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ABSTRACT
Iteration of randomly chosen quadtratic maps defines a Markov process: Xn+1 =

εn+1Xn(1−Xn), where εn are i.i.d. with values in the parameter space [0, 4] of qua-
dratic maps Fθ(x) = θx(1−x). Its study is of significance not only as an important
Markov model, but also for dynamical systems defined by the individual quadratic
maps themselves. In this article a broad criterion is established for positive Harris
recurrence of Xn, whose invariant probability may be viewed as an approximation
to the so-called Kolmogorov measure of a dynamical system.
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1. Introduction

In this section we provide background and motivation for the problem at hand,
including a survey of known results and a statement of our main result. Section 2 re-
views some important facts about quadratic maps as dynamical systems. Section 3
contains the main result and its proof. The quadratic maps Fθx ≡ Fθ(x) = θx(1−x)
on [0, 1](θ ∈ [0, 4]) have been perhaps the most widely investigated family of dy-
namical systems in recent years (see, e.g., [10], [12], [14],–[17], [22],[23],[26],[27]).
Their study has led to a great deal of understanding of chaotic phenomena which
commonly occur in nature, including certain types of turbulence ([14], ([26]). The
present article explores the problem of stability in distribution of randomly per-
turbed dynamical systems of random compositions the form

Xn = Fεn
Fεn−1 · · ·Fε1X0 (n ≥ 1),(1.1)

where εn(n ≥ 1) is an i.i.d. sequence with values in the parameter space [0, 4] of
the quadratic maps, and X0 is independent of {εn : n ≥ 1}. To avoid trivialities
we will restrict the state space of the Markov process to S = (0, 1). By stability
in distribution we mean the convergence in distribution of 1

n

∑n−1
m=0 pm(x, dy) to

the same limit π(dy) for every initial state x ∈ S, with p(n) denoting the n-step
transition probability of {Xn : n ≥ 0}. Then π is the unique invariant probability
of this Markov process. The significance of such a study may be viewed from three
distinct perspectives which we describe below.

(i) Kolmogorov - SRB measures for chaotic dynamical systems
A chaotic dynamical system f with a compact state space K ⊂ Rd, by def-
inition, has sensitive dependence on initial conditions (Devaney(1989), p.50).
Since an “exact” measurement of a state at some point of evolution (call it the
‘initial state’) is virtually impossible, states in the distant future are unpre-
dictable. For most applications, however it is enough to know the large time
statistical behavior of the trajectory {fnx : n ≥ 0}. That is, one needs to know
if the empirical process 1

n

∑n−1
n=0 δfnx converges as n →∞ to some limit, say

β, independent of x for almost all x(w.r.t Lebesgue measure), and if so what is
this limit. If it exists, this limit is necessarily an invariant probability for the
dynamical system: βf−1 = β, and it is ergodic. But there are infinitely many
ergodic invariant probabilities for a chaotic dynamical system. In particular,
the uniform distribution on a (necessarily repelling, or unstable) periodic or-
bit is an ergodic, i.e., extremal, invariant probability, and there are infinitely
many such invariant probabilities on distinct periodic orbits (Devaney(1989),
pp.49,50), none of which can be β. Long time ago Kolmogorov suggested that
one should randomly perturb the dynamical system by adding an absolutely
continuous noise component so that the resulting Markov process has a unique
invariant probability, say π. The limit of π, as the noise goes to zero, should
be β. Kolmogorov’s conjecture has been proved for Axiom A diffeomerphisms
independently by Sinai, Ruelle and Bowen (see Eckmann and Ruelle (1985),
or Kifer (1988) for a precise statement), and the limit β is called the SRB
measure in this case. We will refer to it more generally as the Kolmogorov
measure. In our present context of quadratic maps Fθ, the existence of such
a measure has been proved by Katok and Kifer (1986) for those values of θ
which satisfy the Misiurewicz condition: Fθ has no stable periodic orbit and 1
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does not belong to the closure of the trajectory {Fn
θ

1
2 : n ≥ 1}. It was shown

by Misiurewicz (1981) that under this condition Fθ has a unique absolutely
continuous invariant probability β, and that this condition is satisfied by un-
countably many parameter values θ. It may be noted that, except in special
cases, β is virtually impossible to compute analytically. On the other hand
viewed as an approximation of β, π is more tractable and, at the least, has
approximations 1

N

∑N
n=1 p(n)(x, dy) where p(n) may be expressed analytically

be recursion.

(ii) Randomly perturbed dynamical systems as models of physical phenomena. As
has been pointed out by Eckmann and Ruelle (1985), physical systems are
often “stochastically excited”. For such systems and many social phenomena,
the randomly perturbed dynamical system as a stochastic process is a more
relevant object of study than the deterministic system. Although such phe-
nomena are widespread in nature, we mention one particular application from
economics that has provided at least a part of the motivation for this work.
Consider a dynamic optimization problem in which one is given a “production
function” f : R+ → R+ and a welfare function w : R2

+ × A → R+ where
A is a parameter set, say A = [1, 4], parametrizing a family of economies.
For an initial x ≥ 0, a program xn : n ≥ 0, is a sequence such that 0 ≤
x0 = x ≤ xn ≤ f(xn−1). The consumption sequence {cn : n ≥ 1} is de-
fined as cn = f(xn−1)− xn. Given a discount factor δ > 0, and a parameter
value θ, one wishes to find an optimal program {x̂n : n ≥ 0}(x̂0 = x), which
maximizes

∑∞
n=0 δnw(xn, cn+1, θ) over all programs {xn : n ≥ 0} starting at

x0 = x. Under economically feasible assumptions one may find f and w such
that an optimal program is given recursively by x̂n+1 = θx̂n(1− x̂n), x ∈ [0, 1]
(Majumdar and Mitra (2000)). That is, the optimal program is given by the
trajectory of the dynamical system Fθ with initial state x. Since ‘uncertainty’
is inherent in economic systems, one may thus obtain a randomly perturbed
quadratic system. Alternatively, one may at the out set consider a stochas-
tic dynamic programming problem and directly arrive at a stationary optimal
policy leading to an evolution of states of the form (1.1)(Mitra (1998)).

(iii) Randomly perturbed quadratic maps as mathematically interesting Markov
processes. Last, but not least, randomly perturbed dynamical systems such as
(1.1) are Markov processes and, conversely, every discrete parameter Markov
process on a standard state space may be viewed as a randomly perturbed
dynamical system (see, e.g., [8], p. 228). The particular class of such processes
(1.1) and their large time properties have been the subject of study in [1], [2],
[5]-[7], [9], reviewed below.

In the remainder of this section we review the literature on the process (1.1),
leading up to the mathematical problem dealt with in this article.

As indicated following (1.1), we will consider the Markov process Xn on the state
space S = (0, 1) to avoid constantly having to exclude the uninteresting invariant
probability δ0 (the one-point mass distribution at 0) if the state space is taken
as [0, 1]. Let µ denote the smallest point and λ the largest point of the support
of the common distribution Q of εn. It is proved in [5]-[7] that there exists a
unique invariant probability π of the Markov process Xn, which is then stable in
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distribution, if either

1 < µ < λ ≤ 2,(1.2)

holds, or

2 < µ < λ ≤ 1 +
√

5 and
8

λ(4− λ)
≤ µ < λ(1.3)

hold. In the case (1.2), the maps Fθ, µ ≤ θ ≤ λ, are monotone increasing on
the invariant interval [pµ, pλ], where pθ = 1 − 1/θ is a fixed point of Fθ(1 < θ ≤
4). In the case (1.3), the maps Fθ, µ ≤ θ ≤ λ, are monotone decreasing on the
invariant interval [ 12 , λ/4]. One may then apply a theorem of Dubins and Freedman
(1966) to prove the existence and uniqueness of an invariant probability of the
process (1.1) (Bhattacharya and Rao (1993), Bhattacharya and Majumdar (1999)
and Bhattacharya Waymire (2002)). This technique may also be extended to the
case where Fµ and Fλ have attractive 2n-period orbits, for some n ≥ 1, such that
the second condition in (1.3) holds (which guarantees that [12 , λ/4] is invariant under
Fθ for µ ≤ θ ≤ λ) and µ and λ are close enough so that the line segment joining
the largest points of their attractive 2n-period orbits does not include any other
periodic fixed point of either Fµ or Fλ (See [7]). An example of this latter kind is
provided (for the case n = 2) by µ = 3.15 and λ = 3.20 (see [5]).

It has been recently shown by Carlsson (2002), using a “weak contractivity”
criterion, that the interval (1.2) may be extended to 1 < µ < λ ≤ 3 for the
existence and uniqueness of in invariant probability π on (0, 1). Assuming Q is
absolutely continuous on [µ, λ], 1 < µ < λ < 4, with a density bounded away from
zero on an open interval contained in (1.3), and Fµ(λ/4) ≥ 1

2 , Dai (2000) showed
that Xn is Harris recurrent and has a unique invariant probability.

In a somewhat different vein, Athreya and Dai (2000) have shown that a neces-
sary condition for the existence of an invariant probability on (0, 1) is

E log ε1 > 0.(1.4)

To outline a proof of this, express (1.1) by recursion: Xn+1 = εn+1Xn(1 − Xn),
so that log Xn+1 = log εn+1 + log Xn + log(1 − Xn). Note that if an invariant
π exists then for the stationary process {Xn : n ≥ 0} with initial distribution π
one may take expectations on both sides of the last equation to get E log Xn+1 =
E log εn+1 +E log Xn +E log(1−Xn). Since E log Xn+1 = E log Xn, one arrives at
E log εn+1 = −E log(1−Xn) > 0, yielding the ‘necessary’ criterion (1.4). Of course,
since on the compact state space [0,1], δ0 is invariant, it follows that if E log ε1 ≤ 0
(contrary to (1.4)), then Xn must converge in probability to zero no matter what
X0 may be. Athreya and Dai (loc.cit.) also showed that a sufficient condition for
the existence of an invariant probability π on (0, 1) is that, in addition to (1.4), one
has

E| log(4− ε1)| < ∞.(1.5)

Conditions (1.4), (1.5) together are not necessary and sufficient for the existence
of an invariant probability, as is shown, with Q = δ4 by the famous example of von
Neumann and Ulam (1947): F4 has ergodic, or extremal, absolutely continuous
invariant probability whose density is (1/π)[x(1− x)]−1/2.

The conditions (1.4) and (1.5) of Athreya and Dai (loc. cit.) only imply exis-
tence, and not uniqueness, of an invariant probability π on (0, 1). Indeed, Athreya
and Dai (2002) provide an example with at least two extremal invariant probabilities
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on (0, 1) with a Q that has a two-point support {(2/3 + δ)−1, (1/3− δ)−1 = {µ, λ}
for a sufficiently small δ > 0, and with η = Q({µ}) sufficiently small. Since the
set { 1

3 − δ, 2
3 + δ} = {a, b} is invariant under both Fµ and Fλ one easily shows

that π1({a}) = 1 − η, π1({1}) = η defines an invariant probability. Since b is a
repelling fixed point of Fλ, which has an attractive period-two orbit {c, d} say, if
λ ≡ ( 1

3 − δ)−1 < 1 +
√

6, (see, e.g., Sandefur (1990), pp. 172-181), and since η
is small, one can prove the existence of an invariant probability π2 whose support
contains {c, d}. Note that in this case 1 < µ < 2, while λ is only slightly larger than
3. That is, {µ, λ} does not satisfy (1.2) or (1.3), and barely misses the sufficiency
criterion 1 < µ < λ ≤ 3 of Carlsson (loc. cit.) mentioned above. We believe that
such nonuniqueness and the consequent lack of stability in distribution, are quite
common for discrete Q. Our main objective in the present article is to show that if
Q has a density component w.r.t Lebesgue measure on [0, 4] (which is bounded away
from zero on some interval), and if {(1/N)

∑N
n=1 p(n)(x, dy) : N ≥ 1} is tight for

some x ∈ (0, 1), then Xn is Harris recurrent and, therefore, has a unique invariant
probability π to which (1/N)

∑N
n=1 p(n)(x), converges, in total variation distance

(Theorem 3.1). The tightness condition is guaranteed, e.g., by (1.4) and (1.5).
Finally, Figures 1(a)-(h) show computer simulations of the empirical measure

(1/N)
∑N−1

n=0 δF n
θ x of the dynamical system Fθ for several different values of θ, start-

ing with x0 = .5. In 1(a)− (c) with N = 10, 000, one clearly sees a transition from
a chaotic F3.82 to F3.83 and F3.84 with a stable period-three orbit (and a uniform
distribution on this orbit). Then at θ = 3.85 the histogram shows quasi-periodic
behavior (not chaotic), passing to a chaotic behavior at θ = 3.86, 3.87. Chaotic
behavior is also seen for θ = 3.92, 3.93. To enhance the asymptotics, in Figure,
1(d)-(h), of 70, 000 iterations the first m = 20, 000 are omitted in constructing the
histogram, but no significant difference was noticeable from the corresponding his-
togram based only on the first 20, 000 iterations (The latter are not shown). It is
known, e.g., that there is at least one θ in [3.92, 3.93] for which Fθ has an absolutely
continuous invariant probability (Bala and Majundar (1992)).

Figures 2(a)-(f) show histograms of empirical measures for the Markov process
{Xn : 0 ≤ n ≤ 10, 000} with Q as the uniform distribution on the indicated interval.

2. The quadratic family of maps

We recall in this section some basic facts about the family of quadratic maps {Fθ :
θ ∈ [0, 4]}. See Collet and Eckman (1980), Devaney (1989), Eckmann and Ruelle
(1985), and Ruelle (1989) for details concerning general properties of these maps.
Fθ is said to have a period-m orbit if there are m distinct points x1, x2, · · · , xm such
that Fθx

i = xi+1, 1 ≤ i ≤ m,xm+1 := x1. The case m = 1 corresponds to a fixed
point x1 of Fθ ·A period-m orbit of Fθ is attractive if it has an open neighborhood
U such that, for every x ∈ U , Fn

θ x converges to this orbit as n → ∞. A period-m
orbit {x1, · · · , xm} of Fθ is repelling, or unstable, if it has an open neighborhood U
such that if x ∈ U\{x1, . . . , xm} then Fn

θ x ∈ U c for some n ≥ 1. A period-m orbit
{x1, . . . , xm} of Fθ is said to be hyperbolic if |(Fm

θ )′(x1)| 6= 1.
Since Fθ(0) = 0 for every θ, 0 is a fixed point of Fθ for θ ∈ [0, 4]. For 0 ≤ θ ≤ 1, 0

is an attractive fixed point of Fθ, and for θ > 1 it is repelling. For θ > 1 a new
fixed point of Fθ occurs at pθ = 1−1/θ. This fixed point is attractive for 1 < θ ≤ 3
and repelling for θ > 3. For θ > 3, Fθ has a period-2 orbit, which is attractive for

5



3 < θ ≤ 1 +
√

6 and repelling for θ > 1 +
√

6. A period-4 orbit of Fθ appears
for θ > 1 +

√
6 which is attractive on some interval (1 +

√
6, θ4] and repelling for

θ > θ4. Next a period-8 orbit shows up for θ > θ4, which remains attractive on an
interval (θ4, θ8] and becomes repelling for θ > θ8. This period doubling bifurcation
continues indefinitely, with a period-2n orbit of Fθ arising for θ > θ2n−1 , say, which
is attractive on an interval (θ2n−1 , θ2n ], (n ≥ 1), θ∞ := lim

n→∞
θ2n = 3.57 · · · . What

happens at θ∞ and immediately after is not entirely clear. But, according to a
celebrated theorem of Sarkovskii (Devaney (1989),pp. 60-62), periods in reverse
order . of their first appearance may be arranged as

3 . 5 . 7 . 9 . · · · . 2 · 3 . 2 · 5 . 2 · 7 . 2 · 9 . · · · . 2n · 3 . 2n · 5 . 2n · 7 .

· · · · · · . 2n . 2n−1 . · · · . 23 . 22 . 2 . 1.
(2.1)

Period 3 appears last in this list at θ∗ = 3.8284 · · · . For θ ≥ θ∗ the map Fθ has pe-
riodic orbits of all orders. Notice that for θ ≥ θ∗ period-doubling bifurcations occur
giving rise to successive periods 3.2, 3·22, · · · , 3·2n, · · · , with lim

n→∞
θ3.2n = 3.8495 · · · .

In particular, attractive periodic orbits appear again and again as θ increases. A
deep recent result of Graczyk and Swiatek (1997) says that the open set of θ’s in
[0, 4] for which Fθ has a hyperbolic attractive periodic orbit is dense in [0, 4]. This
result will prove crucial for our main result Theorem 3.1 in the next section. Con-
sider an Fθ which has no attractive periodic orbit. Then Fθ may be quasi-periodic,
i.e., for all x outside a set of Lebesgue measure zero, the empirical measure of the
trajectory, namely, 1

N

∑N−1
n=0 δFθnx

converges to an invariant probability measure π
(independent of x) whose support is a Cantor set of Lebesgue measure zero. Also,
in this case Fθ has no sensitive dependence on initial conditions, as defined below,
i.e., Fθ is not chaotic.

Another possibility is that Fθ has no attractive periodic orbit and it has sensitive
dependence on initial conditions. This means there exists δ > 0 such that, however
close two initial points x 6= y may be, |Fn

θ x − Fn
θ y| > δ for some n. Fθ is then

said to be chaotic. An important result of Jakobson (1981) says that the set of θ’s
for which Fθ has an (extremal) absolutely continuous invariant probability (and,
in particular, Fθ is chaotic) has positive Lebesgue measure. In deed, Jakobson
(loc.cit.) proves that the set Λ of such θ’s have Lebesgue density 1 at θ = 4 :

lim
ε↓0

Leb(Λ ∩ [4− ε, 4])
ε

= 1, where Leb (A) is Lebesgue measure of A.

Figures 1(a),(e)-(h), correspond to chaotic maps Fθ. Figure 1(b), 1(c) correspond
to Fθ having a stable period-3 orbit, while Figure 1(d) is indicative of a quasi-
periodic Fθ.

3. Harris recurrence and ergodicity

On the state space S = (0, 1) consider the Markov process defined recursively by

Xn+1 = Fεn+1Xn (n = 0, 1, 2, · · · )(3.1)

where {εn : n ≥ 1} is a sequence of i.i.d. random variables with values in (0, 4)
and, for each value θ ∈ (0, 4), Fθ is the quadratic function (on S):

Fθx ≡ Fθ(x) = θx(1− x) 0 < x < 1.(3.2)
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As always, the initial random variable X0 is independent of {εn : n ≥ 1}. Our
main result provides a criterion for Harris recurrence and the existence of a unique
invariant probability for the process {Xn : n ≥ 0}.

Let p(x, dy) denote the (one-step) transition probability of {Xn : n ≥ 1} and
p(m)(x, dy) the corresponding m−step transition probability.

Theorem 3.1. Assume that the distribution of ε1 has a nonzero absolutely contin-
uous component (w.r.t. Lebesgue measure on (0, 4)) whose density is bounded away
from zero on some nondegenerate interval in (0, 4). If, in addition, { 1

N

∑N
n=1 p(n)(x, dy) :

N ≥ 1} is tight on S = (0, 1) for some x, then (i){Xn : n ≥ 0} is Harris recurrent
and has a unique invariant probability π and (ii) 1

N

∑N
n=1 p(n)(x, dy) converges to

π in total variation distance, for every x, as n →∞.

Using the sufficiency conditions (1.4), (1.5) of Athreya and Dai (2000), the fol-
lowing corollary is an immediate consequence of the theorem.

Corollary 3.2. If ε1 has a nonzero density component which is bounded away from
zero on some nondegenerate interval and if, in addition,

E log ε1 > 0 and E| log(4− ε1)| < ∞,(3.3)

then {Xn : n ≥ 0} has a unique invariant probability π on S = (0, 1) and

(1/N)
∑N

n=1 p(n)(x, dy) → π in total variation distance, for every x ∈ (0, 1).

Note that if the support of the distribution Q of ε1 is contained in [µ, ν] where
1 < µ < ν < 4, then [a, b] ≡ [min{1 − 1

µ , Fµ(ν
4 )}, ν

4 ] is an invariant interval for
the Markov process (3.1) (See Bhattacharya and Rao (1993), Bhattacharya and
Waymire (2002)). Since the transition probability has the Feller property, whatever
be Q, there exists an invariant probability with support contained [a, b] ⊂ (0, 1).
The result of Athreya and Dai(2000) is an important generalization of this.

We will need some lemmas for the proof of this theorem.

Lemma 3.3. Suppose the distribution Q of ε1 on (0, 4) has a nonzero absolutely
continuous component (w.r.t. Lebesgue measure λ) whose density h(θ) is bounded
away from zero on an interval [c, d], c < d. Then there exists a nonempty open
interval J ⊂ (0, 1), a number δ > 0, and a positive integer m such that

inf
x∈J

p(m)(x,B) ≥ δλ(B) ∀ Borel B ⊂ J.(3.4)

Proof. First assume Q is absolutely continuous with a continuous density h. Let
θ0 ∈ (0, 4) be such that h(θ0) > 0 and Fθ0 has an attractive periodic orbit of period
m. Such a point θ0 exists, since the set of points θ for which Fθ has an attractive
fixed point or an attractive periodic orbit is dense in (0, 4), by a result of Graczyk
and Swiatek (1997). The n-step transition probability density is continuous in (x, y)
and is given recursively, by

(3.5) p(x, y) ≡ p(1)(x, y) =
1

x(1− x)
h

(
y

x(1− x)

)
,

p(n+1)(x, y) =
∫

(0,1)

1
z(1− z)

h

(
y

z(1− z)

)
p(n)(x, z)dz,

x, y ∈ (0, 1), (n ≥ 1).
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Let {x0, x1, · · · , xm−1} be the attractive periodic orbit of Fθ0 : Fθ0 xi−1 = xi (i =
1, . . . ,m), xm ≡ x0. Then

p(1)(xi−1, xi) =
1

xi−1(1− xi−1)
h

(
xi

xi−1(1− xi−1)

)
(3.6)

=
h(θ0)

xi−1(1− xi−1)
> 0 (1 ≤ i ≤ m),

since xi = θ0xi−1(1 − xi−1) ≡ Fθ0xi−1. By (3.6) and the continuity of (x, y) →
p(1)(x, y), there exist hi > 0 such that

g(y1, . . . , ym−1) := p(1)(x0, y1)p(1)(y1, y2) · · · p(1)(ym−2, ym−1) · p(1)(ym−1, x0)

> 0 ∀ yi ∈ [xi − hi, xi + hi](1 ≤ i ≤ m− 1),

so that

p(m)(x0, x0) ≥
∫

. . .

∫
g(y1, . . . , ym−1)dy1 . . . dym−1 > 0,(3.7)

where the integration is over the rectangle [x1 − h1, x1 + h1] × · · · × [xm−1 −
hm−1, xm−1 + hm−1]. By the continuity of (x, y) → p(m)(x, y), it follows that
there exists an open neighborhood J of x0 such that

p(m)(x, y) ≥ δ > 0 ∀ x, y ∈ J̄ ,(3.8)

where J̄ is the closure of J in (0, 1). This proves (3.4) assuming that Q is absolutely
continuous with a continuous density. In the general case let I ⊂ (0, 4) be a
nondegenerate closed interval such that h(θ) ≥ δ′ > 0 ∀ θ ∈ I. There exists a
nonnegative continuous function h on (0, 4) such that h(θ) ≥ δ′/2 ∀ θ ∈ I, and
h(θ) ≤ h(θ) ∀ θ ∈ (0, 4). Define p(n)(x, y) in place of p(n)(x, y)(n ≥ 1) in (3.5)
by replacing h by h. Let θ0 be a point in the interior of I such that Fθ0 has
an attractive periodic orbit of period m, say, {x0, x1, · · · , xm−1}. Then the same
argument as given above shows that there exists an open neighborhood J of x0

such that p(m)(x, y) ≥ δ ∀ x, y ∈ J, for some δ > 0. Since h ≥ h, p(m)(x, y) ≥
p(m)(x, y) ≥ δ ∀ x, y ∈ J̄ , and the proof of (3.4) is complete. �

Our final lemma adds greater specificity to Lemma 3.3 and to the proof of The-
orem 3.1

Lemma 3.4. Assume the hypothesis of Lemma 3.3. There exist γ1, γ2(c < γ1 <
γ2 < d) and m ≥ 1 such that (a) Fθ has an attractive periodic orbit of period m for
every θ ∈ (γ1, γ2), and (b) if q(θ) denotes the largest point of the attractive periodic
orbit of Fθ(θ ∈ (γ1, γ2)), then there exists an open interval J ⊂ (0, 1) for which
(i)(3.4) holds, (ii) q(θ) ∈ J ∀ θ ∈ (γ1, γ2), (iii) θ → q(θ) is a diffeomorphism on
(γ1, γ2) onto J .

Proof. As in the proof of Lemma 3.3, let θ0 ∈ (c, d) be such that Fθ0 has an
attractive periodic orbit of some period, say, m. Apply the inverse function theorem
to the function (θ, x) → Fm

θ x − x in a neighborhood of (θ0, q(θ0)). For this note
that (

d

dx
{Fm

θ x− x}
)

θ=θ0,x=q(θ0)

< 0,(3.9)
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in view of the property | d
dxFm

θ0
x|x=q(θ0) < 1 (since q(θ0) is an attractive fixed point

of Fm
θ0

). Hence there exists θ < θ0 < θ̄ such that θ → q(θ) is a diffeomorphism
on (θ, θ̄) onto an open interval I ⊂ (0, 1). Now apply Lemma 3.3 to find an open
interval J = (u1, u2) ⊂ I, u1 < q(θ0) < u2, such that (3.4) holds, and let γi =
q−1(ui)(i = 1, 2). �

Proof. of Theorem 3.1. Let π be an ergodic (i.e., extremal) invariant probability
on S = (0, 1), which exists by the assumption of tightness. We will first show that
π(J) > 0 for the set J in Lemma 3.4. Fix x ∈ (0, 1). There exists a point in the
interval (Fγ1x, Fγ2x) which is attracted to the (attractive) periodic orbit of Fθ0 ,
where θ0 is as in the proof of Lemma 3.4. Note that, outside a set of Lebesgue
measure zero, every point of (0,1) is so attracted (see, e.g., Collet and Eckmann
(1980), p.13). Thus there exist n and θ0

1, θ
0
2, . . . , θ

0
n ∈ (γ1, γ2) (with θ0

i = θ0, 2 ≤
i ≤ n) such that Fθ0

1
Fθ0

2
· · ·Fθ0

n
x ∈ J . Consider the open subset of (0, 1)× (γ1, γ2)n

given by {(y, θ1, θ2, . . . , θn) : Fθ1Fθ2 · · ·Fθny ∈ J}. Since (x, θ0
1, θ

0
2, . . . , θ

0
n) belongs

to this open set, there exists a neighborhood of this point, say, (y1, y2)×(θ11, θ12)×
· · · × (θn1, θn2) ⊂ (0, 1)× (γ1, γ2)n such that ∀(y, θ1, . . . , θn) in this neighborhood,
Fθ1Fθ2 · · ·Fθn

y ∈ J . This implies that for every inital state y ∈ (y1, y2) = Ix,
say, the probability that in n steps the Markov process will reach J is at least
cn
1 (θ12 − θ11) · · · (θn2 − θn1) where c1 := inf{h(θ) : θ ∈ [c, d]} = εn(x), say, with

εn(x) > 0. Now choose x such that it belongs to the support of π. Then π(Ix) > 0
and, with n = n(x) as above,

π(J) =
∫

p(n)(y, J)π(dy) ≥
∫

Ix

p(n)(y, J)π(dy)(3.10)

≥ εn(x)π(Ix) > 0.

Also, by Lemma 3.3,

π(B) ≥
∫

J

p(m)(x, B)π(dx) ≥ δλ(B)π(J)(3.11)

∀ Borel B ⊂ J.

In particular, π is absolutely continuous on J w.r.t. Lebesgue measure, with a
density bounded below by δπ(J) > 0. Since the same argument would apply to
every invariant ergodic probability π1, and two distinct extremal invariant measures
are mutually singular, it follows that π is the unique invariant probability.

Since we have argued above that for every x ∈ S = (0, 1) there exists n = n(x)
such that p(n)(x, J) > 0, we get, using (3.4),

p(n+m)(x,B) ≥
∫

J

p(m)(z,B)p(n)(x, dz) ≥ δλ(B)p(n)(x, J)(3.12)

> 0 ∀x ∈ S ≡ (0, 1),

∀ B ⊂ J, λ(B) > 0.

Hence the Markov process is irreducible with respect to the measure φ(B) := λ(B∩
J), B Borel ⊂ (0, 1). From the standard theory for Harris processes (see, e.g., Meyn
and Tweedie (1993), Theorem 10.1.1, p.231) it now follows that the Markov process
(3.1) is positive Harris recurrent. Part (ii) of Theorem 3.1 is a consequence of this
fact (See, e.g., [1], [21], [24], or [25]). �
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Remark. We do not know if the conclusion of Theorem 3.1 remains valid under the
assumption “ the distribution Q (of ε1) on (0,4) has a nonzero absolutely continuous
component with respect to Lebesgue measure on (0, 4)”, in addition to (3.3). Note
that such a Q may assign its entire mass on the set of all θ for which Fθ is chaotic.

Acknowledgement. The authors are indebted to Nigar Hashimzade for help with
the simulations.
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