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Abstract

When agents know that the environment they live in is changing
through time, the traditional Nash Bargaining Rule is no longer the
limit of the sequential bargaining game. I derive the limit rule for
bilateral bargaining when agents recognize that the aggregate econ-
omy follows a dynamic process that randomly switches back and forth
between two possible states. Decentralized economies with bargain-
ing are natural environments for the study of sunspot equilibria. The
rule derive in this paper then becomes of special importance for those
types of phenomena. Two simple applications are presented to illus-
trate this fact: one for the labor market and the other for a monetary
random-matching economy. In the first example, a model of wage
bargaining and trade externalities is introduced and it is shown that
in those situations sophisticated bargaining can increase the volatility
of the wage bill due to extrinsic uncertainty. In the second example,
a Kiyotaki-Wright model of money, equilibrium prices are shown to
fundamentally depend on our novel bargaining solution. JEL CT78,
E30, E24.
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1 Introduction

In a stationary equilibrium, there exists a close relationship between the so-
lutions to the sequential bargaining game (Rubinstein, 1982) and the Nash
Bargaining Rule. See, for example, Binmore, 1987. In fact, either when the
period of time between each round of negotiations in the sequential bargain-
ing game becomes very small, or when the discount factor goes to unity, the
two theories deliver the same predictions. In general, however, this equiva-
lence breaks down when the agents interact in a nonstationary environment
(Coles and Wright, 1998). For the case in which the parameters of the bar-
gaining game are changing over time smoothly, Coles and Wright develop a
simple formula that can be applied to obtain the limiting solution (as the
time interval between moves approaches zero) to the alternating-offers bar-
gaining process. Some of those parameters for the game may be endogenous
to the aggregate model and determined, for example, in the market (prices,
wages, and other variables determining the payoffs from negotiations, etc.).

Several well-known examples of economies with decentralized trading
show that equilibria are often sensitive to the influence of extraneous vari-
ables that coordinate expectations. After the seminal work of Cass and Shell
(1983) (see also Shell, 1977), it has been shown in the literature that rational
expectations economies in which the usual Arrow-Debreu set of assumptions
do not obtain are generally subject to the existence of sunspot equilibria.!
Following this tradition, trade frictions have shown to be an important fac-
tor to motivate this sunspot-type of phenomena (see for example, Diamond
(1982), Howitt and McAfee (1988) for a labor market model, and Wright
(1994), Shi (1995) and Ennis (1998) for random matching models of money).
Usually, bilateral bargaining constitutes an essential part of these models.
Clearly, if one applies the same principles that guided the Coles-Wright anal-
ysis, then one should expect that the outcomes from negotiations depend on
the extrinsic uncertainty that drives the dynamics of the aggregate economy.
In a sense, from the point of view of the agent involved in the bilateral re-
lationship where bargaining is taking place, the parameters of the game are
not stationary. However, they do not necessarily follow a smooth path over
time. Instead, the focus here will be in those cases where the sunspot signal
triggers jumps from one set of equilibrium values to another as it switches

!This is yet another case for the so-called Philadelphia Pholk ‘Theorem’. See Shell
(1987).



states. This calls for an adaptation of the Coles-Wright result to make it
applicable in this specific situation. I proceed with this task in the present
paper.

Using a similar method to the one used by Coles and Wright, we obtain
a formula that can be used to derive the outcome of bargaining negotiations
when the state of the economy, for whatever reason, randomly switches back
and forth between a finite number of possible states. This theory is then ap-
plied to a couple of well known models of decentralized exchange for which the
equilibrium may be subject to extrinsic uncertainty (sunspots). Specifically,
an economy with bilateral production matchings and trade externalities (a la
Diamond, 1982) and a monetary random matching economy (& la Kiyotaki
and Wright, 1989) with bargaining are studied in detail to better understand
the effects that the new derivations can have on aggregate outcomes.

The two examples provide with interesting insights on the fundamental
factors that determine the sunspots’ influence (through forward looking bar-
gaining) upon equilibrium outcomes. The underlying driving force for most
of the findings in that part of the paper is that the relative position of the
agents at the two sides of the negotiation determines the final importance
of sunspot volatility. Accordingly, if the agents in the bilateral bargaining
are identical in all respects, sunspots do not alter the surplus-splitting rules.
Otherwise, sunspots do have important consequences over the bargaining
power of the negotiators and require special consideration.

The paper is organized as follows. In the next section, I develop the gen-
eral formula for the limiting case of sequential bargaining when the aggregate
economy swithches randomly between two states. Also in Section 2, I discuss
what I call the benchmark case - the simple splitting-the-cake problem. In
Section 3, two examples are introduced: a labor market model with bargain-
ing (that can be seen as a special case of the benchmark case), and a random
matching model of money. Section 4 is reserved for concluding remarks.

2 The Bargaining Theory

2.1 General Rule

Consider the following economic problem. Two agents, 1 and 2, are bilater-
ally matched; out of this encounter there is some mutually beneficial surplus
that can be produced; agents have to decide how to split that surplus between



them. This is the typical bargaining situation studied by Nash and Rubin-
stein. Let x € R represent a decision variable for the agents determining how
the surplus is divided. Agent 1 has an instantaneous payoff function u;(x; ©),
where © represent the set of parameters that influence, for example, the size
of the total surplus to be distributed.? Agent 2’s payoff function is given by
ug(x;©). Assume u; € C? i = 1,2. Let u; be increasing and concave in
for every ©. Also, usy is decreasing in x and concave. Agent ¢ discounts the
future at rate r;, 1 = 1,2. Agents derive zero utility from no trade as well as
from obtaining no surplus out of the match. Hence, x € [z, 7], where x =T
corresponds to the situation where all the surplus goes to agent 1 and x = x
when all the surplus goes to agent 2. Note that the values of ©, x, T may be
changing through time.

The idea is to consider the solution to the alternating offers bargaining
game (see Rubinstein, 1982) and then study the limit of this solution when
the time period between offers goes to zero. If © is constant through time,
then it is well known that the limit of the unique subgame perfect equilibrium
outcome of the alternating offers game is the Nash solution with bargaining
power and threat points that depend on the details of the specific game
(Binmore, 1987). If ©, follows a smooth nonconstant path, then the Coles-
Wright (1998) solution applies. However, we will consider here the case
where O, takes a finite number of different possible values and jumps among
them according to states of the economy that are determined, for example
(although not necessarily), by a sunspot variable.® In fact, the main interest
will be in the market equilibrium of an economy where agents get paired
through a matching process and bargain to split mutual benefits of that
match?. In this sense, ©, may represent the state of the aggregate economy
that for some reason determines the value of the match (see the examples in
the next section).

The alternating offers bargaining procedure operates as follows. First,

2Note that these are not parameters of the utility function. They represent, in a way,
the state of the economy where these agents interact.

3Coles and Wright (1998) assume that the partial derivative of the payoff function with
respect to time is bounded. This need not be satisfied in the present set up. With the
aggregate environment experiencing only discrete jumps over a finite number of possible
states, derivatives are only evaluated at a finite number of points. In this manner, con-
vergence of sequences of partial derivatives is not anymore an issue as it was in Coles and
Wright.

4This is in the spirit of Rubinstein and Wolinsky (1985), although they allow for the
possibility of exogenous breakdowns.



agent 1 makes an offer y(t) that may depend on time because ©; does. Agent
2 either accepts or rejects the offer. If agent 2 accepts then the game ends and
the payoffs vector is given by [u;(y(t); ©;), ua(y(t); ©;)].> If agent 2 does not
accept agent 1’s offer, then a period A of time goes on and at time t+ A agent
2 gets to make an offer z(t+A). Agent 1 accepts or rejects that offer, and the
game goes on in that manner. Assume that ©;, which - as was said before-
can be thought of as the aggregate state of the economy where these two
agents interact, follows a stochastic dynamic process that switches back and
forth between two possible values (the next section provides several examples
of this phenomenon). Clearly, between ¢ and ¢t + A, the economy may transit
from one state to another. This may then result in a more favorable situation
for one of the two agents who - aware of this possibility- will act accordingly
when bargaining.

More specifically, assume the aggregate state of the economy depends on
a bivariate random variable s € {s,, s;} that follows a Poisson process with
transition rates given by [7ap, Tp.q)-

As is usual in this type of problem, there exist reservation values [Z%, 73]
such that if the economy is in state s, agent 1 accepts an offer x from agent
2 whenever = > 7% and agent 2 accepts an offer = from agent 1 whenever
r < 75.5 Also, from the properties of the payoff functions the best offer of
an agent is always the reservation value of her partner, i.e., y(t) = 75 and
z(t) = 3.

The equilibrium reservation values in each state s satisfy the following
two equations,

s 1 s B

Ul(l'l; @5> = m |:(1 — Aﬂssz)ul(:@; @5) + Aﬂssxul(l‘2 ,@S/):| s (1)
~s 1 ~s ~s'

UZ(:EZ; @S> - m |:(1 - Aﬂ-ss’)fuﬁ(ml; @s) + Aﬂss’fu@(ml 7@Sl)i| ) (2)

where s, s’ = s,, s, and s # s'. Clearly, ] and 7§ will be functions of A. To
simplify notation, I choose not to write down the dependence on A explicitly
but it should be kept in mind for the upcoming arguments.

% Actually, the equilibrium payoff in state ©, may depend on the payoff in state O
too, as it will be seen in the examples of the next section. However, we will keep this
simplified notation for clarity of exposition.

6QOnly history independent strategies are considered in the equilibrium to be studied.
Also note that I dropped the ¢ argument from the offer functions because the only source of
dynamics will be the switching states of the aggregate economy indicated with superscript.



Let h*(A) = zj — 75. It is shown in Appendix 6.1 that h*(A) = O(A)
(i.e., h*(A)/A — c € R as A — 0). Then, using the Taylor expansion of
ui(Z5; ), i = 1,2, around 7%, from (1) and (2) one obtains,

h*(A)
A A

+ T g5 (ul(ffil; Oy) — u1(T3; @s>) ,

(350, = —(1+mA) [ua@;;@s)

W (A) | old)
A A
o (1(35500) = (35 0,) + 0(4))

raus(@30,) = (33 0,) + (4)

Then, after some substitutions and taking limits when A — 0,7 the fol-
lowing result obtains.

Proposition 1 When the state of the aggregate economy, ©, shows stochas-
tic dynamics over two possible states [Os,,Os,], then {Z°(t), s = sS4, Sp}, the
limiting (as A — 0) spliting rule from bargaining , satisfies the following
equations:

|:T1U1</=T\S; Os) + sy (“1@85 0,) — un (37 @s')ﬂ m

1 /
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fors# 8 8,8 € {sq, 8}

Remark 2 One possible motivation for the dynamics imposed on © is the
case where the aggregate economy uses a sunspot variable as a coordination
devise between two feasible equilibrium situations (see the following section
for some illustrations). In this case then, note that when ©5, = O, i.e.
when sunspots don’t matter at the level of the aggregate economy, we have
z% = % and equations (5) reduce to the standard Nash Bargaining solution.

"Note that when A — 0 it becomes irrelevant who makes the first offer (h(A) — 0 as
A —0).



Remark 3 Note that (1) and (2) form a system of four equations in four
unknowns, T3*, T3, T1*, To'. Assuming that T3* > T7° and T5* > T3 (just a
matter of labeling), if a solution to this (generally nonlinear) system exists,
then T7* < T53* and 7" < T3, which yields an Immediate Trade Equilibrium
(with no delay in the bargaining process). An important condition for this to

happen is that the transition probabilities [mss, Tys) are small enough.

Remark 4 Suppose there is an individual rationality constraint for agent 2
given by us(y(t); ©;) > 1(O©;) where I is a function of ©,. This constraint
translates into T € [0,z]. Then, for the constraint to be binding in state s,
we need

1 _ .
w(F0,) > T (1= A )us(F: 6,) + Amewus(3{:04)| (6)
in place of (2). And (5) becomes
_ _ . 1
o0+ 5 (500 -390 e
e [ran(30,) + o (wa(0,) —ws(3:0,))] . (@)
—Ulz(f, @5> r2U2(T; Y5 Tss! | U2\ T5 D5 U2\ T 5 Oy .

In summary, if when T° = T we have that (7) holds, then we obtain that the
solution for the bargaining problem is constrained.

Remark 5 Suppose that the state of the aggregate economy can take values
in the finite set S = {Sa, Sp, S¢, -.-}. In this more general case, equation (5)
above, becomes

1
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2.2 Benchmark Case: Splitting the Pie

One of the most studied examples of bargaining situations is the case where
two agent with linear utility functions meet, produce a surplus (a pie) of size
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P and then have to decide how to split it between the two (see for example
Rubinstein (1982)). Let x be the part of the pie that goes to agent 1, and
P — z the corresponding share for agent 2. Consider a situation where the
size of P depends on a random state variable taking two possible values (s,
or sp) and following a Poisson process with transition rates [mqp, mp]. Note
that as it stands, the uncertainty in the present case is essentially intrinsic.
This makes perfect sense because - as was said before- the formula derived in
Section 1 is applicable to general situations (including, but not exclusively,
the sunspots case). Moreover, in the next section it will be shown how the
phenomenon described here can be closely related to a sunspot equilibrium
of a particular aggregate economy. In the decentralized exchange economies
that we shall study in Section 3, the sunspot effect is in a way exogenous to
the match (once in the match, agents take as given that the economy where
they interact is subject to sunspots effects).

It is easy to see how the problem just presented fits perfectly in the
analysis of Section 2. The payoff functions are given by wu;(z;0;) = x and
us(z;05) = P® — x, s = 5,4, Sp; and equations (5) are in this case,

/

Tz’ + mee (¥ — ZES/) =1ro(P° — 2°) + sy | P® —2° — (Psl —zf

), )

! !/
for s,s" = s4, 8, and s # §'.

e Result 1: Suppose that P** = P®* = P. Then, x° = % = [ry/(r1 +
r9)|P and if r; = rq, then they will split the pie in halves. These are
the usual results of traditional Nash Bargaining Theory.

e Result 2: Suppose that P # P® and r; = 5. Then z° = P?% /2
and z% = P*® /2 ie. in spite of the dynamics in the size of the pie,
they still split it in halves (see Theorem 3 in Coles and Wright (1998)
for an analogous result).

e Result 3: Suppose that P** # P* and r; # ry, then

. ()
ISt — Psa + T — 2 (Psb _ Psa) (10)
r1+ T2 (B2 + Tap + Tha
and
o — ri1+re
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If, for example, P* > P and ry > rq, then z% > [ry/(r; + 7o) P*
and x* < [ro/(r1 + r2)]P®. The equilibrium payoff of agent 1, who is
relatively more patient, is higher in the “small pie” state because she
would be willing to wait for the change in state relatively longer than
agent 2 (this raises her reservation value, which is what she will end
up getting in equilibrium). Similarly, when the economy is in state sy,
agent 1 will be eager to close a deal in the current situation: the risk of
loss from the switch in states the following A-period is relatively more
important for this agent (she is more patient, thus she cares relatively
more about future losses).

From this analysis, one can see that when the discount rates differ among
agents, the disparity in payoff is either accentuated by the variability in the
size of the pie, as in the “small pie” state s, (as x® > [ro/(r1 + ro)| P >
(1/2)P*=), or dissipated, as in the “big pie” state s, (as usually (1/2)P*% <
x% < [ro/(r1 + 7r9)] P when 7y, is relatively small). Put in the context of
macro-economies, the prediction from this theory would be that one should
expect more disparate ‘surplus-spliting’ conditions during recessions when
bargaining is a substantial component of the transaction mechanisms oper-
ating in the economy.® The present discussion should serve as a preamble for
the first example of the next section, which constitutes a special case of this
problem, but embedded in what it would turn out to be a more comprehen-
sive setup.

3 Application: The Sunspots Case

Bargaining situations are characteristic of decentralized exchange economies
where agents get bilaterally matched to trade. Similarly, as it was said in
the introduction, this type of economies are natural environments for the
study of sunspot equilibria. In consequence, we find that relating these two
phenomena with the intention of illustrating the use of the new concepts
developed in the paper is a natural step.

In what follows, I will present a pair of examples of model economies
where bargaining and sunspots are important elements for the analysis. The
formula obtained in Proposition 1 will be used to represent the solution of
the bargaining procedure and its consequences will be discussed to evaluate

8See more on this at the end of the first example on Section 3.



the relevance of explicitly considering the effect of sunspots on the bargaining
outcomes.

The first application is based on an extensive literature on trade exter-
nalities developed after the seminal work by Peter Diamond on the possible
macroeconomic consequences of Search Equilibrium analysis (see Diamond
(1982), Howitt and McAfee (1988, 1992) and the references therein). Those
models typically generate multiple equilibria and sunspot equilibria; how-
ever, the bargaining process is usually not explicitly modeled (although it is
clearly implicit in the analysis; see Drazen, 1988).° The present paper, in a
way, intends to start filling in this hole of the mentioned literature.

The second application is a random matching monetary economy in the
spirit of Kiyotaki and Wright (1989). The second generation of this type of
models have considered price determination through a bargaining procedure
within each monetary match. One interesting result out of those papers is
the possibility of multiple and sunspot monetary equilibria (see Shi (1995),
Trejos and Wright (1995), and Ennis (1998)). Following the analysis of the
previous section, it becomes apparent that to study sunspot equilibria in
these models it is necessary to take into account the potential effects of
extrinsic uncertainty on the bargaining outcomes. This is pursued in the
second part of this section.

3.1 Wage Bargaining and Sunspots
3.1.1 The Model

The first example in this section constitutes a complete description of an
economy where a large number of workers interact with firms to accomplish
production and explicitly bargain over wages. One of the distinguishing
characteristics of this economy will be the presence of the trade externality
introduced by Diamond (1982). In fact, the present economy is a simplified
version of the one in Howitt and McAfee (1988), but in which I analyze ez-
plicitly the bargaining process that determines wages. In this economy, the
trade externality is the driving force for the existence of multiple equilibria
produced by a typical coordination failure situation. This property of the

9Mortensen (1999), in a model with similar characteristics than the ones considered
in this paper, uses explicit Nash bargainig with the bargaining power of agents chang-
ing through time following an exogenous rule associated with certain indicators of the
aggregate state of the economy (e.g., labor market tightness).
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economy is what allows for the possibility that sunspots affect equilibrium
allocations. Although the model is stylized, it will illustrate how the bargain-
ing rule obtained in Section 2 can be introduced in a specific model economy
and demonstrate some of its crucial effects.

Consider an economy with a large number of identical firms and a large
number of identical households. There are three tradable objects: output,
homogeneous labor services, and money (it will be a pure accounting device).
Firms’ receipts are instantaneously transferred to their owners and workers
and must be used for purchasing output from other firms during the current
period. The market for output is perfectly competitive, but firms incur a
transaction cost to operate in the market. I will consider an iceberg type
transaction cost, i.e. it takes the form of output used up in the sales process.
Hence, a firm employing n units of labor will have a net revenue of

R(n,m) = [L = o(m)]f(n), (12)

where f(n) is the firm’s production function and o(7) f(n) is the transaction
cost. Assume o(e) is a continuous decreasing function. The trade externality
comes through o(m), which depends upon the aggregate employment (per
firm) m2: the higher the general level of employment in the economy, the easier
is to sell goods and therefore the lower is the transaction cost o(7) f(n).

At every moment in time, a firm can potentially get matched with a
household according to a Poisson process with arrival rate 5. After the match
is formed, households work and get paid by the firm. They use the proceeds
to buy goods for consumption. Additionally, they experience disutility from
labor, v(n).

Under this setup, workers and firms develop bilateral relationships when
they get matched. The standard approach for this situation is to assume that
they will bargain over the surplus from the match. Let x be the payment
to the workers from the negotiations. Define V; to be the value for agent i
of being unmatched waiting for a potential arrival. It is not hard to show
that V() = (8/m)[R(,T) — o(@)] and Va(@) = (8/r2)[a(m) — v(®)] in
equilibrium -where r;, j = 1,2 are the time discount rates for firms and
workers respectively, and z(7) is the equilibrium wage bill when aggregate
employment (per firm) is 7.

One well accepted bargaining procedure is the Nash bargaining solution.
The predictions of this solution concept are equivalent to the limiting out-
comes in the alternating offers Rubinstein game (Binmore, 1987). Then,
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assuming the firm and the worker Nash bargain over labor n and payroll x
implies that (n, z) solves the following problem,

max[R(n,7) — 2+ Vi(@)’ [z — v(n) + Va(@)]"*

z,n

subject to z + Vo(m) > v(n) and z < R(n,m)+ Vi(7)
From the first order conditions (assuming an interior solution),
2" = (1= 0)[R(n*,m) + Vi(R)] + O[v(n*) — Va(m)], (13)
and,
Ry(n*,m) = (1 — o)) f'(n") = v'(n"). (14)

Note that, as expected, the Nash solution is “efficient” (given 77, n* maximizes
net surplus R(n,n)+Vi(7)—v(n)+V2(m) ). The weight 0 represent the relative
bargaining power of firms. If one thinks of Nash bargaining as a simplified
approximation to the solution of the Rubinstein game, then 6 /(1 —0) is given
by the ratio of workers’ and firms’ discount rates (ry/r;). Considering the
net payoff z and zy, for workers and firms respectively, we see that

=2 —v(n*)+Va=(1-0)[R(n",7)+ Vi —v(n*)+ Vo]  (15)
and,
Zv = R(n*,m)+ Vi —a* = 0[R(n", 1) + Vi — v(n*) + Va; (16)

i.e., 0 of the surplus from the match goes to the firm and (1—6) to the workers.
If both have the same discount factors(i.e. # = 1/2), it can be shown that
z* = [R(n*,7m) + v(n*)]/2 when m = n*, and they split net surplus in half
(see Result 1 in the Benchmark Case for a direct analogy). This result will
become important further ahead in the paper when we study the sunspot
equilibrium with equal discount factors. Finally, note that n* is independent
of the spliting rule z*.

Definition 6 A certainty equilibrium for this economy is given by { (m, n*, z*),

(V1,V2)} such that: 1) (n*,x*) satisfy (13) and (14); 2) m = n*; 3) Vi =
(8/r1)[R(M, 1) — 2*] and V3 = (B/r2)[z" — v(7)].

12



It should be apparent that the trade externality can generate multiple
equilibria in this economy. In fact, the higher the aggregate employment in
the economy, the easier it becomes to sell the produced goods and therefore
the higher is the marginal productivity of labor. This implies higher opti-
mum levels of employment at the firm level and possibly a “high” employ-
ment equilibrium (ng,ng, xg). Inversely, for low levels of 7, the marginal
productivity of labor is low and this can result in a low actual employment
equilibrium levels ny, (see Figure 1). Clearly, where the economy is in any
period depends exclusively on where the agents are coordinated to be.

3.1.2 Sunspot Equilibrium

Assume that there are multiple certainty equilibria and that expectations
over the aggregate employment level in the economy follow a bivariate Poisson
process with transitions rates {7y, 7y }. In other words, the agents in the
economy coordinate themselves in either (low or high employment) certainty
equilibria according to a bivariate sunspot random variable. Assume also
that no matter which state the economy is in, when a firm and a household
are matched, they produce. However, if one considers the limiting solution of
the alternating offers bargaining process, the outcome of the negotiations now
differs (in general) from that in a certainty equilibrium.!’ At the moment of
the negotiations, agents take into account that the economy might switch at
any time to the other state, affecting the payoffs obtainable from the match.
There is in fact another important effect of sunspots on the equilibrium
quantities in the economy; the value of being unmatched waiting for an
arrival V; also depend on the dynamic properties of the aggregate economy.
However, in this paper we shall be specially interested in the first of the
mentioned effects.!?

10Note that if one assumes myopic behavior by the agent in a match, then a fix exogenous
rule for spliting the surplus obtains. This is what it is done in much of the previous
literature (see Drazen, 1988). Under that assumption sunspot equilibria of this model
constitute nothing more than a trivial randomization over certainty equilibria. However,
endogenizing the spliting rule through explicit sophisticated bargaining (as in Section 2)
will be shown to derive in new possible observable equilibrium outcomes. See Shell (1987)
for a general discussion on the importance of this issue for the study of sunspot equilibrium.

' The value functions for firms and households when sunspots matter are given by the
system

Vi = % [(Ri(ni,ni) — x3) + i (Viy — Vi)l
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Let superscript s denote quantities on the sunspot equilibrium. Clearly,
production efficiency still obtains. Therefore, nj and nj solve versions of
(14).'2 Using the general proposition from Section 2 of the paper one can
determine the payroll z° in each state. The version of equation (5) in the
current setup is,

ri[R(nf, ;) — i + Vii] + 7[R0, ;) — 27 + Vi — (R(nj,75) — 25 + Vi5)] =

= ro(af —v(nf) + Vo) + myjlaf —v(ng) + Vo, — (25 —v(nd) + V3)],  (17)

where i,j = L, H ; i # j and n{ solves Ry(nf, ;) = v'(n]) (efficient bargain-
ing). Let 0 = ro/(r1 +72). The equations determining the equilibrium values

of x; are

v = (L= 0) [R(n§,n7) + V5] + 6 [v(nf) — Vi) +

+® [R(nj, 75) + Vi — (v(ng) — Vyy) — (R(nf,75) + Vi — (v(nf) — V)]

J

for Z,j = L,H ] 1 7éj, ¢ = [7’(‘@'(1 — 29)]/[7”1 + 79 +2(7Tij +7TZJ>]

These equations should be compared with those in (13). Note that when
the discount rates of firms and workers are the same the bargaining power
index 6 = 1/2, ® = 0 and the third term in the sum disappears. Further
calculations shows that z{ = [R(n{,n{) + v(n$)]/2, and the solution is ‘im-
mune’ to the existence of sunspots (both effects due to sunspots, the change
on the value functions and the change in the bargaining rule, wash out when
r1 = r2). In any other case, the existence of sunspot fluctuations affects the
spliting rule from bargaining. As was said before, the net effect is the result
of the interaction of two channels through which sunspots influence the state

Vai = % [(i —vi(ng)) + 5 (Vay — Vai)]

where i,j = L, H; i # j.
12Tt can easily be shown that the equilibrium payoff for both the firm and the workers

is increasing in net surplus R(n,n) —v(n). Therefore, the partners in the match will agree
to maximize that surplus and production efficiency will obtain.
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of the match. On one hand, the value functions are different according to
the expected dynamics of the overall macro economy. On the other hand,
and most important to this paper, is the effect of sunspots over the process
of negotiations.!® This is represented by the last term in expression (18).
In particular, if ro < 7, i.e. if workers are more impatient than managers
and if the total surplus from the match is bigger in the high employment
equilibrium situation H, then xj tends to be lower in equilibrium. The more
patient side in the negotiation is more willing to delay during bad times and
this increases its bargaining power. One could say that the theory presented
here predicts a tendency to lower payrolls as a proportion of total revenue
during a slump (especially when there exists a perception among agents that
the economy would, with considerable probability, recover from the current
depression). Similarly, 2%, tends to be higher. During good times, firm dis-
count less future losses and they are eager to close a deal before the economy
switches to the bad state, sacrificing in this way some of their bargaining
power. Note finally that this two implications (lower x5 and higher z%;)
tend to increase the variance of workers payoff under the effect of sunspots.
The wage bill is a lower proportion of a low surplus during bad times and
a higher proportion of a high surplus during good times. However, our sim-
plified structure implies that workers are risk neutral in income and hence,
that this extra variability does not derive into additional welfare loses for the
household.

3.2 Monetary Equilibrium, Bargaining and Sunspots

The last example presented in this section consists of a random matching
economy with money a la Kiyotaki and Wright (1991). In fact, the present
example should be regarded as an extension of Trejos and Wright (1995)
analysis to the case of sunspot equilibrium. Although Shi (1995) already
proved (using arguments of continuity) the existence of sunspot equilibria in
this model, their actual characteristics are somewhat unexplored (see Ennis
(1998) for a characterization of some of the Steady State properties of these
sunspot equilibria). This example shows how equation (5) can help us under-
stand some of the effects that excess volatility may have in the functioning

13Tt is worth noting that if one includes a risk of breakdown in the bargaining arrange-
ment, i.e. a threat point equal to the value of being unmatched waiting for an arrival,
then the value functions dropped out of the formula for x and only this effect of sunspots
over the process of negotiations remains.
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of this type of monetary economy.

The model follows closely that in Trejos and Wright (1995) (see also Shi
(1995) and Ennis (1998)).14 Time is continuous. A unit measure of infinitely-
lived agents get matched every period according to a Poisson process. There
is specialization in production and consumption (no agent consumes what
she produces). With probability y, a double coincidence of wants takes place
between two matched agents. Agents derive utility u(q) from consumption
and disutility ¢(q) from producing. Money is indivisible and agents have
either 0 or 1 unit of it at every point in time. Goods are non-storable and
divisible. After production, agents have to consume to be able to produce
again. Let M € (0,1) be the measure of agents holding one unit of money
at the initial time. These assumptions imply the invariance of the distribu-
tion of money holdings: at every moment in time there is a fraction M of
agents holding money and a fraction (1 — M) of agents with a production
opportunity.

There are two classes of matches that originate trade: a monetary match
and a barter match. In a monetary match, an agent with one unit of money
meets an agent with an opportunity to produce the good that the former
wants. They then decide how much of the good will be exchanged for the
unit of money through a bargaining procedure. In a barter match none of the
agents has money but there is a double coincidence of wants (one agent wants
what the other can produce and vice versa). In this case, traded quantities
are also determined through bargaining.

Assume that u(0) = 0, v/(¢) > 0 and u”(¢q) < 0 for all ¢ > 0 and that
c(0) =0, d(q) >0 and ¢’(¢) > 0 for ¢ > 0 (without loss of generality, I will
assume c(q) = g when convenient). Also assume there is a ¢ > 0 such that
u(@) = c(@)-

Let V4 be the value of being a producer (prior to a match) and V; the value
of holding money (also prior to a match). In a steady-state (non-sunspots)
monetary equilibrium with ¢ < @, (Vp, V1) will satisfy

Vo=Q+M (Vi = Vo —c(Q)) (19)
and

rVi=(1-M) uQ)+V,— Vi, (20)

MFor a good discussion of the general assumptions underlying the structure of the
economy, see Wallace (1997).
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where Q = (1—M) y [u(q*)—c(g*)] is the barter payoff (v'(¢*) = ¢/(¢*)). Note
that from these two equations one can solve for (V;,V3) as functions of @,
the quantity of goods for which a unit of money is exchanged in equilibrium.

When one takes the Nash solution as the bargaining rule for both types
of matches, it is well known (see Shi (1995) and Trejos and Wright (1995))
that this model presents two alternative monetary equilibria, a high price
(1/Q") constrained equilibrium and a low price unconstrained equilibrium.

In this paper, however, I am interested in studying sunspot equilibria and
the implementation of the bargaining rule introduced in Section 2. Shi (1995)
showed the existence of sunspot equilibria in this type of economy following
ideas first developed in Wright (1994). Assume the economy switches from
the high to the low price state, and back, following a Poisson process with
transition rates {7y, Ty s}, where s (s’) indicates that the economy is in the
low (high) price state.

In principle, for a sunspot equilibrium, the value of being a seller or of
being a buyer will depend on the current state of the economy. Hence, one
can show that the value functions are now given by

rVy = Q8 M(VE = V= e(@QY)) + (V' = V), (24)

o

VP = (1—M) [u(@) + Vy — VI + m (Vi = V), (25)

for k,h = 5,5, k # h, and where Q* comes from the payoff in a barter match
in state k. Again note that these value functions are in fact functions of
(Q%,Q*), the inverse of the state contingent equilibrium price level of the
aggregate economy (outside the specific match).

When agents meet in a mutually beneficial match (either barter or mon-
etary), they will bargain over production. As explained in Section 2, these

15The Nash bargaining problem in a monetary match is

max([Vo(Q) + u(@)][V1(Q) — c(q)] (21)

subject to
V1(Q) — c(q) =2 Vo(Q) (22)
Vo(Q) + ulq) = V1(Q) (23)

where @) is the quantity exchanged in monetary trades that predominates in the aggregate
economy, and ¢ is the quantity to be exchanged in this particular match. Restrictions (22)
and (23) are individual rationality constraints for sellers and buyers, respectively. In the
high price constrained equilibrium, restriction (22) is binding.
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negotiations will be influenced by the fact that agents know that the econ-
omy is switching states over time and that the current state is probably only
temporary.

Consider first a barter match. Define

JP=Ve = Vg @) —ule) — (c(gf) — e(q])), (26)

fori,j = 1,2; 1 # j and ¢; as the quantity agent ¢ acquires from the match.
In this case, equation (5) in state s takes the form

s s S Tss! s 1 1 s S s Tss! S
[VE) +U(Qz>_c(q])+ r Jz]u/(qf) = C/(qf)[% +U(QJ)_C(qZ>+TJj]7
(27)

for 7,7 = 1,2; ¢ # j. A similar pair of equations determine the quantities
traded in a barter match when the state of the economy is s'.

Claim 7 For small enough transition rates [wsg, Ty s, barter quantities traded
are independent of sunspots.

Proof. See Appendix 6.2.' =

From the above Claim one can conclude that Q° = Q' = (1 — M) y
[u(q*) — ¢(q")], as in the nonsunspots equilibria.

For the monetary match, agents bargain only over the quantity of the
good that will be changed for the indivisible unit of money in the trade
arrangement. Then, equation (5) in this case takes the form

Y+ ule?) + T2 (VF - u(a) = W = ()]s =
= C/(lqk;) [Vlk - C(qk) + % (Vlk - C(qk) - Vll + C(ql>)]> (28)

k,l = s,s';k # . Therefore, the results of the bargaining procedure will be
given by the solution to (28) subject to V¥ —c(¢*) > V¥ and V¥ +u(q¢¥) > V¥,
k = s,s'. It can be easily shown that the latter constraint is binding only

16 At the intuitive level, this turns out to be a natural result. Even when sunspots
matter, if two agents meet with a double coincidence of wants, they constitute identical
sides in a negotiation process and one would expect them to obtain identical payoff.
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when the former is. So, in order to track a solution to the bargaining problem
only the sellers’ constraint (the agent with the production opportunity) is
relevant. Finally, note that a version of (7) holds in the constrained situation
(see the third Remark at the end of Section 2).

Define A;?'S = Vjsl -V = —Aj-sl, j = 0,1 (these are functions of the
equilibrium price levels (Q°*, Q%)) and T(Q) = [(r + M)(1 — M)u(Q) —
Oc(Q) v (Q)—[Pu(Q)— M (r+1—M)e(Q)]d(Q) with & = r(1+r)+M(1—M).
Consider the following system of equations (a reformulation of the equilib-
rium versions for (28)),

T:(Q%Q) = T@")+I[(1 - Mu(Q) — (1+r— M7 @Q)(Q+mads) +

+[(r + M)u (Q*) — M (QF)|mu AT +
+Hu (QF) (c(@Y) — c(@Q%) — AF) — (29)
— ¢ (Q") (w(@QF) — u(@") — A1+ r)mw

with k,1 = s,5"; k # [. When there are no sunspots and no barter possibilities
(Q = 0) the equilibrium values of @) are given by solutions to T(Q) = 0
(there is a unique monetary equilibrium in this case, see Shi (1995) and
Trejos and Wright (1995)). In the case with barter (€2 > 0) and no sunspots,
there are two monetary equilibria, one low price unconstrained equilibrium
that solves T;(Q,Q) = 0, and a high price constrained equilibrium that
satisfies the seller’s rationality constraint with equality. Clearly, for values of
{mss, Tsrs} small enough, a sunspot equilibrium can exist switching from the
constrained to the unconstrained equilibrium (this is essentially the result of
the existence proof in Shi (1995)). When agents act myopically during the
bargaining process (the traditional Nash solution applies), the last term in
the RHS of equation (29) disappears and the rest of the analysis proceeds in
the same manner. In general, one would like to identify in this last term the
same type of effect that we observed in the two previous examples when the
‘sophisticated’ formulae (5) were used to obtain the bargaining outcomes. In
this model, one should expect that in the low price state s, the agent holding
a unit of money in the match will be eager to close the deal. Therefore,
she would get relatively lower quantities in equilibrium (relatively smaller Q*
than when using the myopic rule). These would require the last term in (29)
to be negative. Although this cannot be shown in general, Q® being close
enough to ¢* will guaranty the result.!” In the following example, we present

1"The buyer fear that with certain probability the economy will switch to the low quan-
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a situation where ‘sophisticated’ bargaining does lower the value of money
in the low price state (as it would be expected).

Example 8 Let u(Q) = 203, M = %, y = 0.2 and, r = 0.01. Also let w4y =
wes = 0.05. Note that ¢* = 1 and, therefore, 2 = 0.1. In this economy, there
exist two nonsunspot monetary equilibria, with the equilibrium quantities for
the monetary matches given by QQ; = 0.011172 in the constrained equilibrium
and Q) = 0.9051 in the unconstrained one. Note that both quantities are
ex-post Pareto inefficient because g = argmaxg V,(Q, Q) = 0.9611.'® There
s also a sunspot equilibrium with (QS,QS') = (0.6365,0.002880) . The last
term of (29) in the low price state s is given by

[ (Q°) (c(QS') —o(Q®) — A;'s) _
= (@) (u@) ~ u(Q”) = AF")I(1 4 1)me = —0.0360357,

negative, as conjectured before. The quantities for the sunspot equilibrium
with myopic bargaining are (QS,QS/> = (0.8582,0.001742) , which reflects
the fact that the buyer obtains lower quantities in state s if she recognizes the

possibility that the sunspot state might change while she is already engaged
i the bargaining process.

As a final comment, note that the nature of the system given by equations
(29) opens up the possibility for other sunspot equilibria.?

tity state s’, lowering the value of money and causing her a capital loss. This press for the
quantities traded to go down. However, under certain conditions, the seller also experience
a net loss from a switch to state s, because to get any positive payoff she has to become
a buyer, and when the economy switches to the low quantity state, this potential future
payoff also reduces. However, note that this type of loss is suffered by both sellers and
buyers, and then it is their relative weight, given by the values of «/(Q*) and ¢'(Q*), what
determines the effect over quantities.

18For the implications of this see Ennis (1998).

YPerhaps this potentially highly nonlinear system in the space (Q°, QS,) has, for exam-
ple, three solutions (it is reflexive to the 45° line) in the area for unconstrained quantities.
Then one can construct a sunspot equilibrium with two of the unconstrained quantities.
Though this is yet to be studied, the example just discussed shows that for this to happen
the utility and cost functions have to have certain specific nonlinerarity properties (not
present in that example).
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4 Conclusion

I develop here a formula for the limiting solution to the alternating-offers bar-
gaining game (as the time interval between offers goes to zero) in an economy
subject to a specific type of stochastic dynamics. The aggregate state vari-
able follows a Poisson process defined over a finite set of possible values. The
formula is relatively simple and intuitive. Although this “sophisticated” so-
lution has strong similarities with the traditional Nash bargaining, there are
important differences. Mainly, we have that as agents anticipate the switch
of states, they modify their reservation values for the closure of a deal during
negotiation. This in turn alters the final outcome from the game.

To suggest the broad applicability of these results, I present a set of ex-
amples of economies for which this bargaining rule applies. In particular, a
great deal of effort is dedicated to demonstrate the implications of this novel
solution concept in decentralized exchange economies in which aggregate vari-
ables are not sticky in that they can jump while sunspots realizations serve
to coordinate agents among possible equilibrium outcomes. It is clear from
the exposition that sunspot equilibrium is only one of the many possible ap-
plications of this (sophisticated) bargaining solution concept. In fact, shocks
to fundamentals that follow the specified stochastic dynamics can be han-
dle -with a slight modification in our formula- to determine the equilibrium
bargaining outcomes.

As a first example of how important the new bargaining solution may be
we present a benchmark case, the traditional ‘splitting-the-cake’ problem. In
that case, when the size of the cake is relatively small and there is a given
probability that it will get larger in the near future, the impatient agent gets
a smaller share from negotiations. This example is primarily partial equilib-
rium and the uncertainty over the size of the cake is exogenously assumed
(and in a way, purely intrinsic).

In the third section of the paper we present a pair of fully specified
economies where agents get matched and bargain over splitting a surplus
that they jointly generate. For the first application, I introduced a complete
economy with bilateral production matching and wage bargaining. In this
economy, a trade externality generates the possibility of sunspot equilibria
due to a coordination failure. One of the main ideas illustrated by this ap-
plication is that the effect of sunspots over bargaining strongly depends on
the agents’ relative positions in the match. If both agents are symmetric
in other ways, then differences in discount factors play a very important
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role. In particular, when the discount rates are the same (so that agents
have equivalent bargaining power), the bargaining outcomes are immune to
sunspots and the sunspot equilibria are trivial randomizations over certainty
equilibria. However, when the discount rates differ, similar conclusions to
those in the ‘spliting-the-cake’ problem are reached. For example, if workers
are more impatient than entrepreneurs, one predicts that lower wage bills
as a proportion of income obtain during slumps in anticipation of sunspot
dynamics.

When agents have asymmetric positions in the bargaining match, the
implications of the theory are less apparent, but still consequential. The
second application in the paper is an attempt to handle one of these cases.
It consists of a monetary random matching economy with bargaining and
sunspots. The bargaining solution method proposed in the paper is applied
to this example in an effort to shed new light on the possible effects upon
state prices of the existence of sunspot fluctuations. Two types of matches
need consideration in this case, barter matches (double-coincidence of wants
and no money) and monetary matches (single coincidence of wants with
one sided money). Again, the players’ relative position for negotiation is
determinant. It is shown that in the barter match, where agents have very
symmetric positions, sunspots do not alter the bargaining solution. However,
in monetary matches agents are fundamentally different (one is a seller and
the other is a buyer), and this situation, the value of money in the low-
price equilibrium outcome is reduced by the consideration of ‘sophisticated’
forward-looking bargainers (due to potential capital losses associated with
delays).
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6 Appendix

6.1.- In what follows, it is shown that h*(A) = z5(A) — Z5(A) converges to
zero at rate A as A approaches zero. First note that from (1),

uy (73:0,) — ur (T3 0,) = —Aruy (T3 0,) + Amew[ur (T3 O5) — uy (T5: ©,)].
(30)

Clearly, from this expression, we have
1 (27; ©5) — un (73; 05) — 0 (31)

as A — 0. Since u;(e;0;) is continuous and strictly increasing, this implies
that we have Z5(A) — Z5(A). As a consequence, h*(A) — 0 as A — 0. It is
not difficult to see that z§ converges (i = 1,2 and s = s,, s5). Then, by the
continuity of u; again,

lim i = —rui(T% 0,) 4 Tew[ur (F%:04) — ul (Z°; O,)]

= 7 eR (32)

We also know that

I ur (T3 + h¥(A); ©5) — up (T5; O5)
im
hs(A)—0 hs(A)

=71 €R (33)

because uy(e;Oy) is differentiable. Finally, since h*(A) is a continuous func-
tion of A, we can write

ur (T35 + h°(A); O5) —ur (T5;05) A

Ao, A ne(A) -~ (34)
Substituting (32) in (34), we get
Y1 EI—I}O hs(A) =72 (35)

which says that h*(A) = O(A).
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6.2.-

Claim 9 For small enough transition rates {msy, g5}, barter quantities traded
are sunspot independent.

Proof. Let ¢* solve u'(¢*)/c/(¢*) = 1. Note that if ¢f = ¢, k = s, s/, then
J; =0, 1=1,2, and equations (27) become the traditional Nash bargaining
rule with the unique solution ¢*. Then, it suffices to show that we have
qf = ¢ with k = 5,5’ and small enough transition rates. Suppose not,
suppose without loss of generality that we have ¢} < ¢& for some k and every
possible 7. From (27) we have,

u'(qr)  C(dh)

c(qr)  '(g5)

Now, since qf < g5, u(qt) — c(¢5) < u(qh) — c(¢F), and we have for small
enough my that u(gf) —c(g3) + (M /1) < u(gs) —c(gr) + (T /7)J3 then
we have £ < 1. Also, since u/(q})/c'(¢¥) = £ < 1 implies ¢¥ > ¢* and, since
(g5 /' (¢5) = € < 1 implies ¢§ < ¢*, we have that ¢f > ¢&; which is a
contradiction. Hence ¢f = ¢& = ¢* for k = s, s’, which means that barter
trades are independent of sunspots. m

—¢ (36)
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