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1 Introduction

In general, a statistical analysis of time series data requires some stationarity assumptions about

the underlying stochastic process. Testing these assumptions is important for assessing the quality

of an estimation procedure or the goodness-of-fit of the model used. Testing for the structural

stability of the mean of a time series is one example. A reasonable property for any shift in mean

test to satisfy is that for a given sample size, the larger the shift in mean the higher the probability

of detecting the shift. In other words, one would like to see a finite sample power function that is

monotonically increasing in the shift magnitude. Recent research by Perron (1991) and Vogelsang

(1999) has shown that some well known mean shift tests, configured to allow for serial correlation

in the data, can have nonmonotonic power functions. And, in some cases, for large shifts in mean

power can drop to zero.

To illustrate these potential power problems consider the three time series plotted in Figure

1. These series are logarithms of monthly high bond prices for bonds issued by the Argentinean,

Brazilian and Chilean governments from January 1927 to December 1936. Each series spans 10

years and has 120 observations. The data was collected from various issues of the Commercial and

Financial Chronicle. All three time series exhibit obvious mean shifts at about the middle of the

interval considered. Therefore any reasonable test for shift in mean should easily reject the null of a

stable mean. Table 1 reports the values for two mean shift tests: the well known CUSUM test and

a related test we label QS. The formal definitions of the tests are given in Section 3. Below each

statistic are p-values based on asymptotic critical values under the null of a stable mean. Because

prices of assets like bond prices are well known to be serially correlated over time, the CUSUM

and QS statistics require the computation of a consistent estimator of the variance of the sample

mean of each series. A heteroskedasticity and autocorrelation consistent (HAC) estimator of this

variance was used. These estimators are equivalent to zero frequency spectral density estimators.

HAC estimators require the choice of a truncation lag, or bandwidth. Three different choices for the

bandwidth were used: i) fixed bandwidth (FB) which is dependent only on the sample size, ii) data

dependent bandwidth (DDB) and iii) data dependent bandwidth with prewhitening (DDB-PW).

See the note to Table 1 for details.
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Table 1: Empirical Example: Tests of the Null of a Stable Mean

Argentina Brazil Chile

CUSUM (FB)
1.42
(0.033)

2.37
(0.00003)

2.41
(0.00001)

QS (FB)
0.57
(0.026)

1.95
(0.00001)

1.96
(0.00001)

CUSUM (DDB)
0.75
(0.603)

0.99
(0.266)

1.05
(0.207)

QS (DDB)
0.16
(0.352)

0.34
(0.105)

0.37
(0.087)

CUSUM (DDB-PW)
0.44
(0.987)

0.61
(0.832)

0.53
(0.930)

QS (DDB-PW)
0.05
(0.876)

0.13
(0.453)

0.10
(0.583)

Notes: Tests are right tail tests of the null hypothesis of a stable mean. Values in parentheses
are p-values based on asymptotic null distributions. The CUSUM and QS statistics are defined in
Section 3 by (3) and (4) respectively. The HAC estimator is given by (2). The formulas for the
bandwidths are given in Section 4: FB is given by (6), DDB is given by (7)-(9), and DDB-PW is
given by (11)-(13).

Some surprising and interesting patterns appear in Table 1. When a fixed bandwidth is used,

the null hypothesis of a stable mean is easily rejected for Brazil and Chile using both statistics.

The null can be rejected at the 5% level for Argentina. On the other hand, when a data dependent

bandwidth is used, with or without prewhitening, the null hypothesis is not rejected in nearly all

cases. Only when the QS statistic is used, but without prewhitening, can the null be rejected at

the 10% level for Brazil and Chile. This empirical example suggests that power of the CUSUM

and QS tests is very sensitive to the choice of bandwidth even when there is a large and obvious

mean shift in the data. The fact that the mean shifts are detected with a fixed bandwidth but not

with a data dependent bandwith is an unfortunate situation because data dependent bandwidths

are usually recommended over fixed bandwidths in practice.

A number of interesting questions arise from this example:

1. Are the power properties suggested by the example general properties of the CUSUM and

QS tests?
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2. What is the source of low power when data dependent bandwidths are used?

3. Can differences in power with respect to bandwidth choice be explained theoretically?

In this paper we provide answers to these questions. We show that for the CUSUM and QS tests,

fixed bandwidths can lead to nice power functions whereas data dependent bandwidths can lead

to nonmonotonic power. In fact, power often drops to zero for large mean shifts under data

dependent bandwidths. We show that, provided a HAC estimator is used, these power patterns

occur whether serial correlation in the time series is strong or weak. Power is good under a FB

provided the bandwidth is relatively small whereas low power under a DDB occurs because of the

tendency of data dependent bandwidths to choose very large bandwidths when the mean shift is

big. In constrast, when a DDB-PW is used, low power results because of the bad behavior of

the prewhitened estimator itself in conjuction with the tendency of a DDB-PW to choose small

bandwidths. As the theoretical analysis shows, a key factor in explaining the power properties

is that the HAC estimator is constructed under the null hypothesis of a stable mean and is thus

constructed under a misspecified model when there is a mean shift.

The rest of the paper is organized as follows. In section 2 the null model and the basic as-

sumptions are introduced. In section 3 the statistics for testing for a shift in mean are defined. In

section 4 we provide finite sample evidence on power using simulations. In section 5 theoretical

results are provided that explain the patterns of the power function with respect to bandwidth.

The theoretical and practical implications of these results are assessed. In section 6 the conclusions

of the paper are presented. Proofs are given in a mathematical appendix.

2 Data Generating Process and Assumptions

We consider the following data generating process (DGP) for a univariate time series yt:

yt = µ+ ut, (1)

where ut is a stationary mean zero error process. Define the partial sums of ut as St =
Pt
j=1 uj .

Let W (r) denote the standard Wiener process defined on [0,1], let⇒ denote weak convergence and

let [x] denote the integer part of x.

Assumption 1 ut is second order stationary with σ2 = limT→∞E[ 1T
³PT

t=1 ut

´2
] and T−

1
2S[rT ] ⇒

σW (r).
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Note that under stationarity, σ2 is proportional to the spectral density of ut at frequency zero and

is given by

σ2 =
∞X

j=−∞
γj,

where γj = cov(ut, ut−j) is the autocovariance function of ut. There are a variety of regularity con-

ditions under which Assumption 1 (a functional limit theorem) holds. See, for example, Herrndorf

(1984) and Phillips (1987).

The parameter σ2 needs to be estimated in order to test the null hypothesis that the mean of yt

is stable. Typical estimators of σ2 include the class of non-parametric spectral density estimators

given by

bσ2 = T−1X
j=−(T−1)

K

µ
j

s(T )

¶bγj , (2)

where K(.) is a kernel function, bγ(j) = T−1PT
t=j+1 butbut−j and but = yt − ȳ are the OLS residuals

from (1), and s(T ) is the bandwidth or the truncation lag. In order to ensure that bσ2 is a consistent
estimator of σ2, basic requirements are s(T )/T → 0 and s(T )→∞ as T →∞. See Priestley (1981)
for details.

3 Statistics Used for Testing for a Shift in Mean

We focus on two statistics for testing the null hypothesis that the mean of yt is constant. Both

statistics were originally motivated in part by a search for tests that have power for detecting fairly

general forms of mean shifts without having to estimate a particular alternative model. These tests

are similar to Lagrange multiplier tests in that the model only needs to be estimated under the

null hypothesis that the mean is stable.

The first statistic is the well known CUSUM statistic:

CUSUM =
1bσ sup
1≤j≤T

¯̄̄̄
¯ 1√T

jX
t=1

but
¯̄̄̄
¯ . (3)

This version of the CUSUM test was proposed and analyzed by Ploberger and Kramer (1992). The

CUSUM test was originally proposed by Brown, Durbin and Evans (1975) and was constructed using

recursive residuals (rather than OLS residuals as in (3)). The second statistic, which is similar
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in spirit to the CUSUM statistic, was proposed by Gardner (1969), extended by MacNeill (1978),

further extended by Perron (1991) and is defined as:

QS =
1

T 2bσ2
TX
j=1

Ã
jX
t=1

but!2 . (4)

If bσ2 is a consistent estimator for σ2, then under model (1), the null hypothesis of a stable mean,
CUSUM ⇒ sup

r∈[0,1]
|B(r)| , QS ⇒

Z 1

0
B2(r)dr,

where B(r) = W (r) − rW (1) is the standard Brownian bridge on [0,1]. Both tests are right tail
tests and asymptotic critical values can be found in Ploberger and Kramer (1992) for CUSUM and

MacNeill (1978) for QS. We reproduce the critical values in Table 2 .

Table 2: Asymptotic critical values for CUSUM and QS

Statistic Quantiles

0.9 0.95 0.99

CUSUM 1.22 1.36 1.63

QS 0.35 0.46 0.74

4 Simulations

In this section we examine finite sample power of the CUSUM and QS tests for detecting a single

shift in mean at an unknown date. Let Tb denote the date of a mean shift, and define the dummy

variable DUt = 1(t>Tb) where 1t>Tb = 1 if t > Tb and 0 otherwise. Consider the DGP:

yt = µ+ δDU t + ut, (5)

where ut = ρut−1 + ²t, ²t are i.i.d. distributed N(0, 1) and δ is the magnitude of the shift.

As we shall soon illustrate, the power of the CUSUM and QS tests for detecting the alternative

model (5) depends critically on how the bandwidth, s(T ), is chosen when constructing bσ2. Choices
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for s(T ) that minimize the mean square error (MSE) of bσ2 depend on the kernel K(x). For

concreteness, we focus on the Bartlett kernel defined as K(x) = 1− |x| for |x| ≤ 1 and K(x) = 0
for |x| > 1. Similar results are obtained for other popular kernels.

When the Bartlett kernel is used, s(T ) needs to increase at rate T 1/3 for the MSE of bσ2 to be
minimized. As is well known in the spectral density and HAC literature, this rate result essentially

places no restriction on the choice of s(T ) for a given sample because any choice of s(T ) can be

justified as satisfying the rate T 1/3 by setting s(T ) = cT 1/3 and suitably choosing the constant c.

For the sake of illustration we take c = 1 and denote this choice of s(T ) by

s0(T ) = T
1/3. (6)

We refer to this choice of s(T ) as the ”fixed bandwidth”.

Because of the arbitrary nature of the choice of s(T ), there has emerged a literature on data

dependent choices of the bandwidth. Here we follow Andrews (1991) and consider the AR(1) plug-in

choice of s(T ):

bs(T ) = 1.1447(bα(1)T )1/3, (7)

bα(1) = 4bρ2
(1− bρ2)2 , (8)

bρ = PT
t=2 butbut−1PT
t=2 bu2t−1 . (9)

Andrews (1991) showed that bs(T ) given by (7) minimizes the approximate MSE of bσ2 given the
AR(1) structure of ut.

Andrews and Monahan (1992) showed that prewhitening can improve the performance of bσ2.
Therefore we also consider AR(1) prewhitened estimation of bσ2. Let bσ2PW denote the prewhitened

estimator:

bσ2PW =
bσ2²

(1− bρ)2 , (10)

where bρ is given by equation (9) and
bσ2² = (T−1)X

j=−(T−1)
K (j/bsPW (T ))bγ²j ,
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where bγ²j = T−1PT
t=j+1 b²tb²t−j and b²t = but − bρbut−1. As in the case without prewhitening, bsPW (T )

is chosen using the AR(1) plug-in method except that bα(1) is calculated using b²t rather than but:
bsPW (T ) = 1.1447(bαPW (1)T )1/3, (11)

bαPW (1) = 4bρ2²
(1− bρ2² )2 , (12)

bρ² = PT
t=2 b²tb²t−1PT
t=2 b²2t−1 . (13)

For the simulations we generated data according to (3) for T = 50, 100, 200, 500, ρ = 0.1,

0.4, 0.7, 0.9 and δ = 0, 1, 2, ..., 20. In all cases 2000 replications were used. We calculated

two types of finite sample power functions. The first is power using empirical null 5% critical

values taken from the δ = 0 simulations. In this case, empirical null rejection probabilities are

exactly 0.05 for both CUSUM and QS. We refer to this case as size corrected power. The second

is power using the asymptotic 5% critical values (the 95% percentiles from Table 2). In this case

empirical null rejection probabilities will differ from 0.05. We refer to this as uncorrected power.

Uncorrected power is relevant in practice since asymptotic critical values will typically be used. Size

corrected power, while not feasible in practice, allows theoretical power comparisons while holding

size equivalent across tests.

The finite sample power results are given in Figures 2-9. We only report size adjusted power

as patterns are similar with unadjusted power. We only report results for T = 100. Similar results

were obtained for other values of T and are available upon request. Regardless of the value of ρ, a

clear pattern emerges from the figures. When the fixed bandwidth is used, power is monotonically

increasing in δ and reaches 1 for large mean shifts. On the other hand, with the data dependent

bandwidth, power is nonmonotonic in δ and drops to zero for large δ. Prewhitening does not

improve matters. These patterns hold for all the values of ρ.

Clearly, the choice of s(T ) matters. But why do DDB choices for s(T ) generate nonmonotonic

power whereas the FB choice does not? The first step for answering this question is to examine the

behavior of bs(T ) as δ increases. In Table 3 we report averages of bs(T ) across the 2000 replications
for the power simulations for ρ = 0.7 and T = 100. As δ increases, bs(T ) grows using a DDB without
prewhitening. This contrasts with the FB case where s0(T ) remains fixed at 5 for all values of δ.
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Clearly, it is large values of bs(T ) that is crippling power for large δ. But this is not the story for
DDB-PW because bsPW (T ) is small and roughly constant for all values of δ. Whereas large bs(T )
hurts power when there is no prewhitening, small bsPW (T ) hurts power when prewhitening is used.
It is not obvious why this relationship between power and s(T ) should occur, and we now turn to

a theoretical analysis for further insight.

Table 3: Behavior of s(T ) in finite samples for T = 100 and φ= 0.7.

δ s0(T ) bs(T ) bsPW (T )
0 5.000 9.900 1.143
1 5.000 10.958 1.172
2 5.000 13.748 1.304
3 5.000 17.598 1.473
4 5.000 21.948 1.595
5 5.000 26.418 1.652
6 5.000 30.767 1.661
7 5.000 34.596 1.636
8 5.000 38.596 1.597
9 5.000 41.975 1.548
10 5.000 44.988 1.496
11 5.000 47.657 1.443
12 5.000 50.011 1.389
13 5.000 52.082 1.338
14 5.000 53.904 1.290
15 5.000 55.506 1.245
16 5.000 56.918 1.204
17 5.000 58.165 1.164
18 5.000 59.267 1.129
19 5.000 60.246 1.095
20 5.000 61.116 1.063

Notes: The numbers denote the average value of s(T ) across 2000 replications. s0(T ) = T 1/3 is
the fixed bandwidth, bs(T ) is the data dependent bandwidth given by (7), and bsPW (T ) is the data
dependent bandwidth under prewhitening.

5 Theoretical Explanations

In this section we provide theoretical explanations for the finite sample power patterns shown

in section 4. We use an asymptotic analysis using model (5), i.e. a fixed alternative. We do not
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consider a local asymptotic analysis where δ is modeled as local to zero because bσ2 is asymptotically
invariant to δ in this case and power would not depend on bσ2.
5.1 Data dependent bandwidth without prewhitening

The first step is to explain why bs(T ) increases as δ grows. Recall that bs(T ) depends on bρ throughbα(1). The behavior of bρ under model (5) follows from Perron (1990) as:

lim
T→∞

bρ = φ(δ), (14)

where φ(δ) = (γ1 + f(δ,λ)) / (γ0 + f(δ,λ)) and f(δ,λ) = λ(1− λ)δ2. Using equations (8) and (14)
it follows that for the Bartlett kernel

lim
T→∞

bα(1) = C1(δ), (15)

where

C1(δ) =
4φ2(δ)

(1− φ2(δ))2 .

Note that as δ increases, φ(δ) approaches one (in which case bρ is severely biased) and C1(δ) becomes
large. In fact, 1−φ(δ) = O(δ−2), and it follows that C1(δ) = O(δ4). Therefore, as δ increases, bα(1)
becomes large and this leads to a large bs(T ).

Using equations (14) and (15) we can approximate the behavior of bs(T ) as
bs(T ) ≈ 1.1447 (C1(δ)T )1/3 . (16)

In Table 4 we provide values of bs(T ) based on the approximation (16) for T = 50, 100, 200, 500

for the error model ut = 0.7ut−1 + ²t, ²t ∼ i.i.d. N(0, 1). It is obvious from the table that bs(T )
increases very quickly as δ increases. The patterns in Table 4 match the patterns in the finite

sample simulations. We can conclude from this analysis that bs(T ) will be large when δ is large
because bρ is biased towards one and bα(1) becomes very large.

To explain why power falls as δ increases we need to understand how the CUSUM and QS tests

behave when bs(T ) is large. To obtain a useful approximation for this case, we examine the behavior
of the tests under the assumption that s(T ) = ϑT where ϑ is a constant. For example, from Table

3 we see that for a DDB with δ = 10, mean(bs(T ))= 44.988. Thus it is sensible to approximate the
behavior of the tests for this case by setting ϑ= 0.44988.
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Table 4: Predicted Data Dependent Bandwidth, bs(T ), Without Prewhitening.

δ T = 50 T = 100 T = 200 T = 500

1 9.1225 11.4936 14.4810 19.6538
2 11.4573 14.4353 18.1874 24.6841
3 14.8692 18.7340 23.6034 32.0348
4 19.0583 24.0120 30.2532 41.0599
5 23.8383 30.0344 37.8410 51.3581
6 29.0924 36.6542 46.1813 62.6777
7 34.7436 43.7742 55.1521 74.8529
8 40.7384 51.3271 64.6682 87.7682
9 47.0376 59.2637 74.6675 101.3394
10 53.6115 67.5463 85.1030 115.5025
11 60.4368 76.1456 95.9374 130.2071
12 67.4945 85.0377 107.1408 145.4124
13 74.7689 94.2029 118.6882 161.0847
14 82.2469 103.6246 130.5588 177.1955
15 89.9172 113.2885 142.7346 193.7206
16 97.7699 123.1823 155.2000 210.6388
17 105.7965 133.2952 167.9415 227.9316
18 113.9893 143.6176 180.9468 245.5826
19 122.3416 154.1408 194.2052 263.5770
20 130.8471 164.8571 207.7069 281.9016

Note: Values in the table correspond to equation (16) evaluated for errors given by ut = 0.7ut−1+²t
with ²t i.i.d. N(0, 1).
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The following theorem describes the behavior of the tests under the assumptions that s(T ) = ϑT

and the model is given by (5):

Theorem 1 Suppose that yt is generated by (5) and Assumption 1 holds. If s(T ) = ϑT where

0 < ϑ < 1 and the Bartlett kernel is used to construct bσ2 then
lim
T→∞

CUSUM(T ) =
supr∈(0,1) |g(r,λ)|r

2
ϑ

³R 1
0 g

2(r,λ)dr − R 1−ϑ0 g(r + ϑ,λ)g(r,λ)dr
´

lim
T→∞

QS(T ) =

R 1
0 g

2(r,λ)dr

2
ϑ

³R 1
0 g

2(r,λ)dr − R 1−ϑ0 g(r + ϑ,λ)g(r,λ)dr
´ ,

where g(r,λ) = (r − λ)1(r>λ) − r(1− λ), and 1(r>λ) = 1 for r > λ and 0 otherwise.

Notice from the Theorem that the limits do not depend on δ. However, the limits do depend on ϑ,

and ϑ implicitly depends on δ through bs(T ).
Given the complexity of the dependence of the limits on ϑ we focus on the concrete case of λ =

0.5 which matches the DGP of the simulations in section 4. With λ = 0.5 it is easy to show that

lim
T→∞

CUSUM(T ) =


1

2
√
ϑ(1−ϑ) if ϑ ≤ 1

2√
6ϑ

2
√
1−2(1−ϑ)3 if ϑ > 1

2

, (17)

lim
T→∞

QS(T ) =

(
1

12ϑ(1−ϑ) if ϑ ≤ 1
2

ϑ
2−4(1−ϑ)3 if ϑ > 1

2

. (18)

In Figure 10 we plot these limits for 0 < ϑ < 1. The solid lines in the figure plot the limiting func-

tions whereas the dashed lines plot the 5% asymptotic critical values. The reason for nonmonotonic

power is revealed by the plots. Notice that for small values of ϑ, the limits of the CUSUM and

QS statistics are above the critical values. Thus we expect the statistics to reject the null. On

the other hand, as ϑ increases, the limits of CUSUM and QS drop and are often below the critical

value. Thus fewer rejections are obtained as ϑ grows and power drops.

We summarize these results as follows. Because σ2 is estimated under the null hypothesis of a

stable mean, when the true model has a mean shift, bρ is biased towards 1 (see Perron (1990)). As
11



δ increases, bρ is more biased towards one and bα(1) grows. bs(T ) becomes very large and CUSUM
and QS decrease in value. Fewer rejections occur, power falls and nonmonotonic power results.

Finally, the reason that power is monotonic for the fixed bandwidth is also shown in Figure 10.

For T = 100 the fixed bandwidth is s0(T ) = 5 which corresponds to ϑ = 0.05. We see in the figures

that very small values of ϑ are associated with large values of CUSUM and QS and rejections are

frequent.

5.2 Data dependent bandwidth choice with prewhitening

In this section we provide a theoretical explanation for why power can be nonmonotonic when

prewhitening is used. Because the behavior bsPW (T ) is different from bs(T ), a different analysis from
that in Section 5.1 is required. We begin with a theorem that describes the asymptotic behavior

of bsPW (T ) under AR(1) prewhitening.
Theorem 2 Let yt be generated by (5), let bρ² be given by (13), and let bαPW (1) be given by (12).
If Assumption 1 holds, then

(i) limT→∞ bρ² = φ²(δ), where
φ²(δ) =

(γ1 + f(δ,λ))(γ
2
1 − γ0γ1 + f(δ,λ)(2γ1 − γ0 − γ2))

(γ0 − γ1)(γ1 + γ0 + 2f(δ,λ))(γ0 + f(δ,λ)) .

(ii) limT→∞ bαPW (1) = C2(δ), where
C2(δ) = 4φ

2
² (δ)/(1− φ2²(δ))2.

Using the results of Theorem 2, we can approximate the behavior of bsPW (T ) by
bsPW (T ) ≈ 1.1447 (C2(δ)T )1/3 . (19)

The formulas for φ²(δ) and C2(δ) are complicated as Theorem 2 shows. But, with some algebraic

manipulation, it is easy to show that for large δ,

φ²(δ) ≈ 2γ1 − γ0 − γ2
2(γ0 − γ1) .

Unlike in the case without prewhitening, bρ² is not systematically biased towards one as δ increases.
For example, with ut = ρut−1 + ²t and ²t ∼ i.i.d. N(0, 1), we have φ²(δ) ≈ 1

2(ρ − 1) for large δ.
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When ρ = 0.7, we have φ²(δ) ≈ −0.15 for large δ and bα(1) ≈ 0.0942 which gives bsPW (T ) = 2.417.
Therefore, as δ increases, bs(T ) does not increase and remains relatively small. To illustrate this
further, we used (19) to approximate the sampling behavior of bsPW (T ) for T = 50, 100, 200, 500
for the error model ut = 0.7ut−1 + ²t, ²t ∼ i.i.d. N(0, 1). The results are given in Table 5. We

see that regardless the value of δ, bsPW (T ) is small, and bsPW (T ) decreases slightly as δ increases.
These analytic results match the finite sample simulations where bsPW (T ) was small (see Table 3).

Table 5: Predicted Data Dependent Bandwidth, bsPW (T ), with AR(1) Prewhitening.
δ T = 50 T = 100 T = 200 T = 500

1 3.0013 3.7814 4.7643 6.4662
2 2.7843 3.5080 4.4198 5.9986
3 2.5626 3.2287 4.0679 5.5210
4 2.3915 3.0131 3.7963 5.1523
5 2.2709 2.8611 3.6048 4.8925
6 2.1871 2.7556 3.4719 4.7120
7 2.1283 2.6814 3.3784 4.5852
8 2.0859 2.6281 3.3112 4.4940
9 2.0548 2.5889 3.2618 4.4269
10 2.0314 2.5593 3.2246 4.3764
11 2.0133 2.5366 3.1960 4.3376
12 1.9992 2.5189 3.1736 4.3072
13 1.9880 2.5047 3.1558 4.2830
14 1.9789 2.4933 3.1414 4.2635
15 1.9715 2.4840 3.1296 4.2475
16 1.9654 2.4762 3.1199 4.2343
17 1.9602 2.4697 3.1117 4.2232
18 1.9559 2.4643 3.1048 4.2139
19 1.9522 2.4596 3.0989 4.2059
20 1.9490 2.4556 3.0939 4.1990

Notes: Values in the table correspond to bsPW (T ) given by (19) for errors given by ut = 0.7ut−1+ ²t
with ²t i.i.d. N(0, 1).

Given that bsPW (T ) is small under AR(1) prewhitening, we now turn to the limiting behavior
of the CUSUM and QS for small bsPW (T ). A useful approximation can be obtained by assuming
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that bsPW (T ) remains fixed at a small value as T increases. Suppose sPW (T ) = k where k is a

constant (small). The following theorem provides the limiting behavior of CUSUM and QS under

prewhitening.

Theorem 3 Suppose that yt is generated by (5) and Assumption 1 holds. If sPW (T ) = k, where k

is a constant, and the Bartlett kernel is used with AR(1) prewhitening, then

lim
T→∞

T−1/2CUSUM(T ) =
|δ|λ(1− λ)

σk
, lim

T→∞
T−1QS(T ) =

δ2λ2(1− λ)2
3σ2k

,

where

σ2k =
1

(1− φ(δ))2
Ã
ψ0 + 2

k−1X
t=1

µ
1− t

k

¶
ψt

!
,

ψk = f(δ,λ)(1− φ(δ))2 + γk(1 + φ2(δ))− φ(δ)(γk−1 + γk+1).

It is important to note from the theorem that the statistics must be scaled by T−1/2 and T−1 to

obtain non-degenerate limits. This shows that the tests are consistent under prewhitening and one

might be tempted to conclude that power is high in finite samples. Of course, for a fixed δ, as

T →∞, power will eventually reach one. The relevant question here is, what happens to power for
a fixed T as δ increases!

For concreteness, consider the case of λ = 0.5 and k = 1. Then, the limits in Theorem 3 simplify

to

lim
T→∞

T−1/2CUSUM(T ) =
|δ|(1− φ(δ))

4
q

δ2

4 (1− φ(δ))2 + (1 + φ2(δ))γ0 − 2φ(δ)γ1
,

lim
T→∞

T−1QS(T ) =
δ2(1− φ(δ))2

48
³
δ2

4 (1− φ(δ))2 + (1 + φ2(δ))γ0 − 2φ(δ)γ1
´ .

Using these limits, we can approximate the behavior of CUSUM and QS through the approximations

CUSUM(T ) ≈ T 1/2 |δ|(1− φ(δ))
4
q

δ2

4 (1− φ(δ))2 + (1 + φ2(δ))γ0 − 2φ(δ)γ1
, (20)

14



QS(T ) ≈ T δ2(1− φ(δ))2
48
³
δ2

4 (1− φ(δ))2 + (1 + φ2(δ))γ0 − 2φ(δ)γ1
´ . (21)

Recall from the previous section that as δ increases, φ(δ) approaches one. As φ(δ) approaches one,

1 − φ(δ) approaches zero very quickly, and δ(1 − φ(δ)) approaches zero. The denominators are
bounded as δ increases. Because the limits of the scaled CUSUM and QS tests are proportional

to δ(1− φ(δ)) = o(1) (for large δ), the statistics decrease in value as δ increases for fixed T .
In Figure 11, we plot the approximate limits given by equations (20) and (21) for T = 100 and

ut = 0.7ut−1 + ²t where ²t are i.i.d. N(0, 1). Note that k = 1 is appropriate for this case as bs(T )
was approximately 1 in the finite sample simulations reported in Table 3. In the figure we see that

as δ increases, the statistics decrease in value and are always below the 5% critical values. Thus,

we should expect few rejections and low power for large δ and nonmonotonic power.

The ultimate reason why nonmonotonic power is obtained with prewhitening is that bρ is biased
towards 1 and bσ2PW is proportional to (1 − bρ)2 thus reducing the values of CUSUM and QS as

δ grows. The bandwidth does not play a central role here since it remains small as δ increases.

In fact, the AR(1) prewhitened estimator with s(T ) = 1 is equivalent to an AR(1) parametric

estimator of σ2. Our results, therefore, suggest that parametric estimators of σ2 will also generate

nonmonotonic power for CUSUM and QS. Indeed, in unreported simulations (comparable to those

used for Figures 2-9) we found that an AR(1) parametric estimator of σ2 leads to nonmonotonic

power.

6 Conclusions

In this paper we have shown that use of a data dependent bandwidth when estimating the spectral

density at frequency zero of a time series can result in the CUSUM and QS tests for a stable mean

to have nonmonotonic power. Power can drop to zero for large one-time mean shifts. Prewhitening

does not improve the situation. On the other hand, deterministic bandwidth rules (fixed bandwidth

rules) can result in monotonic power provided the bandwidth is small.

This is an unfortunate situation. Fixed bandwidths are arbitrary in finite samples. In fact, any

bandwidth choice can be justified by some fixed bandwidth rule. It was for this reason that data

dependent bandwidths were developed in the first place. Our theoretical analysis suggests that small

bandwidths can result in monotonic power, whereas large bandwidths can result in nonmonotonic

power. But, the analysis does not and cannot provide universal small sample recommendations as

15



to when a bandwidth is too big (if nonmonotonic power is to be avoided).

The underlying problem with the CUSUM and QS tests is that they are constructed using OLS

residuals from a model estimated under the null hypothesis of a stable mean. While this approach

is attractive because no alternative model needs to be specified, it can lead to tests with poor

power because zero frequency spectral density estimates required for the tests are estimated using

a misspecified model when the mean is unstable. When there is a single shift in mean, our analysis

shows that the spectral density estimators are poorly behaved, and power is crippled.

Our analysis suggests that tests with nice power properties require the specification of an al-

ternative model. For example, for the alternative of a single shift in mean at an unknown time,

Vogelsang (1998,1999) suggested some tests that have monotonic power and stable size. Of course,

it may not be obvious how to model an unstable mean (hence the appeal of the CUSUM and QS

tests). But, at the end of the day, if the stable mean null is rejected, some alternative needs to

be specified. Therefore, practitioners should seriously consider alternative models and use tests

designed to detect them. Null based tests simply do not always deliver the goods as they can have

negligible power for mean shifts that would be obvious from eye-balling a plot of the data.

Appendix

We begin by establishing some basic results. If but are the residuals of the regression of yt on a
constant then

bρ = PT
t=2 butbut−1PT
t=2 bu2t−1 ,

where

but = ½ ut − ū− δ(1− λ) for t ≤ [λT ]
ut − ū+ δλ for t > [λT ]

,

and ū = T−1
PT
t=1 ut. We show that

lim
T→∞

bγi = γi + f(δ,λ), (22)

for i ≥ 0. Denote bvt = ut − ū. Then, we can write,
bγ0 = T−1 TX

t=1

bu2t = T−1 TX
t=1

bv2t + f(δ,λ)− 2δT−1 [λT ]X
t=1

bvt.
16



Because p limT−1
PT
t=1 bv2t = γ0 and p limT−1P[λT ]

t=1 bvt = 0, we obtain result (22) for i = 0. Addi-
tional algebra gives

bγ1 = T−1 TX
t=2

butbut−1 = T−1 TX
t=2

bvtbvt−1 + f(δ,λ)− 2δT−1 [λT ]X
t=1

bvt + h(δ,λ, T ),
where h(δ,λ, T ) = T−1δ[(1−λ)bv1+bv[λT ]−bv[λT ]+1−λbvT ]−T−1δ2(1−λ−λ2). Since p limT−1PT

t=2 bvtbvt−1 =
γ1, p lim2δT−1

P[λT ]
t=1 bvt = 0 and p limh(δ,λ, T ) = 0 we obtain result (22) for i = 1. Similar argu-

ments can be used to establish (22) for i ≥ 2.

Proof of Theorem 1: For the case of ϑ = 1, Kiefer and Vogelsang (2000) showed that bσ2 =
2T−2

PT
t=1

bS2t where bSt = Pt
j=1 bvj. It is straightforward to extend their results to show that for

s(T ) = ϑT :

bσ2 = 2

ϑ

T−2 TX
t=1

bS2t − T−2 T−[ϑT ]X
t=1

bSt+[ϑT ] bSt
 .

Given this expression for bσ2, it follows that CUSUM and QS can be written in terms of T−1 bSt:

CUSUM =
sup1≤t≤T

¯̄̄
T−1 bSt ¯̄̄³

2
ϑ

h
T−1

PT
t=1 T

−2 bS2t − T−1PT−[ϑT ]
t=1 T−1 bSt+[ϑT ]T−1 bSti´1/2 , (23)

QS =
T−1

PT
t=1 T

−2 bS2t
2
ϑ

h
T−1

PT
t=1 T

−2 bS2t − T−1PT−[ϑT ]
t=1 T−1 bSt+[ϑT ]T−1 bSti . (24)

Using (23) and (24), the proof is completed by deriving the limiting behavior of T−1 bS[rT ]. Under
model (5) we have

T−1 bS[rT ] = T−1 [rT ]X
t=1

[δ(DUt − (1− λ)) + ut − ū]

= δT−1
[rT ]X
t=1

(DUt − (1− λ)) + op(1)

→ δ

Z r

0

£
1(r>λ) − (1− λ)

¤
dr = δg(r,λ).
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Proof of Theorem 2: Direct calculation gives

bρ² = PT
t=3(but − bρbut−1)(but−1 − bρbut−2)PT

t=2(but − bρbut−1)2 =
T−1

PT
t=3(butbut−1 − bρbu2t−1 − bρbutbut−2 + bρ2but−1but−2)
T−1

PT
t=2(bu2t − 2bρbutbut−1 + bρ2bu2t−1) .

Letting T →∞ and applying (22), part (i) of the theorem directly follows. Part (ii) of the theorem

follows directly from part (i).

Proof of Theorem 3: Let bγ²i = T−1PT
t=i+2 b²tb²t−i. Because b²t = but − bρbut−1 it follows that

bγ²i = T−1 TX
t=i+1

butbut−i − bρT−1 TX
t=i+1

but−1but−i − bρT−1 TX
t=i+2

butbut−i−1 + bρ2T−1 TX
t=i+2

but−1but−i−1.
Hence limT→∞ bγ²i = ψi using (22). For a data dependent bandwidth with AR(1) prewhitening

bσ2PW =
bγ²0 + 2Pk−1

t=1

¡
1− t

k

¢ bγ²t
(1− bρ)2 ,

where k is a fixed lag. Using the limiting result for bγ²i and (14) gives
lim
T→∞

bσ2PW =
ψ0 + 2

Pk−1
t=1

¡
1− t

k

¢
ψt

(1− φ2(δ)) . (25)

Using simple algebra

T−1/2CUSUM =
sup1≤t≤T |T−1 bSt|bσ and T−1QS =

T−1
PT
t=1 T

−2 bS2tbσ2 .

The limits of the numerators follow from the proof of Theorem 1. The limits of the denominators

follow from (25). The representations follow from the facts that

sup
r∈(0,1)

|g(r,λ)| = |λ(1− λ)|,
Z 1

0
g2(r,λ) =

1

3
λ2(1− λ)2.
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Figure 1: Bond prices for Argentina ’–’, Brazil ’— —’ and Chile ’—·—’
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Figure 2: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.1.
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Figure 3: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.1.
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Figure 4: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.4.
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Figure 5: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.4.
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Figure 6: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.7.
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Figure 7: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.7.
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Figure 8: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.9.
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Figure 9: Power functions for FB ’–’, DDB ’— —’, DDB-PW ’— · —’; T = 100, ρ = 0.9.
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Figure 10: Asymptotic Limits Given by (17) and (18).
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Figure 11: Approximate Asymptotic Limits Given by (20) and (21).
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