrictions on the linear trend parameters as we do here.



trend, that the September temperature has decreased over time and that the temperatures in the

other months do not have a trend. Hence, only winters in The Netherlands seem to get warmer.

2 The model and test statistics

In this section we present the model, parameter estimation and the relevant test statistics.
2.1 Representation

Consider n trend-stationary time series denoted by yi; to y,; with ¢t = 1,2,... T, and assume

that they can be represented by

Y1t = p1 + Bt +uiy

Yot = o + PBat + usy
Ynt = fy + Bt + Un,t-

Define the three nx1 vectors uz, pand 8 by (w1, u2t, .- s unt)’s (11, gy - - - 5 ftyy)" and (Bq, Bay - -, 5,),

respectively. It is assumed that a functional limit theorem applies to u, that is,

[rT]
T2 uy = AW,(r), (2)

t=1
where = denotes weak convergence, W, (r) is an n x 1 standard independent Wiener process, and
[rT] is the integer part of rT. See, for example, Phillips and Durlauf (1986) for conditions under

which (2) holds. We denote 2 as the long-run variance of u;, that is,
Q=AN= > Ty
j=—00
where I'; = Cov[usuy_;]. The hypotheses of interest in this paper are
HO . R,@ =T
Hy:RB #r,

where R is a ¢ x n matrix, and r is a n x 1 vector.



2.2 Estimation

The parameters in (1) can be estimated by applying ordinary least squares (OLS) equation by
equation, which results in 7 and 3 If the errors are second order stationary (a typical condition
under which (2) will hold), then from the classic results of Grenander and Rosenblatt (1957), OLS
is asymptotically equivalent to GLS (and MLE under Gaussian errors). In addition, because (1) is a
seemingly unrelated regression (SUR) with the same regressors in each equation, OLS is equivalent
to the SUR estimator, which is the GLS estimator for i.i.d. errors with different error variances.
Thus, OLS has some nice optimality properties.

It will be convenient to express BZ as follows. Define ¢t = T~ 1 Zle t and ¢ = ¢ — I, then

_1T

T
3, = (z%ﬁ S
t=1 t=1

fori =1,2,... ,n. These estimators can be summarized into the n x 1 vector B = (31, BQ, B

As usual we obtain

T
3opo (z?) S n

where — denotes convergence, and that

3 T ~ 1
T3y T = A/O (= )W, (r) = A [SWa(D) — i Wa(r)ar] (6)

t=1

For later it will be useful to define the process
Vo(r) = (r — %)Wn(r) — for W, (s)ds — Wy (1) fg(s — %)ds, (7)
where

V(1) = [§Wa(1) — [5 Wa(r)dr], 8)



follows from the fact that fol(s — 1)ds = 0. Using (5), (6) and (2.2), we obtain

W

T -1 T
T:(8 - B) = (TSZ?) T32N " tuy = 12AV,,(1). (9)

t=1 t=1

It is easy to show that 12AV,,(1) is distributed as N (0,129). Therefore, inference regarding
B can be carried out in the usual way provided a consistent estimator of €2 is available. Under
regularity conditions similar to those required for (2) to hold, €2 can be consistently estimated using
the class of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators,
see Andrews (1991). Here we focus on the Bartlett kernel (see Newey and West (1987)) estimator
defined as

T-1
Quac=To+> (1-
=1

5@+ T5), (10)
where fj =T Zf:jﬂ ﬁtﬂgfj and St is the truncation lag or bandwidth. For SA)HAC to be
consistent, S must increase as the sample increases but at a slower rate. Andrews (1991) showed
that the rate T'5 minimizes the approximate MSE for Q. In the Monte Carlo simulations and
empirical work that follows, we choose St using the data-dependent method suggested by Andrews
(1991) based on the VAR(1) plug-in formula.

We now consider alternatives to using consistent estimates of Q. Following Kiefer, Vogelsang
and Bunzel (2000) and Kiefer and Vogelsang (2000), suppose we set Sp = T" in (10). Let SAIST:T
denote this estimator of 2. Although St = T does not result in a consistent estimator of €2, valid
testing is still possible because QST:T is asymptotically proportional to €2 as is shown below. The
advantage of QST:T is that it uses a specific bandwidth and this choice of bandwidth is captured
by the first-order asymptotics.

The asymptotic behavior of QST:T is as follows. Following Kiefer and Vogelsang (2001) and
using the fact that Z};l uy = 0, it holds that

T-1 . T

~ ~ j ~ ~ _ A~ A~

Osp—r =To+ > (1— 7+ 1) =27 2y 55, (11)
=1 t=1

where S; = 22‘:1 u;. In the appendix we prove that

T3 8,71 = AV, (r), (12)



where V,(r) = Wi (r) — rWn(1) — 12V, ( (1) [y (s = 3)ds. It directly follows from (11), (12) and the

continuous mapping theorem that
Ogpep =271 T12GT7125 = 24 < / Vn(r)Vn(r)/dr> A, (13)
t=1 0

We also consider an alternative to (AZST:T which is constructed using ta; instead of Ty. In
a standard application of HAC estimators to the regressions given by ((1)), td; would be used.
Because {4, is not a vector of stationary time series, establishing consistency of a HAC estimator
in this case would be difficult if even feasible. However, if we use St = T, the asymptotic behavior

of the HAC estimator can be derived. Specifically, define

T-1 .
Qg,— T—F0+Z (F +T%), (14)
where
T
Y- vl - - by (15)
t=j+1

Again, using Kiefer and Vogelsang (2001), we can write

T
Qs,—r =272 8,8}, (16)
t=1

where S; = Z;Zl(j —t)u;. In the appendix we prove that

T3S0 = AVi(r), (17)
where V,,(r) = Vi, (r) — 12V, ( (1) [y (s — %)%ds. It directly follows from (16), (17) and the continuous
mapping theorem that

T Qgper = 2771 Y T325,T7325] = 2A < / Vn(T)Vn(T)/dT> A (18)
0

t=1

2.3 Test statistics

To test the null hypothesis in (3) against the relevant alternative hypothesis, we consider three

joint tests for the restrictions in R. The first two tests are F'—tests which we compute using the



Bartlett HAC estimator with bandwidth T. These tests rely either on Qg,—7 or on SA)ST:T. The

first test statistic is
-1

T T
Ff =T(RB—7) |[R(TY ) ' Qeen(T Y #)7'R'| (RB-1)/q,
t=1 t=1
where QST:T is defined in (16). The second F'—test we consider is
T —1
F3 = (RB—r) |RQY_ &) QsperR | (RB—1)/q,
t=1

where SAIST:T is defined in (11).
Naturally, if there is only a single restriction to test, that is ¢ = 1, then one can consider a

t—test. In the present notation, these tests are

~

T3 (RB 1)
(RIS, )10, (T S, 2) R

Y

t =

and

~

(RB—)
RO ) s, |

)

ty =

N =

respectively.
The standard alternative to F}" and F5 is a Wald test based on 0 HAC defined as

T -1

R(Z P)flﬁHAcR/

t=1

Wiao = (RB—r)’ (RB —r).

Likewise, we defined the standard HAC ¢—test as

~

(RG—)
{R(ZL p)‘@HAcR’}

tgac =

N =

3 Asymptotic theory and critical values

In this section we develop the asymptotic theory for the tests. We also compute useful critical

values. Finally, we discuss asymptotic power.



3.1 Asymptotic distributions

Assumption (2) is sufficient to obtain the asymptotic null distributions of F}* and F3. The asymp-

totic distributions of these tests are summarized in the following Theorem and Corollary.

Theorem 1 Let the data be generated by (1) and suppose assumption (2) holds. Then, as T — oo,

Ff = V(1) [2 / 1 qu%(r)'dr} Ve

Corollary 1 Let the data be generated by (1) and suppose assumption (2) holds. If ¢ =1, then as

T — o0,

Note that F} and Fy are quadratic forms involving the normal random vector V(1) and random
matrices that reflect the use of QST:T and QST:T.

Finally, if Q HAC s a consistent estimator of €2, then the asymptotic distribution of the Wald
test Wi ac is x? with ¢ degrees of freedom. When ¢ = 1, t—tests based on Q HAc are asymptotically
distributed as N(0,1).

3.2 Ciritical values

The critical values for the ¢, t5, F and F3 need to be obtained through Monte Carlo simulation.
The asymptotic critical values were simulated using 50,000 replications. The Wiener processes were
approximated by normalized sums of i.i.d N(0,1) errors using 1,000 steps. The critical values for

the ¢t and ¢35 tests are given in Table 1. Right tail critical values are given. The left tail critical



values follow from symmetry around zero. The critical values for the F}* test are given in Table 2,
where we tabulate the critical values for tests for g restrictions, where g runs from 1 to 30. Similarly

obtained critical values for the Fy test are given in Table 3.

3.3 Asymptotic power

One way to compare and contrast the new tests with each other and with standard HAC-based
tests is to examine asymptotic power for local alternatives. To keep the analysis transparent, we

consider the case of ¢ = 1 and focus on the regression
Y1, = py + Bt +uiy (19)

Let 02 = vy + Z;ifoo 7, where v; = Cov(uyt,u14—j). Then, under assumption (2),

[rT]

Tﬁé Z = O’1W1(T).

t=1

Consider the one-sided hypothesis Hy : 5; < B, against H; : 81 > ;. We can obtain nonde-
generate limiting distributions for the ¢t—tests under the local alternative 3; = 3, + T3, Thus,
(3, converges to (3, at rate T-3.

The following theorem gives the limiting distribution of the tests under the local alternative.

The proof is given in the appendix.

Theorem 2 Suppose the data are generated by (19) and that assumption (2) holds. Suppose t—tests
are constructed for testing Ho : B < By against Hy : 31 > By. Suppose B, = By + CT_%, then, as

T — o0,

121
HAC \/ﬁ ’

5+ 1214 (1)
L~ 1/2°
(288]5 v?(r)dr>

1 =

5+ 124 (1)

t5 = — oL
(o412 T2

where 6 = c/o;.



Using Theorem 3, asymptotic power can be computed by simulating the distributions under the
local alternative for various values of 6 and computing rejection probabilities using the asymptotic
null critical values. Using the same simulation methods used to compute null critical values, we
computed asymptotic power for ¢ € [0,20]. Power with a nominal level of 5% is plotted in Figure
1. Clearly, power is highest for ¢ ac, followed by ¢35 and then ¢]. The reason that ¢] and ¢3 have
slightly lower power is because they use ”standard errors” with sampling variability that does not
vanish as T increases. However, as we will show in the next section, tac is generally more size

distorted in finite samples. Thus, ¢] and ¢5 trade off power in exchange for better size.
4 Finite sample performance

In this section we examine the finite sample performance of the F} and F5 tests and compare them
to Wrgac. We generate data according to (1) with n = 12 (to match the empirical application)

where the errors are modeled as AR(1) processes, that is
Uit = PUjt—1 + €it,

with e;; i.i.d. N(0,1) and w;p = 0. For the sake of simplicity, we use the same AR(1) coefficient

for all series. We consider the following null hypotheses:

H& : 61 =0,

Hg 101 =By =0,

H8551:ﬁ2:ﬂ3:07

Hy:B1=p0y=...=B1; =0,
for ¢ = 1,2,3,11, respectively. To explore the finite sample size of the tests, we generate data
under these null hypotheses and we set the intercepts and other slopes to zero as the three tests

are exactly invariant to those parameters. To compare power of the tests, we generate data under

the alternatives

Hi: B =B,

H: 3y =By =5,

H}: By =By =83 =5,

Hi: By =By=...=py =05



respectively. The results are summarized in Tables 4 to 7. We use T' = 100 and 2,000 replications
in all cases. We only report results for p = 0,0.2,0.4,0.6,0.8 and § = 0,0.05,0.10,0.20. We
implement the tests both with and without VAR(1) prewhitening (see Andrews and Monahan
(1992)). Empirical rejection probabilities under the null hypotheses were computed using 5%
asymptotic critical values. Empirical rejection probabilities under the alternatives were computed
using 5% empirical finite sample critical values (obtained from the null distributions). Thus, finite
sample power is size corrected so that power comparisons are meaningful.

In Table 4 we give the results for H}. Several patterns emerge. First, in nearly all cases,
empirical null rejection probabilities of F}* and F3 are closer to 0.05 than Wgc. This is especially
true as p increases. Second, prewhitening improves the size of all the tests. This result should be
taken with a grain of salt as the prewhitening filter exactly matches the autocorrelation structure
of the errors, which is an unlikely situation in practice. Third, and as expected given finite sample
results in Kiefer et al. (2000) and Kiefer and Vogelsang (2000), the size-corrected power of Wi ac is
higher than F}* and F3. This higher power comes at the expense of greater size distortion. Fourth,
the size of F}" and Fy are very similar while F3 clearly has higher power. This suggests that Fy
would be preferred over F} in practice.

The dominance of Fy over FY is continued in Tables 5, 6 and 7. Fy always has higher power
than FY, except when p = 0.8, in which case the empirical null rejection probabilities of the two
tests are similar. And, when prewhitening is used, F; tends to be less size distorted.

Table 6 shows that while F}* and F3 have reasonable size, especially for p < 0.6 when prewhiten-
ing is used, Wg ¢ tends to over-reject even for p close to zero. All the tests have over-rejection
problems for large q as Table 7 shows. Wi a¢ is particularly bad with rejection probability of 0.158
and 0.419 for p = 0 and p = 0.2 (without prewhitening). F} and F} are less distorted, but still
over-reject. Prewhitening does not help much, especially when p is large. F3 clearly dominates F7*
when ¢ = 11.

Finally, as our empirical example in the next section concerns 288 observations, we simulate
the size of the three tests for various values of p. In general, size distortions are less severe for all
the tests compared to 7" = 100. We only report results for the ¢ = 11 case in Table 8. F3 has
reasonable size for p < 0.6 when prewhitening is used. Wy ac, on the other hand, still tends to

over reject even for p close to zero.

10



5 Monthly trends in Dutch temperatures

We now use the tests developed in this paper to analyze monthly trends in temperature series for The
Netherlands for the years 1706 to 1993. We obtained monthly averages of temperatures measured in
degrees centigrade for The Netherlands from the Royal Netherlands Meteorology Institute. Using
this data, we can ask how the apparent increase in global temperatures has impacted temperatures
in The Netherlands. In particular, we are interested in learning whether global warming has
uniformly affected temperatures in The Netherlands across the months of the year or whether
there are seasonally varying patterns.

We disaggregate the data into 12 annual temperature series corresponding to each month of the
year. We fit model (1) to the series using OLS. Of direct interest are the point estimates of the
B,; coeflicients as they measure the average annual increase of temperature over time. The point
estimates are reported in Table 9, together with measures which indicate that there is almost no
serial correlation in the residuals®. Notice that the point estimates are not uniform over the months.
The largest positive trends are in the January, March and December series. Perhaps surprisingly,
August and September have negative trends. The remaining months have mostly positive but small
trends.

To put the point estimates in perspective, consider the largest BZ (January) which is 0.0069.
This suggests that January temperatures have increased 0.0069 degrees centigrade per year, or 0.69
degrees per 100 years. This is slightly higher that the annual global increase of temperatures that
has been consistently estimated in the 0.004 to 0.006 range in the global warming literature3. The
March point estimate of 0.0038 is closer to the annual global rate.

In terms of statistical evidence, the January and March slopes are statistically larger than zero
at the 5% or 10% levels, depending on the test used. The September slope is statistically significant
and less than zero. All other months have point estimates that are not significantly different from
zero. The point estimates of the slopes suggest that The Netherlands have experienced warming
in the winter similar in magnitude to the global average but cooling in the late summer.

In Tables 10 to 13 we report additional tests of various hypotheses of interest. Table 10 confirms

that the slopes are not all zero and Table 11 confirms that they are not all equal. Of course, given

2This contrasts with the case of annual global temperature data where the errors exhibit positive serial correlation.
See Woodward and Gray (1993) or Fomby and Vogelsang (2000).

3See Bloomfield (1992), Woodward and Gray (1993), Zheng and Basher (1999) and Fomby and Vogelsang (2000)
for point estimates.

11



our simulation evidence, rejections using Wi ac have to be viewed with some caution given the
over-rejection problem. Table 12 reports tests of the null hypothesis that three consecutive months
have zero slopes. In most cases, the tests suggest no warming or cooling except in the winter
(December-February) where the point estimates indicate warming. Table 13 reports tests of the
null hypothesis that three consecutive months have the same slopes. In most cases, the tests do not
reject this null which is consistent with all slopes being zero. The exceptions are January-March,
December-February and July-September. In all these cases we have months with large positive or
negative slopes grouped with a month with a zero slope or slope of opposite sign.

Finally, Tables 14 to 16 test whether the winter months that indicate positive trends have equal
trends. The tests are computed pairwise. The tests suggest that the point estimates for December
and March are consistent with the same slope. But, there is some evidence that the January and
December slopes are different.

Overall, our empirical results strongly suggest that changes in temperatures over the past 300
years in The Netherlands vary considerably across the months. There is evidence of warming in

the winter, especially January, and cooling in the summer, especially September.
6 Conclusions and Direction for Future Research

In this paper we develop tests that can be used to test general linear hypotheses regarding the linear
trend slope parameters of a vector of trend stationary time series. As an alternative to traditional
Wald tests based on HAC robust standard errors, we recommend the use of a F-tests based on the
approach of Kiefer et al. (2000) and Kiefer and Vogelsang (2001). One of the new tests has much
better finite sample size with comparable but slightly lower to the HAC based Wald test.

We apply the tests to monthly temperature data for the Netherlands. We find that winters in
the Netherlands are getting warmer at about the same rate as the entire earth, but summers are
in fact experiencing slight cooling. Clearly, at least for the Netherlands, global warming is not
having a uniform impact across the months or seasons.

Given that little research has been done on multivariate trend function inference, there are
many directions to extend the approaches in this paper. The most obvious and simple extension
would be to consider kernels other than the Bartlett kernel. More interesting extensions include
models with unit root or near unit root errors, models with cointegrated errors, and models with

higher order trends or trends with structural change.

12



References

Andrews, D. W. K. (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix
Estimation, Econometrica 59, 817-854.

Andrews, D. W. K. and Monahan, J. C. (1992), An Improved Heteroskedasticity and Autocorrela-

tion Consistent Covariance Matrix Estimator, Econometrica 60, 953-966.
Bloomfield, P. (1992), Trends in Global Temperatures, Climate Change 21, 275-287.

Canjels, E. and Watson, M. W. (1997), Estimating Deterministic Trends in the Presence of Serially
Correlated Errors, Review of Fconomics and Statistics May, 184—200.

Carlino, G. A. and Mills, L. O. (1993), Are U.S. Regional Incomes Converging?, Journal of Monetary
FEconomics 32, 335-346.

Fomby, T. and Vogelsang, T. J. (2000), The Application of Size Robust Trend Analysis to Global

Warming Temperature Series, mimeo, Department of Economics, Cornell University.

Grenander, U. and Rosenblatt, M. (1957), Statistical Analysis of Stationary Time Series, Wiley,
New York.

Hobijn, B. and Franses, P. H. (2000), Asymptotically Perfect and Relative Convergence of Produc-

tivity, Journal of Applied Econometrics 15, 59-81.

Kiefer, N. M. and Vogelsang, T. J. (2000), A New Approach to the Asymptotics of
Heteroskedasticity-Autocorrelation Robust Testing, mimeo, Department of Economics, Cornell

University.

Kiefer, N. M. and Vogelsang, T. J. (2001), Heteroskedasticity-Autocorrelation Robust Standard
Errors Using the Bartlett Kernel Without Truncation, mimeo, Department of Economics,

Cornell University.

Kiefer, N. M., Vogelsang, T. J. and Bunzel, H. (2000), Simple Robust Testing of Regression Hy-
potheses, FEconometrica 68, 695-714.

Loewy, M. B. and Papell, D. H. (1995), Are U.S. Regional Incomes Converging? Some Further
Evidence, Journal of Monetary Economics 38, 587—-598.

13



Newey, W. K. and West, K. D. (1987), A Simple, Positive Semi-Definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix, Econometrica 55, 703-708.

Park, J. Y. and Phillips, P. C. B. (1988), Regressions with Integrated Processes, Part I, Econometric
Theory 4, 468-498.

Perron, P. (1991), A Test for Changes in a Polynomial Trend Function for a Dynamic Time Series,

manuscript, Princeton University.

Phillips, P. C. B. and Durlauf, S. N. (1986), Multiple Regression with Integrated Processes, Review
of Economic Studies 53, 473—-496.

Tomljanovich, M. and Vogelsang, T. J. (2001), Are U.S. Regions Converging? Using New Econo-

metric Methods to Examine Old Issues, Empirical Fconomics, forthcoming.

Vogelsang, T. J. (1997), Wald-Type Tests for Detecting Shifts in the Trend Function of a Dynamic
Time Series, Fconometric Theory 13, 818-849.

Vogelsang, T. J. (1998), Trend Function Hypothesis Testing in the Presence of Serial Correlation

Correlation Parameters, Fconometrica 65, 123-148.

Woodward, W. A. and Gray, H. L. (1993), Global Warming and the Problem of Testing for Trend
in Time Series Data, Journal of Climate 6, 953—-962.

Zheng, X. and Basher, R. E. (1999), Structural Time Series Models and Trend Detection in Global
and Regional Temperature Series, Journal of Climate 12, 2347-2358.

14



7 Appendix
This appendix contains the proofs of the various results derived in this paper.

Proofs of (12) and (17): Simple algebra along with (2) and (9) gives

_ [rT]
ESTT T2 Z U
) [T‘T] .
=Tz Z@t — Bt)
t=1
) [rT] B /\~
=72 Z(ﬂt +uy — U — ft)
t=1
] . 7]
=T72) (w-u)-T2(B-BT > ¢
t=1 t=1
e A[Wi(r) — rWW(1) — 12vn(1)/ (s — L)ds]
0
= AV, (r),
which proves (12). Similarly, using (2), (5), (6) and (9) it follows that
\ , [rT] B
T‘ES[TT] =T"2 Ztﬂt
t=1
. [rT] B /\~
=T72 ) t(y—pt)
t=1

=772 fw—a)-T:(B-8)T >y P
t=1 t=1

:;A[/(;;—%dw — (Jo (s = 2)ds) Wy (1) — 12V, (1) [y (s — 3)2ds
0

= AV, (r),

which proves (17).

Proof of Theorem 1: Simple algebra under Hy gives

Ff =T (R(3 - 8))
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T3(R(B - B))/q.

(20)



Using (5), (9) and(13) it follows that

1 » -1
Fr = [RAV, (1) [2RA / Vn(r)Vn(r)’drA’R’] (RAV,(1)]/q.
0
We can write RAW,,(r) as A*W,(r), where A* is a ¢ x ¢ matrix with A*A* = RAA’R’ because
Wy (r) is a vector of independent Gaussian random variables. Therefore, direct algebra allows us
to write RAV,,(r) as A*V,(r), and RAV,(r) as A*‘N/q(r). Using these representations gives

1 _ , -1
Fi = AV, {m* | vnviyar A*] A*V,(1))/q

Using similar arguments as for FY, it follows from (5), (9) and(18) that

-1

Njw

T
RT3 1) Q1R
t=1

Fy =T:[R(5 - B) T3[R - 8))/q

1 L !
— [RAV, (1)) [ERA /0 Vn(r)Vn(r)/drA’R/] (RAV,(1)]/q

-1

vy 3 [ Botere] vy

Proof of Theorem 2: Under the local alternative we have

T T
t=1 t=1

Therefore, using (5) and(6) it immediately follows that

T -1 T
T2(B) — Bo) =c+ (T—3 ZP) T32N "ty = ¢+ 1201 Vi (1). (22)

t=1 t=1

Simple algebra gives

= T% (Bl — ﬂ[))

1 — - T “o\_ o= B T ~H\_ 1
(T3 ) T2 Qe (T3 57, 12) 712

T2 (B, — Bo)

t5 = — o~
(T3 YL, )10, 273

)
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and

T35y~ B)
(T35, )~ 1Qpac)?

tgac =

Because ﬁstT, (AZST:T and Q HAc are exactly invariant to (3;, their limits are the same as under
the null hypothesis. Therefore, using (22), we have

c+ 120’1V1(1)

1 = = T
28807 [, Vi(r)2dr]z

)

c+ 1201 V4 (1)
2402 [} Vi (r)2dr]2

t5 =

)

and

c+ 1201V1(1)

tHac =
[1202;]%

Simple algebra further completes the proof.

Table 1: Asymptotic critical values
for 4 and ¢3!

0.90 095 0975 0.99

t7 3.315 4.566 5.820 7.416
t3 3.898 5.222 6.482 8.100

! The tests concern a two-sided alterna-
tive hypothesis.
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Table 2: Asymptotic critical values
of F} for q restrictions

0.90 095 0975 0.99
20.81 33.63 48.42 72.23
26.27 38.10 51.08 71.04
30.97 42.38 54.66 73.40
34.90 46.75 59.35 76.75
38.63 49.82 61.88 78.29
42,76 54.68 67.53 83.98
4729 5932 TL.7T 88.54
50.74 62.87 74.33 90.29
54.63 67.17 80.14 95.76
58.26 70.99 83.31 100.1
61.82 74.51 8745 103.3
66.02 79.17 9249 109.2
69.26 82.45 95.61 113.1
72.73 86.02 9894 115.0
75.98 88.70 102.5 119.8
79.34 93.04 106.7 124.1
82.98 96.55 1104 127.1
86.52 101.3 114.9 133.0
90.36 105.5 119.6 1384
93.16 108.1 122.3 141.3
96.39 111.1 125.1 144.3
99.96 114.6 129.7 147.4
103.1 1179 133.2 150.9
107.3 1223 137.3 156.8
110.4 1259 140.9 160.7
114.1 1294 1441 163.6
1174 133.5 148.8 167.9
120.3 136.3 151.5 171.6
123.6  139.6 155.7 175.5
126.7 143.5 158.9 179.2

0 O T W NI

W NN NDNDDNNDNNDNDNDNDNRFE P2 == O
O O 0 IO TR WNHEOWOWIO Uk W —=O
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Table 3: Asymptotic critical values
of F3 for q restrictions

090 095 0975 0.99
20.14 41.53 58.57 83.96
28.90 40.68 53.58 73.50
30.95 41.45 52.86 68.67
33.26 43.84 54.60 69.30
35.51 45.43 55.86 70.14
38.26 48.39 5891 73.36
41.22 51.35 61.62 75.87
43.50 53.25 63.18 76.71
9 46.36 56.86 67.24 80.55
10 49.05 5890 68.92 93.06
11 51.56 62.08 71.92 85.85
12 54.54 65.01 74.95 88.65
13 56.49 67.07 77.41 92.66
14 5943 69.98 80.32 93.61
15 61.65 7232 8274 97.02
16 64.33 74.83 85.63 99.79
17 66.95 77.89 88.15 102.1
18 69.69 80.75 91.93 106.0
19 7252 84.24 95.18 109.2
20 7435 86.17 97.20 112.2
21 76.74 8799 99.32 113.2
22 79.45 91.12 102.6 116.1
23 8177 93.27 104.6 118.3
24 84.53 96.56 108.5 123.7
25 86.94 99.07 110.8 125.3
26 89.57 102.0 113.7 128.6
27 91.88 104.5 116.5 131.6
28 9440 106.8 119.2 134.2
29 96.89 1094 121.3 136.7
30 9941 111.8 124.2 140.0

0 O T W N HIQ
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Table 4: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for a single zero
restriction on 3 (¢ = 1)}

No prewhitening VAR(1) prewhitening

p B FY Fy Wygac I} F; Wyac
0 0 0.047 0.043 0.061 0.039 0.035 0.064
0.005 0.227 0.270  0.305 0.228 0.267  0.293
0.010 0.622 0.743 0.804 0.629 0.736  0.792
0.020 0.980 0.998 1.000 0.984 0.998  0.999

02 0 0.052 0.048 0.086 0.039 0.037 0.066
0.005 0.161 0.194 0.210 0.173 0.189  0.205
0.010 0.465 0.548 0.618 0.473 0.544  0.608
0.020 0.925 0976 0.996 0.937 0978  0.995
04 0 0.058 0.0564 0.106 0.040 0.036 0.069
0.005 0.117 0.134 0.135 0.127 0.141 0.132
0.010 0.298 0.359 0.396 0.310 0.364  0.387
0.020 0.753 0.851 0.914 0.783 0.859  0.906
06 O 0.063 0.062 0.134 0.040 0.036  0.080
0.005 0.092 0.091 0.100 0.088 0.098 0.096
0.010 0.173 0.194 0.223 0.178 0.205 0.216
0.020 0.480 0.537 0.618 0.476 0.567 0.616

0.8 0 0.088 0.097 0.192 0.041 0.038 0.098
0.005 0.068 0.071  0.062 0.065 0.064  0.068
0.010 0.093 0.106 0.102 0.090 0.106 0.103
0.020 0.184 0.212 0.232 0.193 0.215 0.231

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter p. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

! The critical values for the Fj and Fj tests can be found in Table 2
and Table 3 for ¢ = 1, respectively.
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Table 5: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for two zero
restrictions on 3 (¢ = 2)!

No prewhitening VAR(1) prewhitening

p B FY Fy Wygac I} F; Wyac
0 0 0.050 0.049 0.070 0.036 0.037 0.074
0.005 0.294 0.335 0411 0.310 0.348  0.401
0.010 0.773 0.856 0.958 0.805 0.868 0.954
0.020 0.996 1.000 1.000 0.995 1.000 1.000

02 0 0.058 0.060 0.107 0.038 0.040 0.081
0.005 0.209 0.222 0.285 0.217 0.240 0.278
0.010 0.615 0.679 0.829 0.646 0.697  0.822
0.020 0.960 0.994 1.000 0.975 0.997  1.000
04 0 0.068 0.068 0.138 0.039 0.040 0.091
0.005 0.136 0.139 0.169 0.146 0.146 0.172
0.010 0.389 0.435 0.535 0426 0.458  0.541
0.020 0.871 0.934 0.990 0.895 0.950 0.990
06 O 0.082 0.088 0.198 0.045 0.045 0.112
0.005 0.083 0.086 0.094 0.087 0.094 0.103
0.010 0.204 0.214 0.268 0.218 0.240 0.272
0.020 0.569 0.657 0.785 0.621 0.695  0.782

0.8 0 0.129 0.144  0.330 0.063 0.065 0.181
0.005 0.056 0.060 0.059 0.064 0.063 0.068
0.010 0.085 0.089 0.094 0.094 0.096 0.096
0.020 0.202 0.221 0.245 0.231 0.251 0.260

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter p. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

! The critical values for the Fj and Fj tests can be found in Table 2
and Table 3 for ¢ = 2, respectively.
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Table 6: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for three zero
restrictions on 3 (¢ = 3)*

No prewhitening VAR(1) prewhitening

p B FY Fy Wygac I} F; Wyac
0 0 0.049 0.049 0.073 0.042 0.042 0.095
0.005 0.333 0.379 0488 0.329 0.373  0.477
0.010 0.847 0916 0.987 0.840 0914  0.985
0.020 0.996 1.000 1.000 0.997 1.000 1.000

02 0 0.063 0.061  0.127 0.042 0.042 0.102
0.0056 0.232 0.253 0.332 0.226 0.246 0.312
0.010 0.681 0.757 0.906 0.681 0.759  0.887
0.020 0.982 0.997 1.000 0.985 0.998  1.000
04 0 0.077 0.074  0.195 0.049 0.046 0.123
0.005 0.154 0.173 0.197 0.149 0.165 0.197
0.010 0.452 0.520 0.632 0.443 0.512 0.618
0.020 0.916 0.965 0.999 0.912 0970 0.997
06 O 0.108 0.108 0.286 0.061 0.050 0.164
0.005 0.088 0.108 0.111 0.085 0.104 0.101
0.010 0.229 0.265 0.307 0.218 0.254 0.294
0.020 0.656 0.746  0.855 0.647 0.752  0.851

0.8 0 0.188 0.204 0.464 0.101 0.075  0.273
0.005 0.056 0.068 0.061 0.061 0.062 0.067
0.010 0.091 o0.107 0.101 0.097 0.109 0.112
0.020 0.242 0.284 0.281 0.251 0.282  0.312

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter p. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

! The critical values for the Fj and Fj tests can be found in Table 2
and Table 3 for ¢ = 3, respectively.
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Table 7: Empirical size and size-corrected power of the three
tests, without and with prewhitening. Testing for eleven zero
restrictions on 3 (¢ = 11)*

No prewhitening VAR(1) prewhitening

p B FY Fy Wygac I} F; Wyac
0 0 0.066 0.069 0.158 0.121 0.070  0.322
0.005 0.655 0.684 0.856 0.577 0.629  0.789
0.010 0.993 0.995 1.000 0.984 0.994  1.000
0.020 1.000 1.000  1.000 0.999 1.000 1.000

02 0 0.128 0.116  0.419 0.168 0.099  0.408
0.005 0.435 0.448 0.560 0.359 0.426  0.535
0.010 0.950 0.966 0.998 0914 0.953  0.996
0.020 1.000 1.000  1.000 0.999 1.000 1.000
04 0 0.266 0.221  0.702 0.273 0.150  0.543
0.005 0.239 0.258 0.254 0.208 0.226  0.281
0.010 0.798 0.805 0.860 0.717 0.748  0.886
0.020 0.997 0.999 1.000 0.993 0.997  1.000
06 O 0.504 0.460 0.920 0.490 0.311  0.750
0.005 0.123 0.135 0.122 0.114 0.109 0.126
0.010 0.421 0.429 0.38 0.364 0.375  0.472
0.020 0.929 0.948 0936 0.891 0913  0.980

0.8 0 0.849 0.824 0.999 0.841 0.705 0.956
0.005 0.073 0.067  0.065 0.067 0.066 0.067
0.010 0.142 0.141 0.137 0.140 0.124  0.142
0.020 0.495 0.464 0.447 0419 0.431 0.482

The cells contain the finite sample empirical rejection probabilities (at
a 5 % significance level), where the power is corrected for the empirical
size. The number of replications is 2000, and the sample size is 100.
All series have AR(1) errors with parameter p. The Wald test is imple-
mented using a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

! The critical values for the Fj and Fj tests can be found in Table 2
and Table 3 for ¢ = 11, respectively.
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Table 8: Empirical size of the three tests, without and
with prewhitening. Testing for eleven zero restrictions
on 3 (¢ = 11) for 288 observations'

No prewhitening

VAR(1) prewhitening

I FY Ey Waac  FY Ey Wy ac
0 0.045 0.047 0.079 0.040 0.038 0.116
0.2 0.074 0.068 0.199 0.049 0.040 0.138
0.4 0.118 0.098 0.324 0.063 0.047 0.180
0.6 0.193 0.162 0.529 0.099 0.064 0.272
0.8 0431 0373 0.850 0.260 0.154 0.532

The cells contain the finite sample empirical rejection prob-
abilities (at a 5 % significance level). The number of replica-
tions is 2000, and the sample size is 288. All series have AR(1)
errors with parameter p. The Wald test is implemented us-
ing a Bartlett kernel with Andrews VAR(1) data-dependent
bandwith.

Table 2 and Table 3 for ¢ = 11, respectively.

The critical values for the Fy" and Fy tests can be found in

Table 9: Single equation estimation results for monthly temperatures in The Netherlands.*

No prewhitening

VAR(1) prewhitening

Month 3 7 pval t £ tiac t £ tirac
January 0.0069 —0.049 0.812  5.3279% 7.3991" 3.7998"**5.4271% 7.3771" 3.9302***
February ~ —0.0004 —0.048 0.209 —1.0673 —1.0871 —0.2651 —1.0329 —1.0733 —0.2756
March 0.0038  0.086 0.313  3.6930 6.2073  2.8415***4.0011 6.1929* 2.6925***
April 0.0003  0.094 0.077  0.5562 0.8601 0.3108 0.5775 0.8497 0.2894
May 0.0011  0.030 0.529  2.8487 3.5735 1.1132 3.7023 3.4118 1.1369
June 0.0005 —0.016 0.250 15635 1.3860 0.5508 1.6306 1.3589 0.5613
July 0.0006 0.017 0.821  2.0568 2.4954 0.6893 2.3626 2.4767 0.6770
August ~0.0004 0.118 0.298 —0.9808 —1.2882 —0.4830 —1.0523 —1.2816 —0.4521
September —0.0019 —0.038 0.990 —4.0678 —5.6466* —2.3998**:3.8418 —5.6399* —2.4126***
October 0.0004 0.136 0.278  0.5327 0.8221 0.4181 0.5657 0.8168 0.3880
November  0.0006  0.083 0.190  0.3967 0.6886 0.5507 0.3965 0.6850 0.5375
December  0.0028  0.003 0.994  1.8537 3.1072 1.7254* 1.8718 3.1037 1.7397*

*** Significant at the 0.01 level, ** at the 0.05 level, * at the 0.10 level
! The sample runs from January 1706 to December 1993. 5, denotes the estimate of the first order residual au-
tocorrelation. The pval is the p—value of the Ljung-Box test of the null of no serial correlation using residual
autocorrelations up to 10 lags.
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Table 10: Joint tests for the restriction that all months have
slope equal to zero.!

Test statistic No prewhitening VAR(1) prewhitening

I 123.8° 135.27
F; 72.52* 70.84**
W ac 41,7475 46.77%**

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the Fy and Fy tests can be found in Table
2 and Table 3 for g = 12, respectively.

Table 11: Joint tests for the restriction that all months have
the same slope!

Test statistic No prewhitening VAR(1) prewhitening

FY 95.14** 86.79**
Ey 67.84** 59.09
Whac 41.43*** 46.70***

*** Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the Fy and Fy tests can be found in Table
2 and Table 3 for ¢ = 11, respectively.

Table 12: Joint tests that the trend slopes in three sequential
months are equal to zero.!

No prewhitening VAR(1) prewhitening
Months Fy Ey W ac FY Fy Wirac
Jan.-Mar. 31.36  39.69 27.18** 24.52  38.97 28.277%*
Feb.-Apr. 14.45 22.61 11.12** 15.31 22.35 11.11%*
Mar.-May 10.07  18.72 9.388"* 13.68 17.99 9.136™*
Apr.-Jun. 7.960  7.230 1.427 10.18 6.030 1.513
May-Jul. 2.926 6.874 1.716  5.389  6.042 1.842
Jun.-Aug. 8.785  7.430 1.425 8942  7.366 1.509
Jul.-Sep. 32.72  39.15 6.817 22.50 36.84 7.404
Aug.-Oct. 34.27  33.05 6.712 28.81 30.74 6.861
Sep.-Nov. 29.02  30.01 7.245 28.85  29.18 7.364
Oct.-Dec. 6.281 9.052 3.087 6.014 8.816 3.145
Nov.-Jan. 37.03  33.48 16.52*** 35.35  32.97 16.41%**
Dec.-Feb.  74.90*** 64.99** 19.72*** 71.08*** 64.44** 20.07***
*Hx Significant at the 0.01 level, ** at the 0.05 level

1 The critical values for the Fy and F5 tests can be found in Table 2 and
Table 3 for g = 3, respectively.
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Table 13: Joint tests for the equality of trend slopes in three se-
quential months.!

No prewhitening VAR(1) prewhitening
Months Fy Ey W ac FY Fy Wirac
Jan.-Mar. 26.44  51.22** 15.75** 25.24  51.12* 17.36™**
Feb.-Apr. 14.72  33.27 10.12%** 17.25  32.77 10.75%**
Mar.-May 15.00  26.44 6.244 17.73  25.74 6.516**
Apr.-Jun. 2.690  2.019 0.394 2472 1.934 0.381
May-Jul. 1.385  0.847 0.262 1.583 0.829  0.250
Jun.-Aug. 9.862 10.25 1.318  9.258 10.13 1.356
Jul.-Sep. 42.88** 58.17** 5103 26.26  54.92**  5.521
Aug.-Oct. 35.42  38.54 4.811 35.09 35.25 4.575
Sep.-Nov. 16.06  19.65 5.603 17.25  18.87 5.258
Oct.-Dec. 9.120 13.11 1.866  8.744 12.79 1.891
Nov.-Jan. 31.84  39.54 8.233** 29.24  38.89 8.683**
Dec.-Feb.  62.97** 61.69** 13.96"** 64.31** 61.73** 15.05"**

*¥* Significant at the 0.01 level, ** at the 0.05 level
1 The critical values for the Fy and F5 tests can be found in Table 2 and
Table 3 for g = 2, respectively.

Table 14: Pairwise two-sided ¢] tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.

Month January March December

January n.a. 5.412 6.384**

March 5.683 n.a. 1.340

December 6.488** 1.507 n.a.
*** Significant at the 0.01 level, ** at the 0.05
level.

! The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.
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Table 15: Pairwise two-sided t5 tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.’

Month January March December

January n.a. 5.330 6.437

March 5.400 n.a. 2.207

December 6.402  2.051 n.a.
*** Significant at the 0.01 level, ** at the 0.05
level.

1 The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.

Table 16: Pairwise two-sided tgac tests
for equality of trend parameters for three
months. Below (above) the diagonal
are the results without (with) VAR(1)
prewhitening.

Month January March December

January n.a. 1.527 1.933

March 1.529 n.a. 0.512

December 1.751  0.481 n.a.
*** Significant at the 0.01 level, ** at the 0.05
level.

! The sample runs from January 1706 to Septem-
ber 1993. The relevant critical values appear in
Table 1.
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