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1 Introduction

Extinction of biological species is an important ecological concern of the
current age. Extinction is likely whenever a renewable resource is harvested
persistently at a rate exceeding the level required to sustain its current stock.
The economics of extinction relates the depletion of resources to economic
incentives that affect harvesting. Traditionally, economists have related over-
exploitation of resources to failures of markets and property rights. However,
even if such failures are corrected and society “manages” its resources op-
timally; the nature of intertemporal trade-offs between current and future
welfare that a society is willing to make can lead to eventual extinction.
It is important to understand the way in which intertemporal preferences
of society and the biological growth of resources interact to determine the
possibility of extinction and conservation for an optimally managed resource.

One important factor here is the sensitivity of biological growth to random
environmental fluctuations and the fact that persistent adverse environmen-
tal shocks can severely deplete resource stocks. Such environmental uncer-
tainty also affects the incentive to harvest a resource. The nature of human
exploitation and its effect on the dynamics of biological populations when
the growth process of species is subject to random environmental shocks is
not very well understood. In this paper we undertake a systematic study of
this issue, while keeping our framework of analysis fairly general, so that our
results can be applied to a variety of models, which can be reduced to our
framework.

We begin by considering a framework (in Section 2) in which the resource
stock evolves stochastically according to a Markov process with a given tran-
sition law. While we do place some structure on the transition function to
help us reach concrete results with respect to extinction and conservation
scenarios, this structure is in a sense minimal. In particular, we allow for
discontinuities in the transition function. The obvious application one has
in mind is where the transition function is derived from a dynamic opti-
mization problem, which seeks to maximize the expected discounted sum of
returns from exploitation of the resource over an infinite horizon. However,
the framework can also be applied to settings, where the harvest of the re-
source is obtained competitively by a demand and a supply function of the
resource, the latter being determined by the cost of harvesting.

In the above framework, we identify conditions under which the following
three scenarios occur: (i) the resource becomes extinct (with probability one)
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starting from all positive initial stocks; (ii) the resource is conserved (with
probability one) from all positive initial stocks; (iii) there is a positive re-
source stock (called a safe standard of conservation) such that, starting from
all higher stocks, the resource is conserved (with probability one). Further,
these are the only scenarios that can arise in this framework in the long-run.

In particular, the condition that we specify for extinction from all ini-
tial stocks is very tight. It is obvious that if, independent of current level,
the resource stock size is not sustainable even under the best environmental
circumstance, then stocks must eventually decline to zero. We show that
extinction occurs globally under a much weaker condition, namely, when the
transition function is such that the resource stock size is not sustainable under
the worst environmental shock. The possibility of sustainability or growth
under better environmental shocks does not in any way alter the eventual
destiny of species in such situations. Further, this is a necessary condition
for global extinction in the sense that if there is a positive stock size from
which the resource is sustained under the worst environmental shock, then
that stock is a safe standard of conservation. The implication is that in a
stochastic model, the possibility of extinction is almost entirely determined
by the way in which resource stocks evolve under the worst environmental
circumstance.

The relevant existing literature, where conditions for extinction or non-
extinction are specified on the Markov transition function is relatively small.
In a stochastic growth model, Mirman (1972) outlined sufficient conditions
to rule out the possibility of extinction. Boylan (1976) pointed out that
these conditions were contradictory. A revised set of conditions specified by
Boylan (1979) are very restrictive in our setting because they require the next
period’s stock to be both increasing and concave in current stock.1 A more
useful set of conditions on the transition function under which a stochastic
process of the kind considered in our paper converges to zero with probability
one is contained in Athreya (2002). All of these papers impose continuity
and other conditions on the class of admissible transition functions that are
more restrictive than in our framework.

In Sections 3 and 4, we explore a model of optimal resource management
by using the methods of stochastic dynamic programming. The return func-

1In an economic model of optimal resource harvesting, concavity of the transition func-
tion can be ensured if the natural growth function as well as the optimal investment rule
are shown to be concave functions of the current stock. However, concavity is an unlikely
property of the optimal investment rule except in very special examples.
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tion in the optimization exercise (the net welfare function) depends on the
harvest of the resource. We deliberately exclude conservation motives from
directly entering the return function, so that we may distinguish cases in
which the pursuit of “self-interest” does indeed lead to extinction from cases
in which it does not. The biological production function and the optimal
investment policy determine the transition function governing the stochas-
tic evolution of the resource stock. We apply the results of Section 2 to
this transition function to determine conditions on the primitives of the op-
timization problem, under which global extinction, global conservation and
the existence of a safe standard of conservation will arise.

Beginning with Clark (1973), much of the analysis of the economics of
optimal extinction and conservation of renewable resources has been carried
out in deterministic models. The conventional wisdom from this literature
suggests that stocks of an optimally managed resource ought to be bounded
away from zero as long as the resource has an intrinsic growth rate2 exceeding
the rate at which society discounts the future; extinction is optimal if the re-
source is less productive than the discount rate.3 However, when the natural
growth of the resource is stochastic, comparing productivity of the resource
to the discount rate is no longer sufficient to characterize the possibility of
extinction. Indeed, optimal stocks may be arbitrarily close to zero no matter
how productive the resource is.4

One of the salient features of the natural growth of many species is that
the productivity or biological growth rate is low from small stocks, but it
increases as the stock becomes larger, though eventually the growth rate
diminishes as the environmental carrying capacity is approached. There-
fore, the biological growth or production function in a model of optimal
renewable resource management is typically non-concave (such as S-shaped).
Our model of optimal resource management analyzed is, in fact, identical to
a one-sector stochastic optimal growth model with non-concave production
function.5 However, while economic growth models focus on the existence,

2The intrinsic growth rate refers to the productivity of the resource at zero.
3If the intrinsic growth rate of the resource is less than the discount rate, then extinction

is optimal from small stocks. If the resource is globally less productive than the discount
rate, global extinction is optimal. See, among others, Lewis and Schmalensee (1979),
Majumdar and Mitra (1982, 1983), Dechert and Nishimura (1983) and Cropper (1988).

4In the literature on optimal stochastic growth, Mirman and Zilcha (1976) showed that
optimal stocks may not be bounded away from zero even though the production function
has infinite slope at zero (that is, the intrinsic growth rate is infinite).

5The literature on stochastic optimal growth (Brock and Mirman (1972)) typically
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uniqueness and stability of a non-trivial invariant distribution for capital
stocks, our focus is on the phenomenon of extinction; that is, whether the
stocks approach zero over time and the probability with which this event
occurs.6

The existing literature on the problem of characterizing extinction and
non-extinction in terms of verifiable properties of the primitives of the dy-
namic optimization problem (intertemporal preferences and the biological
growth or production function), is rather small. In models of optimal sto-
chastic growth, the possibility of extinction has been ruled out by imposing
the condition that the slope of the production function be infinite at zero and
also that there be a strictly positive probability mass on the “worst” realiza-
tion of the random shock.7 For most biological species, the rate of natural
growth is rather small when the stock depletes to a level close enough to
zero8 and the assumption of infinite growth rate at zero is not very well
suited to our purpose. In this paper, we do not impose Inada conditions
on the production function and the probability distribution of the random
shock is non-atomic. We show that the net welfare from harvesting plays an
important role in the conditions for ruling out extinction. In general, our
conditions are much tighter than in the existing stochastic growth literature.

In the literature on renewable resource management under uncertainty9,
there is no general analysis of conditions for extinction that can be verified
from information about the natural growth of the resource and the net welfare
from harvesting. Reed (1974) provides sufficient conditions for conservation
in a model where an (s,S) investment policy is optimal. When there are no

assumes that the production function is concave. For an analysis of the problem of sto-
chastic optimal growth in a framework that allows for a non-concave production function,
see Majumdar, Mitra and Nyarko (1989).

6From the perspective of economic growth theory, our analysis is relevant to the ques-
tion of existence and nature of poverty traps in a non-convex economy (even when it is
on its first-best path). From a methodological standpoint, it is worth noting that in es-
tablishing global stability of invariant distributions, models of economic growth impose
fairly strong conditions to ensure that the capital stocks are bounded away from zero. The
conditions for avoidance of extinction in our analysis are significantly weaker and suggest
that convergence results in stochastic growth models may be obtained for a wider class of
production functions.

7See, among others, Brock and Mirman (1972), Mirman and Zilcha (1975) and Ma-
jumdar, Mitra and Nyarko (1989).

8See, for example, Clark (1990), and the references cited in his book.
9See, Lewis (1981) and Clark (1990).
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fixed costs, these conditions assume that welfare is linear in consumption and
that the resource growth function is strictly concave. Specialized models of
a similar kind (with specific parametric form) are analyzed by Lande, Engen
and Saether (1994) and Alvarez and Shepp (1998).10 The linearity in con-
sumption of the welfare function in these models implies that the conditions
for conservation are solely determined by the productivity of the resource rel-
ative to the discount rate. As our analysis will establish, this does not hold
under more general conditions when the net welfare function is non-linear.
A more general analysis of the conditions for conservation in a model where
the utility function depends on both consumption as well as resource stock is
contained in Olson and Roy (2000); the condition for conservation provided
in our model can be viewed as special case of that paper when the marginal
utility from resource stock is zero. However, there is no analysis of conditions
for extinction in that paper.

From a technical point of view, our analysis is rendered difficult because of
the simultaneous presence of uncertainty (the random environmental shocks)
and non-concavities in the production (or biological growth) function of the
resource. Results for the corresponding non-stochastic model, as well as
the corresponding stochastic model with concave production function, are
compared to our results at various points in Section 4.

All proofs are collected in the final section (Section 5).

2 General Results on Conservation and Ex-

tinction

In this section, we characterize the possibilities of extinction and conserva-
tion of a renewable resource, whose evolution over time is governed by a
given time stationary law of motion. This law of motion is summarized by a
transition function defining the relationship between resource stocks in any
two consecutive time periods.

We can think of the transition function as being a composition of two
time-invariant elements: (i) a biological production function which deter-
mines the relationship between the size of the current stock left after harvest
and the stock available in the next period; and (ii) a rule which determines

10Alvarez (1998) analyzes possibility of immediate extinction in a framework where
eventual extinction occurs almost surely even if the resource is not harvested.
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the size of the stock which is left (after harvest) for reproduction and growth,
given the current stock, which we refer to as an investment function. While
the first element reflects a “technology” determined by nature, the second
element is determined by human beings exploiting the resource.

The second element can be determined in various ways, depending on
how human behavior is modeled. In the next section, we will follow standard
practice and model this human behavior as arising from the solution of a
stochastic dynamic optimization problem, in which the expected discounted
sum of utilities is maximized subject to feasibility constraints. This will allow
us to see the influence of the various parameters of the dynamic optimization
problem on the nature of the investment function, and therefore the transi-
tion law, and help us to evaluate the role of these parameters in alternative
extinction/conservation scenarios for the renewable resource.

In this section, however, we are not concerned about how human behavior
is modeled. We wish to focus here purely on the relationship between the
nature of a given transition function governing the evolution of a renewable
resource, and the probability of survival or extinction of that resource.

2.1 The Transition Function

The arguments of the transition function are the stock of the resource and a
random shock to the environment. We model the latter in the following way.
We will suppose that the random shock can be represented by a real number
in the interval I = [a, b], where 0 < a < b < ∞. The law governing this shock
(initially) will be represented by a distribution, µ, with support [a, b].

One needs to specify how shocks in the future will be related to this
initial shock; we will make the fairly standard assumption that the shocks
are independent and identically distributed. To do this formally, let Ω be the
space of all infinite sequences (ω1, ω2, . . .) where ωt∈ [a, b] for t ∈ N. Denote
by B the collection of Borel subsets of [a, b]. Let F be the σ-algebra generated
by cylinder sets of the form

∏∞

n=1An, whereAn ∈ B for all n ∈ N, andAn = I
for all but a finite number of values of n. For each t ∈ N, denote by Ft the
σ-algebra generated by cylinder sets of the form

∏∞

n=1An, where An ∈ B for
all n ∈ N, and An = I for all n ≥ t + 1. Let P be the product measure
over F generated by the probability distribution µ over [a, b]. This defines a
probability space (Ω,F, P ). Next, define the projection rt (ω) = ωt for t ∈ N.
Then {rt}

∞

1 is a sequence of independent and identically distributed random
variables on (Ω,F , P ).
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The stock of the resource will be the biomass of the particular species
whose evolution we are studying. It will be represented by a non-negative
real number, y. Thus, Y ≡ R+ will be the space of the resource stock.

The transition function is a function G : Y × I → Y ; thus, G(y, r)
defines the stock next period, when the current period stock is y, and r is
the realization of the environmental shock. The following assumptions on G
will be used in this section:

(G.1) G(0, r) = 0 for all r ∈ I.
(G.2) α ≡ limy→∞[G(y, b)/y] exists, and α < 1.
(G.3) G is non-decreasing in y and r.
In studying extinction and survival issues, (G.1) is a natural assumption

to make. Assumption (G.2) reflects the fact that there is a maximum car-
rying capacity of the ecosystem, so that very high resource stocks cannot be
sustained. Note that (G.2) implies that G(y, b) < b for all y large enough.
We define:

K = inf{z ∈ Y : G(y, b) < y for all y ∈ (z,∞)} (2.1)

Then, we have G(y, b) < y for all y ∈ (K,∞).
Assumption (G.3) requires that for any specific realization of the random

shock, the stock next period is non-decreasing in the size of the current stock.
The transition function satisfies this restriction if the production function is
non-decreasing in the size of the investment, and the investment function
is non-decreasing in the current stock. The latter is a behavioral property
found in a wide class of bio-economic models of resource extraction. Further,
(G.3) requires that G(·, r) is weakly ordered according to r.

Associated with G are two functions,m : Y → Y andM : Y → Y, defined
by:

m(y) = G(y, a) for y ∈ Y
M (y) = G(y, b) for y ∈ Y

}
(2.2)

Given assumption (G.3), it is legitimate to refer to M as the best transition
function and to m as the worst transition function.

In contrast to the above assumptions on the transition function, which are
fairly standard, we need to impose the following technical condition on the
transition function for our subsequent analysis (which is not so standard):

(G.4) For any y > 0, µ{r ∈ I : G(y, r) > G(y, a)} = 1. Further, for every
y1, y2, satisfying 0 < y1 < y2 < ∞,

sup
y∈[y1,y2]

[G(y, r)−G(y, a)] → 0 as r ↓ a
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Assumption (G.4) imposes two restrictions. First, from any positive stock y,
the event that the stock next period is exactly equal to that corresponding
to the worst transition G(y, a), has zero probability. This would always
be satisfied if G(y, r) is strictly increasing in r for each y > 0, and µ is
absolutely continuous with positive density on [a, b]. Second, it requires that
as r decreases to a, the functions G(y, r) converge to G(y, a) uniformly in y
on any positive closed interval of stocks. If there is a function, g : Y → Y,
such that G(y, r) = rg(y) for all (y, r) ∈ Y × I (that is, the random shock is
multiplicative), then g is non-decreasing in y (by (G.3)), and so:

sup
y∈[y1 ,y2]

[G(y, r)−G(y, a)] = (r − a)g(y2) → 0 as r ↓ a

We state an immediate implication of (G.4), which will be useful in our
subsequent analysis.

Lemma 1 Let 0 < p < p′ < ∞ be given, and suppose that:

d ≡ sup{G(y, a)/y : y ∈ [p, p′]} < 1

Then there exist λ ∈ (0, (b− a)) and θ ∈ (0,1) such that:

G(y, r) < θy for all r ∈ [a, a+ λ] and all y ∈ [p, p′]

Let us note that we do not require the transition function to be continuous
in y. Even if the production function is continuous, there are many circum-
stances in which the investment rule need not be continuous in the stock
level.11 Also, observe that we do not put any restriction on the slope of the
transition function at zero stock (other than requiring it to be non-negative).

The transition function G defines a stochastic process, which is the prin-
cipal object of our study. Given any initial stock y > 0, we will be concerned
with the stochastic process {yt(y, ω)}, where yt(y, ω) is Ft measurable for all
t ∈ N, and :

(i)y1(y, ω) = G(y, ω1)
(ii)yt+1(y, ω) = G(yt(y, ω), ωt+1) for t ∈ N

}
(2.3)

11In particular, in the non-convex dynamic optimization problem which we analyze in
the next section, the optimal dynamic investment rule is not necessarily continuous in the
current stock.
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2.2 Concepts of Extinction and Conservation

Extinction needs to be defined in a way so as to encompass the event that
the resource stock is reduced to zero in finite time as well as the event that
the stocks, while never being actually reduced to zero, become arbitrarily
small over time. The latter possibility can occur in two ways. First, the
stocks may actually converge to zero over time. Second, the stocks may get
arbitrarily close to zero but need not actually converge to a limit stock. We
adopt the second concept of extinction, which clearly has broader scope.

Formally, extinction is said to occur from an initial stock y > 0, given a
realization ω ∈ Ω, if:

lim inf
t≥0

yt(y, ω) = 0 (2.4)

Conservation is said to occur from an initial stock y > 0, given a realization
ω ∈ Ω if:

lim inf
t≥0

yt(y, ω) > 0 (2.5)

Since our concept of extinction is broad, the corresponding concept of conser-
vation (which is defined as the complement of extinction) is strong, requiring
resource stocks to be bounded away from zero.

Both concepts are defined given a realization of a sequence of random
shocks. A natural object of interest is the probability of the set of realizations
of the sequence of random shocks for which extinction or conservation occur,
starting from a given stock of the resource. This leads to the following
definitions.

Extinction is said to occur from an initial stock y > 0 if:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) = 0} = 1 (2.6)

Similarly, conservation is said to occur from an initial stock y > 0 if:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > 0} = 1 (2.7)

Note that these are strong definitions of extinction (conservation), requring
that the event of extinction (conservation) possibilities occurs almost surely.
Thus, logically, it would appear that there are many intermediate cases,
in which the event of extinction (conservation) possibilities has a positive
probability less than one. We will see that the actual set of intermediate
cases that the model generates is not as large as one might initially suppose.
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The concepts of conservation and extinction defined above relate to the
long-run behavior of the resource starting from a given initial stock y >
0. It is of interest to know in what scenarios the possibility of extinction
(conservation) is independent of the initial stock. Thus, it is useful to define
the concepts of global extinction (conservation).

Global extinction (conservation) is said to occur if extinction (conserva-
tion) occurs from all initial stocks y > 0. Under global extinction, conserva-
tion is impossible no matter how large the current stock of the resource. On
the other hand, in a situation of global conservation, the resource is globally
safe from extinction.

A weaker form of conservation of interest (compared to global conserva-
tion) is one where conservation is guaranteed only if the intial stock exceeds a
certain positive stock, which may be called a “safe standard of conservation”.
A stock y∗ > 0 is said to be a safe standard of conservation if:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > 0} = 1

for all y > y∗.12

In what follows, we establish conditions on the transition function which
lead to (i) global extinction, (ii) global conservation; (iii) the existence of
a safe standard. We argue later that in our framework, these are the only
possible scenarios.

2.3 Conditions for Extinction and Conservation

Clearly, if the best transition function lies below the 45-degree line (that is
M(y) < y for all y > 0 ), then we will have global extinction of the resource.
In this subsection, our primary interest is in identifying conditions weaker
than this which still lead to extinction.

In the stochastic setting of our model, even if the transition function is
such that the resource stocks can grow in size under better environmental
circumstances, runs of bad shocks can reduce the stocks to levels close to zero
infinitely often. One might speculate that the probability with which this
occurs depends on the nature of the transition function during “bad” realiza-
tions of the shock and the way it compares to the transition during “good”

12The reason we do not require conservation from the stock y∗ itself is because we want
to allow for a situation where there is a discontinuity in the transition function at y∗ and
the right-hand limit of the function at y∗ is good enough to guarantee conservation.
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Figure 1: Global Extinction

realizations of the shock as well as the relative weight of these realizations.
The surprising result is that the condition for global extinction depends only
on the worst transition functionm - the behavior of the resource stocks under
better environmental conditions is irrelevant.

More specifically, we show that if the function m lies below the 45-degree
line at all levels of current stock (Figure 1), global extinction occurs. This
reflects the fact that the transition function exhibits “bounded growth” i.e.,
the optimal stocks are bounded above almost surely by K. This means that
if one looks at the stochastic process after any particular date, then for any
neighborhood of zero, there is a finite run of “bad shocks” which can reduce
the resource stock to a level within this neighborhood. Given that the shocks
are i.i.d. and that these bad realizations occur with positive probability in
any period, it can shown that such a finite run occurs almost surely. This, in
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Figure 2: Safe Standard of Conservation

turn, implies that after any finite date, the event that the stocks are bounded
away from zero has zero probability.

On the other hand, if m lies on or above the 45-degree line at some
positive level of stock y∗ (Figure 2), then the stochastic process of resource
stocks starting from any higher initial stock is almost surely higher than y∗

and therefore, almost surely bounded away from zero i.e., we have a safe
standard of conservation.

Proposition 1 (a) Global extinction occurs if and only if:

sup{[m(y)/y] : y ≥ h} < 1 for all h > 0 (2.8)
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(b) There exists a safe standard of conservation if and only if:

sup{[m(y)/y] : y ≥ h} ≥ 1 for some h > 0 (2.9)

Further, if (2.9) holds, then there exists y∗ > 0 such that limy↓y∗ m(y) ≥ y∗

and for all y > y∗ and t ≥ 0, yt(y, ω) ≥ y∗ almost surely.

Next, we consider a stronger scenario of global conservation where the sto-
chastic process of stocks is almost surely bounded away from zero no matter
how small the initial stock. Given the fact that probability of conservation
is non-decreasing in the level of initial stock, it follows that a necessary and
sufficient condition for global conservation is that conservation occurs with
probability one from stocks close to zero. This, in turn, can be ensured if the
transition function is such that for current stocks lying in a neighborhood of
zero, the stock size is sustained even under the worst environmental shock
i.e., the worst transition function m(y) lies on or above the 45-degree line in
a neighborhood of zero (Figure 3).

Proposition 2 Global conservation occurs if there exists η > 0 such that
m(y) ≥ y for all y ∈ (0, η).

Propositions 1 and 2 show that the worst transition function m(y) is the
sole determinant of the nature of conservation/extinction scenarios. Geomet-
rically, the function m(y) (or precisely, its right hand limit at each y) can
exhibit one of only three possibilities:

(i) it lies below the 45-degree line at every positive stock as in Figure 1,
(ii) it lies below the 45-degree line at low stocks but eventually crosses

the 45-degree line as in Figure 2,
(iii) it lies above the 45-degree line in a neighborhood of zero as in Figure

3.
In case (i), we have global extinction. In case (ii) we have the exis-

tence of a safe standard but not necessarily global conservation. In case
(iii), global conservation occurs. The three scenarios - global conservation,
global extinction and existence of safe standard exhaust the list of possi-
ble conservation/extinction scenarios. For example, an outcome where both
conservation and extinction occur with positive probability from all positive
stocks is impossible.

In case (ii) above, it is difficult to provide any characterization of the
probability of conservation from stocks lying below the safe standard. In

14
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particular, it is difficult to rule out the possibility that conservation might
occur with probability one from a stock below a safe standard such as y∗

in Figure 2. This is an important difference between the stochastic and
the deterministic versions of the model. In the deterministic framework,
we can readily identify the smallest positive stock at which the resource is
sustained (where the transition function first crosses the 45-degree line from
below) as the minimum safe standard of conservation because extinction must
necessarily occur from all lower stocks. This does not necessarily hold in the
stochastic model. In the situation depicted in Figure 2, we can only say that
y∗ is a safe standard not necessarily a “minimum” safe standard.

However, there is one special class of transition functions for which the
smallest stock at which the resource is sustained under the worst environ-
mental circumstance is in fact, the minimum safe standard of conservation
as extinction occurs with positive probability from all smaller stocks. This is
the class of transition functions for which, for stocks small enough, the stock
size is not sustainable even if the best shock occurs i.e., M(y) lies below the
45-degree line near zero stock. It is well-known that the biological produc-
tion functions for many species exhibit critical depensation i.e., if the current
stock falls below a critical biomass, the stock of the species can only decrease
over time even if there is no harvesting. Of course, even if the production
function does not exhibit critical depensation, the best transition function
may lie below the 45-degree line in a neighborhood of zero if the propensity
to consume is high enough in that region.

Figure 4 depicts one such situation. Extinction occurs with probability
one from stocks below α as M (y) < y on (0, α). In the figure, β is safe
standard and is, in fact, the smallest positive stock at which the resource
size is sustained with probability one. Observe that for initial stocks lying
between α and β, a finite run of “bad” shocks (close enough to the worst
shock) leads the resource stocks to a level below α from where extinction is
guaranteed. As this run of “bad shocks” has positive measure, extinction
occurs with positive probability from stocks below β.We can say that β is a
minimum safe standard of conservation.

For this class of transition functions, if m(y) < y for all y > 0 (Figure
5), then not only does global extinction occur in the sense that the resource
stocks come arbitrarily close to zero over time but that, in fact, once they
are close enough to zero they decrease in a monotonic fashion to zero i.e., the
stocks converge to 0 with probability one. Further, it can be shown that the
expected time before the resource falls below any ε > 0 is finite. This implies
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that, in particular, the stock size reaches the critical neighborhood of zero
whereM (y) < y in finite expected time and thereafter decreases to zero with
probability one. We summarize these results in the following proposition.

Proposition 3 Suppose that there exists α > 0 such that M (y) < y for all
y ∈ (0, α). Then, the following hold:

(i) If (2.8) holds, then a strong form of global extinction occurs in the
sense that the stocks converge to zero almost surely from all initial stocks
y > 0. Further, for any ε > 0 and τ (y, ω) = inf{t ≥ 0 : yt(y,ω) ≤ ε},
E(τ (y, ω)) < ∞ for all y > 0.

(ii) Suppose (2.9) holds. Let β be defined by:

β = inf{γ > 0 : limy↓γ(m(y)/y) ≥ 1}
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(a) If β > 0, then β is the minimum safe standard of conservation. Extinction
occurs with positive probability from stocks below β (and with probability one
from stocks below α).
(b) If β = 0, then there is global conservation.

Part (i) of Proposition 3 characterizes a class of transition functions for
which stocks converge to zero with probability one. It also ensures two other
properties: (i) for almost every sample path, stocks eventually monotonically
decrease to zero and (ii) stocks fall below any small positive threshold in finite
expected time. We provide below an alternative condition which ensures
that stocks converge to zero with probability one, without.ensuring the two
additional properties just mentioned. The condition puts a bound on an
“average” of the growth rate implied by the transition function.

For every r ∈ [a, b],let λ(r) = sup{G(y,r)
y

: y > 0}. As long as transi-
tion function has a finite slope at zero even under the best environmental
circumstance, λ(r) is a non-negative real valued function.

Proposition 4 Assume that (i) λ(a) > 0 and λ(b) < +∞ and (ii) E[ln(λ(r))] <
0. Then, resource stocks converge to zero almost surely from all initial stocks
y > 0.

Athreya (2002) establishes a sufficient condition for convergence to zero
of a Markov process of the kind used in Proposition 4 above. In our con-
text, his condition reduces to the requirements that (a) for each r ∈ I,
limy↓0[G(y, r)/y] exists and is positive and finite; (b) For each r ∈ I, limy↓0[G(y, r)/y]
> [G(y, r)/y] for all y > 0, and (c) E ln[limy↓0{G(y, r)/y}] < 0.13 It is
easy to check that under these conditions, λ(a) > 0 and λ(b) < +∞ and
E[ln(λ(r))] < 0 so that our conditions in Proposition 4 are satisfied. Ob-
serve that requirement (b) in Athreya’s paper is not satisfied if, for example,
G(y, r) is S-shaped in y for each r; our conditions do allow for S-shaped
transition functions. It is worth noting that the method of proof followed in
Athreya (2002) goes through under our weaker conditions.

The results derived in this section are useful in characterizing the possi-
bilities of conservation and extinction in a wide variety of contexts. In the
rest of this paper, we shall be primarily concerned with the case where the
transition law is determined by the solution to a stochastic dynamic optimiza-
tion problem by a social planner (or a monopoly exploiter) of the resource.

13He also requires continuity of the transition function G(y, r) in y.
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However, there are many other contexts in which the harvesting rule can be
endogenously derived and to which the propositions derived in this section
may be applied to obtain fairly tight characterization of the conditions under
which extinction or conservation occur in these frameworks.14

3 A Framework for Optimal Resource Man-

agement

In this section, we outline a model where a renewable resource is harvested
over time according to the optimal dynamic decisions of a social planner (or
monopoly owner). The planner chooses a sequence of resource consumption
(or investment) in order to maximize the expected discounted sum of (one-
period) social welfare over an infinite horizon given a stochastic production
function which summarizes the biological growth possibilities and a known
distribution of environmental disturbances. The model will be used to answer
a broad normative question: under what conditions is it socially efficient to
conserve a resource and under what conditions is it optimal to harvest the
resource towards extinction? In particular, we characterize the conditions on
the preferences and the production function under which the (endogenously
determined) optimal decisions are such that the transition law for the re-
source stocks meets the conditions for extinction and conservation outlined
in Propositions 1-3.

3.1 Production and Welfare Functions

Time is discrete and is indexed by t = 0, 1, 2, , ...∞. The initial stock of
the resource y0 > 0 is given. At each date t ≥ 0, the current resource
stock yt ∈ R+ is observed and a harvest or consumption level, ct, is chosen.
The remaining stock represents resource investment or escapement, xt =

14One example is of a framework in which the resource is harvested under open access
conditions by price-taking producers, who do not take into account the effect of their
current harvest on the future stock, and whose current cost of harvesting depends on the
stock size. Given the current stock of the resource in any period, and a period demand
function, the static market equilibrium determines the total harvest in each period as a
function of the total stock, which, in combination with the biological production function,
determines the transition function for the resource stocks. See, for example, Mirman and
Spulber (1984).
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yt−ct. The feasible set for consumption and investment is denoted by Γ(y) =
{(x, c)|0 ≤ c, 0 ≤ x, c+ x ≤ y}.

There are random environmental shocks to the production (stock-recruitment)
process of the renewable resource. We model the random shocks exactly as
in Section 2. Let {rt} be an independent and identically distributed random
process defined on (Ω,F , P ), where the marginal distribution is denoted by
µ, and where the support of this distribution is given by the interval [a, b]
with 0 < a < b < ∞.

The biological growth of the resource is governed by a production func-
tion, f : Y × I → Y, that determines the resource stock next period (gross
output) as a function of current investment in the stock and the environmen-
tal shock such that yt+1 = f (xt, rt+1). Resource growth net of investment in
the stock is given by f(x, ρ)−x. The resource production or growth function
is assumed to satisfy the following:

(T.1) For all r, f (x, r) is strictly increasing in x; for all x, f (x, r) is non-
decreasing in r.

(T.2) For all r, f(0, r) = 0.
(T.3) f(x, r) is continuous in (x, r) on Y × I. For eachr ∈ [a, b], f (x, r) is

continuously differentiable in xon R++.
(T.4) There exists x̄ > 0 such that f(x, b) < x for all x ≥ x̄, and y0 ∈

(0, x̄].
Assumptions T.1-T.3 are standard monotonicity and smoothness restric-

tions on production. Assumption T.4 is a bounded growth restriction typi-
cally associated with a natural carrying capacity for the ecosystem beyond
which the resource stock cannot grow.

The lower bound on the intrinsic growth rate (that is, the marginal prod-
uct at zero investment) is given by the lower right derivative of f, which is
denoted by D+f(0, r) = liminfx↓0f

′(x, r). Define ν = infr∈I [D+f (0, r)] to be
the lower bound on the intrinsic growth rate over all possible realizations of
the random shock. We assume

(T.5) ν > 0.
Assumption T.5 ensures that the marginal product is bounded away from

zero no matter how small the investment in the resource stock. It allows for
cases of critical depensation where the resource production function is not
capable of replacing investment from small stocks; that is, f(x, r) < x almost
surely for x close to zero in which case extinction is inevitable from small
stocks even if the resource is never harvested. Of course, T.5 also encompasses
cases where the resource is productive enough to sustain itself in the absence
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of harvesting.
We make no assumption about the concavity of the production function

in general. Typically, biological resources are likely to exhibit low “pro-
ductivity” or growth rate when the biomass is small and it is likely to in-
crease as the biomass expands. That is, the production function is likely
to be convex at low levels of investment; as the resource exhibits bounded
growth it is reasonable to assume that eventually diminishing returns must
set in. For each r ∈ [a, b], let S(r) = {x̂ ≥ 0 : [f(x̂, r)/x̂] ≥ [f(x, r)/x]
for all x ≥ 0},if lim infx↓0[f (x, r)/x] < ∞; otherwise, let S(r) = {0}. Define
x̂(r) = sup{x : x ∈ S(r)}.Thus, x̂(r) is the highest investment among the set
of investments that maximize average productivity corresponding to realiza-
tion r of the random shock. In the special case of multiplicative shock, x̂(r)
is identical for all r. We assume that:

(T.6) For each r ∈ [a, b], f(x, r) is concave in x on [x̂(r),∞).
Define x̂ = supr x̂(r). If x̂ > 0, then the production function is non-

concave for at least some r. If the production function is concave for all r,
then x̂ = 0.

Figure 6 illustrates a stochastic, non-concave biological production func-
tion that satisfies all the assumptions T.1-T.6.

The existing literature on resource allocation with non-concave produc-
tion focuses on models where the resource growth function is S-shaped and
where the resource can always be sustained from low stocks. The model of
resource growth employed here generalizes these two restrictions. First, as
illustrated in Figure 6, it allows for the possibility of critical depensation
where the resource is incapable of sustaining itself from low stocks. In such
cases, the important question is whether economic efficiency implies conser-
vation of the resource from large stocks. Second, the model in this paper
considers a broader class of growth functions than those that are S-shaped.
Resource growth is allowed to exhibit almost any pattern of increasing and
decreasing returns on the interval [0, x̂(r)].

Finally, we impose a technical restriction on the behavior of the produc-
tion function with respect to changes in realizations of the random shock in
a neighborhood of the lowest shock:

(T.7) For any x > 0, µ{r : f (x, r) > f(x, a)} = 1. Further, for any x1, x2,
with 0 < x1 ≤ x2 < ∞,

sup
x∈[x1,x2]

[f (x, r)− f (x, a)] → 0 as r ↓ a
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T.7 requires that on any positive interval, the production functions corre-
sponding to various realizations of the random shock converge uniformly to
the lowest production function f(x,a). Further, in any period, the proba-
bility that next period’s stock is exactly equal to that obtainable under the
worst production function is zero. This has the effect of putting zero measure
on the worst production function (which is stronger than just putting zero
measure on the worst realization of the random shock). The assumption is
satisfied for the well-known family of production functions which are multi-
plicatively separable in the investment level and the random shock; that is,
are of the form f (x, r) = F (x)K(r), where F is non-decreasing in x and K
is continuous in r.

The net social welfare in each period depends on current consumption
and is denoted by u(c). This welfare function can incorporate consumer and
producer surplus from resource harvests. The objective is to maximize the ex-
pected discounted sum of social welfare over time, where δ ∈ (0, 1) is the dis-
count factor. For a monopolist’s dynamic optimization problem, u(c)would
denote the current profit from from harvest c. The welfare function satisfies
the following restrictions:

(U.1) u is concave on Y.
(U.2) u is twice continuously differentiable on R++.
(U.3) Either there exists a ξ > 0 such that u′(c) > 0 for all c ∈ (0, ξ) and

u′(c) < 0 for all c > ξ, or u′(c) > 0 for all c ∈ R++.
Assumptions (U.1) and (U.2) are standard. Assumption (U.3) is weaker

than the typical assumption in stochastic growth models that u is increasing
over the domain of c. It implies that welfare is either increasing or unimodal
in c; that is, there is a unique strictly positive consumption that maximizes
u. This allows for the possibility that marginal harvest costs might exceed
marginal benefits at large harvest levels so that excessive consumption might
decrease instantaneous welfare. In case u′(c) > 0 for all c ∈ R++, we define
ξ = ∞.

3.2 Value Function and Optimal Policy

In general, the decision-maker in the stochastic environment can take deci-
sions dependent on the history of past states and decisions. To formalize this
decision-making process, we need to start by defining histories.

The partial history at date t is given by ht = (y0, x0, c0, . . . , yt−1, xt−1, ct−1, yt).
A policy π is a sequence {π0, π1, . . .} where πt is a conditional probability
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measure such that πt(Γ(yt)|ht) = 1. A policy is Markovian if for each t, πt

depends only on yt. A Markovian policy is stationary if πt is independent of
t.

Associated with a policy π and an initial state y is an expected discounted
sum of social welfare:

Vπ(y) = E
∞∑
t=0

δtu(ct)

where {ct} is generated by π, f, and Ψ in the obvious manner.
The value function V (y) is defined by:

V (y) = sup{Vπ(y) : π is a policy}

Assumption T.4 ensures that, given any policy π,we have V π(y) < ∞ for all
y > 0. We assume that there exists a policy π such that Vπ(y) > −∞ for
all y > 0.15 Thus, the dynamic optimization problem is well defined and the
value is finite from any initial state.

A policy, π∗, is optimal if Vπ∗(y) ≥ Vπ(y)for all policies π and all y and
Vπ∗(y) = V (y). Standard dynamic programming arguments (see, for example,
Strauch [1966]) imply that there exists an optimal solution such that the value
function satisfies the functional equation:

V (y) = sup
x∈Γ(y)

[u(y − x) + δE[V (f(x, r)]] (3.1)

Further, V is increasing and continuous. Let X(y) be the set of maxi-
mizers of the expression on the right hand side of (3.1). X(y) is an upper-
hemicontinuous correspondence that admits a measurable selection. X(y)
will be referred to as the (stationary) optimal investment correspondence,
while C(y) = y − X(y) will be called the optimal consumption correspon-
dence. The maximum and minimum selections from X(y) are denoted by
Xm(y) = min{x : x ∈ X(y)}, and XM(y) = max{x : x ∈ X(y)}.

It can be shown that the optimal investment correspondence X(y) has
certain monotonicity properties. More precisely, it can be shown that (see,
for example, Majumdar, Mitra and Nyarko (1989), Hopenhayn and Prescott
[1992, Proposition 2]):

15If ν > 1 or u(0) > −∞, then this always holds. If neither of these conditions hold
(a possibility not ruled out by our assumptions), then this can be ensured if the discount
factor is smaller than a critical value that depends on u and ν.
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Lemma 2 Xm(y) and XM(y) are non-decreasing in y on Y.

In Section 2, the conditions for the occurrence of the alternative conser-
vation/extinction scenarios were ones which were directly imposed on the
transition function G and the distribution of the random shocks. When re-
source stocks are optimally managed over time using an optimal investment
function H(y), a measurable selection from X(y), the effective transition
function for resource stocks is given by:

yt(y, ω) = G(yt−1(y, ω), ωt) = f(x(yt−1(y, ω)), ωt) for t ≥ 1 (3.2)

and y0(y, ω) = y.
Our results in Section 2 were derived under the assumption that G(y, r)

is non-decreasing in y and r. From (3.2) it is obvious that this requires not
only that the production function f(x, r) be non-decreasing in x (which is
guaranteed by (T.1)) but also that the optimal investment function H(y)
be non-decreasing in current stock y. While not every measurable selection
from X(y) is monotonic in y, Lemma 2 indicates that Xm(y) and XM(y)
are non-decreasing functions of y. Therefore, if we choose either of these two
functions as the optimal investment function x(y), then G(y, r) = f(H(y), r)
is non-decreasing in y. In fact, it is easy to check that:

Proposition 5 For H(y) = Xm(y) and for H(y) = XM (y), the optimal
transition function G(y, r) = f(H(y), r) satisfies the restrictions (G.1)-(G.4).

Note that the optimal investment correspondence X(y) is upper hemi-
continuous but it does not necessarily admit a continuous selection; in par-
ticular, both Xm(y) and XM(y) may be discontinuous.

In general, the optimal investment and/or consumption need not lie in
the interior of the feasible set. The following lemma outlines a condition
which guarantees that optimal investment in the resource is strictly positive
from all stocks y > 0.

Lemma 3 Assume that for all y > 0,

δ{lim inf
c↓0

u′(c)}E(D+f(0, r)) > u′(y) (3.3)

Then Xm(y) > 0 for all y > 0.
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The condition outlined in this lemma is always satisfied if u′(c) → ∞ as
c → 0. It is also satisfied if the marginal utility of consumption is bounded
above but the technology is delta-productive in expected terms; that is, if
E(D+f(0, r)) > 1/δ. The lemma encompasses the standard Inada condition
used to guarantee interior investment in classical optimal growth models (see,
for example, Brock and Mirman [1972]).

In the classical growth model, the Inada condition also guarantees that
optimal consumption is strictly positive, which our condition does not do.
In fact, in the stochastic non-convex dynamic optimization framework, guar-
anteeing that optimal consumption is strictly positive from all initial stocks
by a general verifiable restriction on technology and preferences requires us
to impose rather strong conditions. If the production function is concave in
input, then an assumption such as u′(c) → ∞ as c → 0 is sufficient to ensure
that optimal consumption is strictly positive; this also holds if the production
function is non-concave but there is no uncertainty. However, it is not known
whether this condition suffices when the technology is both stochastic and
non-convex. For example, Majumdar, Mitra and Nyarko (1989) assume that
u(0) = −∞ in order to ensure that optimal consumption is always positive.

To conclude this subsection, we note that the stochastic Ramsey-Euler
equation holds in case of an interior optimal policy (see Majumdar, Mitra
and Nyarko (1989) for a formal proof).

Lemma 4 Let xt(y,ω) and ct(y, ω) denote the t− th period investment and
consumption respectively under an optimal policy starting from an initial
stock y > 0. If xt(y, ω) > 0 and ct(y, ω) > 0 a.e. ω, for all t ≥ 0, then:

u′(ct(y, ω)) = δE[u′(ct+1(y, ω)f
′(xt(y, ω), ωt+1)|Ft] a.e. ω. (3.4)

4 Extinction and Conservation under Opti-

mal Resource Management

In this section, we outline the conditions on the technology and intertemporal
preferences under which the stochastic process of resource stocks generated
by the optimal dynamic investment policy is characterized by conservation
or extinction. In particular, we examine the conditions which lead to the
three alternative scenarios outlined in Section 2, namely, global conservation,
global extinction and existence of safe standard of conservation.
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4.1 Safe Standard of Conservation

First, we examine the conditions under which there is a safe standard of
conservation. For this purpose, we analyze the stochastic process of optimal
resource stocks when the optimal investment function selected from X(y) is
the lower bound Xm(y). For any initial stock y > 0, consider the sequence of
optimal stocks {yt(y)} defined by y0(y, ω) = y and:

yt(y, ω) = G(yt−1(y,ω), ωt) = f(Xm(yt−1, ω), ωt) for t ≥ 1 (4.1)

In terms of the notation in Section 2, the worst transition functions m(y)
(corresponding to the lowest environmental shock) is given by:

m(y) = G(y, a) = f(Xm(y), a) for y ∈ Y (4.2)

From Proposition 1, a necessary and sufficient condition for the existence
of a safe standard is that sup{(m(y)/y) : y ≥ h} ≥ 1 for some h > 0. In this
sub-section, we will establish conditions which ensure that a slightly stronger
version of (4.2) holds, namely:

m(y) = f(Xm(y), a) ≥ y for some y > 0 (4.3)

Before we go into aspects of the problem that involve intertemporal trade-
offs, there is one class of readily identifiable situations in which conservation
is always efficient: if the marginal utility from consumption is negative when
investment falls below the level needed to replenish the stock to its current
level under the worst productivity shock, then investment by even a myopic
agent will be sufficient to at least replenish the stock. Since an optimizing
agent never consumes more than a myopic one, this ensures that conservation
is efficient.

Proposition 6 Suppose that u′(f (x, a) − x) ≤ 0 for some x > 0, then the
stock f(x, a) is a safe standard of conservation.

Next, we consider situations where the hypothesis of Proposition 6 does
not hold; that is, where marginal welfare from consuming an amount which
allows the stock to be replenished to its current level even under the worst
shock is positive. This is always true if u is a strictly increasing function.
To obtain a tight condition for conservation it is necessary to overcome the
technical difficulties caused by the non-convexity in the feasible set for the
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dynamic optimization problem when the production function is not concave.
Our methodology is to first consider the convexified resource allocation prob-
lem obtained by taking the convex hull of the production possibility set for
each r. Recall the definition of input level x̂ in Section 2; f(x, r) is concave
in x for all x ≥ x̂.We derive a condition that ensures a safe standard of con-
servation for this modified optimization problem, which lies above x̂. This
implies that the optimal investments for the modified problem lie in the con-
vex part of the original production possibility set. This allows us to show
that the safe standard for the modified problem is also a safe standard for
the original problem.

Proposition 7 If there is some x ≥ x̂ such that f(x, a) > x, and:

inf
max(f(x,a)−ξ,0)≤z≤x

δE[
u′(f (x, r)− z)

u′(f (x, a)− z)
f ′(x, r)] > 1 (4.4)

then f (x, a) is a safe standard of conservation.

In the deterministic version of this model with an S-shaped production
function, the condition for existence of a safe standard of conservation is
that at some positive input level, the average productivity of the resource
growth function should exceed the discount rate; that is, the production
function should be delta-productive (see, among others, Majumdar andMitra
(1982), Dechert and Nishimura (1983)). Note that the welfare function plays
no role in this condition for existence of a safe standard. The condition
given in Proposition 7 should be looked at as a modification of this delta-
productivity condition in the stochastic model. The requirement is of the
form δE[Ψ(x, r)f ′(x, r)] > 1 where the term Ψ(x, r) represents welfare effects
involving ratio of marginal utilities from consumption and is directly linked
to the stochastic nature of the model.

The interpretation of the condition in Proposition 7 is as follows. Given
the worst production from some investment level consider a policy that de-
pletes the resource below the original level. If all such policies have a marginal
value of consumption strictly less than the expected discounted marginal
value of investment, then it must be the case that the optimal investment
is one that sustains the stock. Since optimal investment is monotonic in
current stock, the stock is conserved under all productivity shocks and from
any larger initial stock. The fact that the resource production function is
stochastic implies that the marginal value of investment is evaluated over
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all possible realizations of the environmental disturbance. The ratio of the
marginal value of investment to the marginal utility of current consumption
generally differs across states of nature. The welfare effects associated with
Ψ(x, r) represent a lower bound on the ratio of the marginal gain in value
from an increase in investment to the marginal welfare sacrificed by the cor-
responding reduction in current consumption. Thus, unlike the deterministic
case, the welfare function plays a crucial role in determining whether or not
a safe standard exists in the stochastic model.

Note that Ψ(x, r) < 1 for each r > a so that the condition is actu-
ally stronger than requiring that delta-productivity hold in“expected terms”.
This is not surprising once we consider the fact that the condition is designed
to ensure that even under the worst environmental shock, the stock size is
sustained from a certain level onwards.16 Also observe that Ψ(x, r) = 1 if
there is no production uncertainty and in that case the condition in Proposi-
tion 7 simply reduces to the standard delta-productivity condition found in
deterministic models.

4.2 Global Conservation

Now, we examine the conditions under which the resource is conserved from
any initial stock and along any realized path of the random shock. For this
purpose we continue to focus on the optimal policy generated by Xm(y)
and that (4.1) and (4.2) hold. From Proposition 2, we know that global
conservation can be ensured if m(y) ≥ y for all y in some neighborhood
of zero. This requires in particular that f (x, a) ≥ x in a neighborhood of
zero: the resource production function should not be characterized by critical
depensation.

In our analysis of a safe standard of conservation, we were able to obtain
considerable leverage by taking the convex hull of production possibilities and
by studying the modified dynamic optimization problem on a convex feasible
set. This was a fruitful approach because the best hope for finding a safe
standard of conservation is in the region where average productivity of the

16It is not very surprising that in environments where the resource growth is stochastic, it
is not possible to ensure the efficiency of conservation by focusing solely on the productivity
of the resource relative to the discount rate. In a classical stochastic optimal growth model,
Mirman and Zilcha (1976) develop an example where the production function has infinite
marginal product at zero for all realizations of the random shock and yet it is possible
that m(y) < y for all y > 0, and there is no safe standard of conservation.
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resource is maximized. Further, for stocks above this region, and for the class
of resource production functions admissible under T.1-T.7, the convex hull
coincides with the original production possibilities for the resource. Unfortu-
nately, this approach is not useful in analyzing global conservation, because
it requires conservation in a neighborhood of zero, which is precisely where
resource production possibilities are most likely to exhibit non-convexities.

Observe that strictly positive investment is a necessary requirement for
global conservation. The condition given in Lemma 3 in Section 3 is sufficient
for this to occur. Optimal investment may, however, be positive under weaker
conditions and so we shall directly make that assumption.

Proposition 8 Suppose that ν > 1, and that optimal investment Xm(y) >
0 from all initial stock y > 0. Then global conservation is optimal if the
following condition holds:

lim inf
x↓0

δE[
u′(f (x, r)

u′(f (x,a)− x)
f ′(x, r)] > 1 (4.5)

Proposition 8 is the natural analogue of Proposition 7 for stocks approach-
ing zero. The basic idea underlying the condition in Proposition 8 is straight-
forward: if under the worst production shock from stocks close to zero, a
policy that further depletes the stock has a marginal value of consumption
that is strictly less than the (expected discounted) marginal value of zero
investment, then optimal investment must be one that leads to conservation.

In deterministic versions of the model, the condition for global conserva-
tion is typically a requirement that the marginal productivity at zero (the
intrinsic growth rate) exceed the discount rate. One can look at the expres-
sion:

lim inf
x↓0

δE[
u′(f (x, r)

u′(f (x,a)− x)
f ′(x, r)]

as the expected welfare-modified intrinsic growth rate of the specie which
has to exceed the discount rate in order for global conservation to be opti-
mal. Note that the expression above is smaller than the expected marginal
productivity at zero. Therefore, as in the case of the condition for safe stan-
dard, our condition for global conservation is stronger than “expected delta-
productivity”. Finally, note that unlike the condition outlined for existence
of safe standard, for the case where there is no uncertainty, the condition
for global conservation does not reduce to the corresponding condition in the
deterministic version of the model.
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4.3 Global Extinction

In this final subsection, we outline the conditions under which it is optimal
to lead the resource towards extinction from all stocks with probability one.
For this purpose we shall focus on the optimal investment function given by
XM (y), so that our condition would ensure global extinction for any mea-
surable selection from X(y). From Proposition 1, we know that global ex-
tinction occurs if and only if the worst transition function m(y) is such that
sup{(m(y)/y) : y ≥ h} < 1 for all h > 0. The worst transition function will
satisfy this property for any optimal policy selection from X(y) if :

sup{(f(XM(y), a)/y) : y ≥ h} < 1 for all h > 0 (4.6)

In the deterministic version of the model, global extinction occurs if the
marginal productivity of investment never exceeds (1/δ) and in such case,
optimal stocks always converge to zero. In our stochastic version, we will
show that global extinction is optimal whenever the resource is not delta-
productive from any stock in an expected sense. The proof of this result
uses the Ramsey-Euler equation and requires that optimal consumption be
positive. Also observe that if for any x > 0, marginal utility of consuming
an amount [f (x, a) − x] is negative, then as noted in Proposition 6, there
would always be a safe standard of conservation (no matter how severe the
discounting). Therefore, our condition for global extinction will also require
that f(x,a)− x < ξ for all relevant x.

Proposition 9 Suppose that optimal consumption is strictly positive from
all initial stocks below x̄ (that is, XM (y) < y for all y ∈ (0, x̄] ). Suppose,
in addition, that f(x, a) − x < ξ for all x ∈ (0, x̄]. Then, global extinction
occurs along any optimal policy if δE[f ′(x, r)] < 1 for all x ∈ (0, x̄].

In Propositions 7 and 8 we have seen that the sufficient conditions for
conservation in the stochastic model are stronger than the “expected” version
of the conditions for conservation in comparable deterministic models. Thus,
simply requiring the technology to be delta-productive in expected terms is
not sufficient. It is therefore intuitive that the conditions for extinction to
be optimal ought to be weaker than the “expected” version of the conditions
found in deterministic model. Thus, if the resource is never delta-productive
in expected terms (that is, the expected growth rate of the specie is always
lower than the discount rate), then this ought to be sufficient for almost sure
extinction to be efficient from all initial stocks.
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Finally, consider the special case where the production function exhibits
critical depensation; that is, f (x, b) < x for x small enough. This implies that
from current stock levels close enough to zero, it is optimal to decrease the
stocks to zero almost surely. For such a production function, if the hypothesis
of Proposition 9 holds then we have (directly from Proposition 3) that not
only does global extinction occur but optimal stocks always converge to zero
with probability one. Further, optimal stocks fall below any ε > 0 in finite
expected time.

5 Proofs

Proof of Lemma 1:

We are given that:

d = sup{G(y, a)/y : y ∈ [p, p′]} < 1

Choose ζ > 0 and small enough so that (ζ/p) < (1 − d). Given (G.4), there
is λ ∈ (0, (b− a)) such that:

sup{G(y, a+ λ)−G(y, a) : y ∈ [p, p′]} < ζ

so that for all y ∈ [p, p′],

{G(y, a+ λ)−G(y, a)}/y < (ζ/p) < (1− d) (5.1)

Thus, we we have for all y ∈ [p, p′],

G(y, a+ λ)/y = [G(y, a+ λ)−G(y, a)]/y + [G(y, a)/y]

< (ζ/s) + d (5.2)

Using (5.1) and (5.2), we get:

sup{[G(y, a+ λ)/y] : y ∈ [p, p′]} ≤ (ζ/s) + d < 1 (5.3)

Now, choosing θ ∈ (sup{[G(y, a+λ)/y] : y ∈ [p, p′]},1), the lemma is proved.
Proof of Proposition 1:

(a) Suppose that sup{(m(y)/y) : y ≥ h} = sup{G(y, a)/y : y ≥ h} < 1
for all h > 0. We want to show that:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > 0} = 0 for all y > 0 (5.4)
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Under (G.2), it is sufficient to show this for all y ∈ (0,K]. Suppose that there
is some y ∈ (0,K], such that:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > 0} > 0 (5.5)

Then, there is some s > 0 such that:

P{ω ∈ Ω : lim inf
t≥0

yt(y, ω) > s} > 0 (5.6)

Observe that:

{ω ∈ Ω : lim inft≥0 yt(y, ω) > s}
= {ω ∈ Ω : there exists T (ω) <∞ such that
yt(y, ω) > s for all t > T (ω)}
⊂ ∪∞

T=0{ω ∈ Ω : yt(y, ω) > s for all t > T}




Thus, we have:

P{ω ∈ Ω : lim inf t≥0 yt(y, ω) > s}
≤

∑∞

t=0 P{ω ∈ Ω : yt(y, ω) > s for all t > T}

}
(5.7)

We now need to estimate the probabilities appearing in the sum in the
inequality (5.7). By Lemma 1, there are λ ∈ (0, (b− a)) and θ ∈ (0, 1), such
that:

G(y, r) < θy for all r ∈ [a, a+ λ] and all y ∈ [s,K] (5.8)

Let N be the smallest positive integer such that θNK < s. Let A be the
event defined by:

A = {ω ∈ Ω : ∃t ≥ T for which ωt+i ∈ [a, a+ λ] for i = 1, . . . , N}

Observe that on the set A, we have yt+N (K,ω) < s for some t ≥ T. Since
yt(y, ω) ≤ K for almost every ω ∈ Ω for all t ≥ T, we obtain:

P{ω ∈ Ω : ∃t ≥ T for which yt(y, ω) ≤ s}

≥ P{ω ∈ Ω : ∃t ≥ T for which ωt+i ∈ [a, a+ λ] for i = 1, . . . , N}

= 1 (5.9)

the last equality in (5.9) following from the fact that {rt} is a sequence of
iid random variables with marginal distribution µ, and µ{r ∈ [a, a+λ]} > 0.
Thus, we have:

P{ω ∈ Ω : yt(y, ω) > s for all t ≥ T} = 0 for each T ≥ 0
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which implies that the right-hand side of (5.7) is zero. This contradicts (5.6)
and hence (5.5), concluding the proof.

(b) By (a), if there is a safe standard of conservation, then:

sup{(m(y)/y) : y ≥ h} ≥ 1 for some h > 0

To establish the converse, suppose there is some h > 0 such that:

sup{(G(y, a)/y) : y ∈ [h,K]} ≥ 1 (5.10)

We will show that in this case there exists a safe standard of conservation.
Since G is non-decreasing in y, it is easy to check that there are two possibil-
ities: (i) there exists y∗ ≥ h such that G(y∗, a) ≥ y∗ and that for all y > y∗,
G(y, a) ≥ y∗; (ii) G(y, a) < y for all y ≥ h, but there exists y∗ ≥ h such that
limy↓y∗ G(y, a) = y∗, and for all y > y∗, G(y, a) ≥ y∗.

In case (i), consider any y ≥ y∗.We claim that for all t ≥ 0, yt(y, ω) > y∗

for almost every ω ∈ Ω. Clearly, this is true for t = 0.We suppose this is true
for t = 0, . . . , T. Then, we have yT+1(y, ω) = G(yT (y, ω), ωT+1) ≥ G(y∗, a) ≥
y∗ for almost every ω ∈ Ω. This proves our claim by induction, and shows
that y∗ is a safe standard of conservation.

In case (ii), consider any y > y∗.We claim that for all t ≥ 0, yt(y, ω) > y∗

for almost every ω ∈ Ω. Clearly, this is true for t = 0.We suppose this is true
for t = 0, . . . , T. Then, using (G.4) we have yT+1(y,ω) = G(yT (y, ω), ωT+1) >
G(yT (y, ω), a) for almost every ω ∈ Ω. Since yT (y, ω) > y∗ by the induction
hypothesis, G(yT , a) ≥ limy↓y∗ G(y, a) = y∗ (since G is non-decreasing in y
). Thus, we have yT+1(y, ω) > y∗ for almost every ω ∈ Ω. This proves our
claim by induction, and shows that y∗ is a safe standard of conservation.

Proof of Proposition 2:

Since the function m is non-decreasing, we have m(y) > 0 for all y > 0.
This means that for all y > 0, we have yt(y, ω) > 0 for almost every ω ∈ Ω.

Given any initial stock y ≥ η, we claim that for all t ≥ 0, yt(y, ω) ≥ η for
almost every ω ∈ Ω. Clearly, this is true for t = 0. We suppose this is true
for t = 0, . . . , T. Then, since G is non-decreasing in y, we have yT+1(y, ω) =
G(yT (y, ω), ωT+1) ≥ G(η, a) ≥ η for almost every ω ∈ Ω. This proves our
claim by induction.

Given any initial stock y ∈ (0, η), we claim that for all t ≥ 0, yt(y, ω) ≥ y
for almost every ω ∈ Ω. Clearly, this is true for t = 0.We suppose this is true
for t = 0, . . . , T. Then, since G is non-decreasing in y, we have yT+1(y, ω) =
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G(yT (y, ω), ωT+1) ≥ G(y, a) ≥ y for almost every ω ∈ Ω. This proves our
claim by induction.

Using the above two claims, we see that, given any initial stock y > 0, we
have yt(y, ω) ≥ min{y, η} for almost every ω ∈ Ω.

Proof of Proposition 3:

(i) Choose ε in (0, α). It is sufficient to show the result for y ∈ (ε,K],
where K is defined in (2.1). Pick any ȳ ∈ (ε,K]. Since (2.8) holds, using
Proposition 1, we know that global extinction occurs, and hence, we have:

P{ω ∈ Ω : ∃t for which yt(ȳ, ω) ≤ ε} = 1

Also, if yt(ȳ, ω) ≤ ε, then yt+1(ȳ, ω) = G(yt(ȳ, ω), ωt+1) ≤ G(yt(ȳ, ω), b) =
M(yt(ȳ, ω)) < yt(ȳ, ω), and so {yt(ȳ, ω)} must converge. Thus, we have:

P{ω ∈ Ω : lim
t→∞

yt(ȳ, ω) = 0} = P{ω ∈ Ω : lim inf
t→∞

yt(ȳ, ω) = 0} = 1

We now show that the expected time to extinction is finite. Since (2.8)
holds, we can use Lemma 1 to obtain λ ∈ (0, (b − a)) and θ ∈ (0, 1), such
that:

G(y, r) < θy for all r ∈ [a, a+ λ] and all y ∈ [ε,K]

Let N be the smallest positive integer such that θNK < ε. For each t ≥ 0,
let Bt be the event defined by:

Bt = {ω ∈ Ω : ωt+i ∈ [a, a+ λ] for i = 1, . . . , N}

Observe that for each t ≥ 0,for ω ∈ Bt, we have yt+N (y,ω) ≤ yt+N (K,ω) < ε.
Let q = µ{r ∈ [a, a+ λ]}; then, 0 < q < 1.

Now, for any t ≥ 0, we have:

P{ω ∈ Ω : yt+N(y, ω) < ε} ≥

P{ω ∈ Ω : yt(y, ω) < ε}+ P{ω ∈ Ω : yt(y, ω) ≥ ε}P (Bt)

= P{ω ∈ Ω : yt(y, ω) < ε}+ P{ω ∈ Ω : yt(y, ω) ≥ ε}qN

so that:

P{ω ∈ Ω : yt+N (y, ω) < ε} ≤ P{ω ∈ Ω : yt(y, ω) ≥ ε}(1 − qN) (5.11)

Define for t ≥ 0, At = {ω ∈ Ω : yt(y, ω) ≥ ε}. Denote (1 − qN ) by υ; so
υ ∈ (0, 1). Then, for any k ≥ 0 and j ≥ 1, (5.11) implies that:

P (AN(k+1)+j)/P (ANk+j) ≤ υ (5.12)
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Since τ (y,ω) is a positive integer valued random variable, we have:

E(τ (y, ω)) =
∞∑
t=1

P (At) (5.13)

by using the corollary in Chung (1974, p.43). For j = 1, . . . , N, define:

Cj =
∞∑
k=0

P (Aj+kN ) (5.14)

It follows from (5.12) that Cj < ∞ for each j ∈ {1, . . . , N}. Using (5.13) and
(5.14), we get:

E(τ (y, ω)) =
∞∑
t=1

P (At) =
N∑
j=1

Cj < ∞

which completes our proof.
(ii) (a) When β > 0, for any γ ∈ (0, β), we have:

lim
y↓γ

(m(y)/y) < 1 (5.15)

Pick any α′ ∈ (0, β) and any γ ∈ (α′, β).We claim that:

sup{(m(z)/z) : z ∈ [α′, γ]} < 1 (5.16)

Suppose on the contrary there is a sequence zs ∈ [α′, γ] such that [m(zs)/zs] ≥
1−(1/s) for s ∈ N. Since [α′, γ] is compact, there is a convergent subsequence
of it which converges to some z̄ ∈ [α′, γ]. Without loss of generality, we can
suppose that zs → z̄ as s → ∞. Defining ys = max(zs, z̄), we have ys ↓ z̄,
and:

lim
ys↓z̄

(m(ys)/ys) ≥ 1

which contradicts (5.15), and establishes (5.16).
Pick any y′ ∈ (0, α). Since M (z) < z for z ∈ (0, α), we have ys+1(y

′, ω) <
ys for s ≥ 0, for every ω ∈ Ω, and yt(y

′, ω) converges to some ȳ(ω) ∈ [0, α)
as t→ ∞.We claim now that:

P{ω ∈ Ω : lim
t→∞

yt(y
′, ω) > 0} = 0 (5.17)

Suppose, on the contrary that:

P{ω ∈ Ω : lim
t→∞

yt(y
′, ω) > 0} > 0
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Then, there is N ∈ N, with N > (1/α), such that:

P{ω ∈ Ω : lim
t→∞

yt(y
′, ω) > (1/N)} > 0 (5.18)

Denote {ω ∈ Ω : limt→∞ yt(y
′, ω) > (1/N )} by D.

Since (1/N ) < α, we have from (5.16):

sup{(m(z)/z) : z ∈ [(1/N), α]} < 1

So, we can use Lemma 1 to obtain 0 < λ′ < (b−a) and θ′ ∈ (0, 1), such that:

G(z, r) < θ′z for all r ∈ [a, a+ λ′] and all z ∈ [1/N,α] (5.19)

Define q′ = µ{r ∈ [a, a+ λ′]}; then q′ ∈ (0, 1).
For each n ∈ N, define:

Bn = {ω ∈ B : ωs ∈ (a+ λ′, b] for s ≥ n}

and :
B = ∪∞

n=1Bn

Clearly, µ{r ∈ (a + λ′, b]} = (1 − q′) ∈ (0, 1), and so P (Bn) = 0 for each
n ∈ N. Consequently, we have:

P (B) ≤
∞∑
n=1

P (Bn) = 0

Define ε = [(1/θ′) − 1](1/N). For each ω ∈ D, there is T (ω), such that
for all t ≥ T (ω), we have:

0 ≤ [yt(y
′, ω)− ȳ(ω)] ≤ ε

Then, for t ≥ T (ω), we get:

ȳ(ω) ≤ yt+1(y
′, ω) = [

G(yt(y
′, ω), ωt+1)

yt(y′, ω)
] yt(y

′, ω)

≤ [
G(yt(y

′, ω), ωt+1)

yt(y′, ω)
] [ȳ(ω) + ε]

Thus, we have for t ≥ T (ω),

[
G(yt(y′, ω), ωt+1)

yt(y′, ω)
] ≥

ȳ(ω)

[ȳ(ω) + ε]
≥

(1/N )

[(1/N) + ε]
= θ′
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This implies, using (5.19), that for all t ≥ T (ω), ωt+1 ∈ (a+λ′, b]. That is, if
ω ∈ D, then ω ∈ Bn for some n ∈ N, and so ω ∈ B. But, since P (B) = 0, we
must have P (D) = 0, which contradicts (5.18) and establishes (5.17). That
is, we have:

P{ω ∈ Ω : lim
t→∞

yt(y
′, ω) = 0} = 1 (5.20)

Pick any y ∈ [α,β). Given (5.16), we have in particular:

sup{(m(z)/z) : z ∈ [α, y]} < 1

Thus, we can again use Lemma 1 to obtain λ ∈ (0, (b − a)) and θ ∈ (0,1)
such that:

G(z, r) < θz for all r ∈ [a, a+ λ] and all z ∈ [α, y]

Let N be the smallest positive integer such that θNβ < α. Let B be the event
defined by:

B = {ω ∈ Ω : ωi ∈ [a, a+ λ] for i = 1, . . . , N}

Observe that for ω ∈ B, we have yN (y, ω) ≤ θNβ < α. Let q = µ{r ∈
[a, a + λ]}; then, we have 0 < q < 1, and P (B) = qN . Thus, yN(y, ω) < α
with probability at least qN > 0. Thus, by (5.20), we have:

P{ω ∈ Ω : lim
t→∞

yt(y, ω) = 0} ≥ P (B) = qN > 0

(ii)(b) If β = 0, then there is a sequence {γs}, with γs > 0 for all s ∈ N,
and γs ↓ 0 as s ↑ ∞, such that:

lim
y↓γs

[m(y)/y] ≥ 1

We have [M(y)/y] < 1 for all y ∈ (0, α). Consequently, for each γs ∈ (0, α),
we have:

lim
y↓γs

[m(y)/y] = 1

Let y′ > 0 be given. Clearly, we can find s ∈ N, such that 0 < γs <
min(y′, α).We claim that for all t ≥ 0, yt(y

′, ω) > γs for almost every ω ∈ Ω.
Clearly, this is true for t = 0. We suppose this is true for t = 0, . . . , T.
Then, using (G.4) we have yT+1(y′, ω) = G(yT (y′, ω), ωT+1) > G(yT (y′, ω), a)
for almost every ω ∈ Ω. Since yT (y

′, ω) > γs by the induction hypothesis,
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G(yT (y′, ω), a) ≥ limy↓γs G(y, a) = γs, since G is non-decreasing in y. Thus,
we have yT+1(y, ω) > γs for almost every ω ∈ Ω. This proves our claim by
induction, and shows that γs is a safe standard of conservation. Since y′ > 0
was arbitrarily chosen, we have shown that global conservation holds in case
(ii)(b).

Proof of Proposition 4:

For any initial stock y > 0 and realization ω ∈ Ω,

yt+1(y, ω) = G(yt(y, ω), rt+1(ω))

= {
G(yt(y, ω), rt+1(ω))

yt(y, ω)
}yt(y, ω)

≤ λ(rt+1(ω))yt(y, ω)

so that by iteration, we get:

yt+1(y, ω) ≤

{
t+1∏
j=1

λ(rj(ω))

}
y0

Taking log on both sides, and time-averaging, we obtain:

1

t+ 1
ln yt+1(y, ω) ≤

{
1

t+ 1

t+1∑
j=1

ln[λ(rj(ω))]

}
+

1

t+ 1
ln y0 (5.21)

Since {rt(ω)} are iid random variables, and ζ ≡ E[ln(λ(r))] < 0, by the
strong law of large numbers, we have:

P{ω ∈ Ω : lim
t→∞

{
1

t+ 1

t+1∑
j=1

ln[λ(rj(ω))]

}
= ζ} = 1 (5.22)

Note that [1/(t+ 1)] ln y0 −→ 0 as t −→ ∞. Thus, using (5.21) and (5.22),
we get:

P{ω ∈ Ω : there exists T (ω) < +∞, such that
[1/(t+ 1)] ln yt+1(y, ω) < (ζ/2) for all t ≥ T (ω)} = 1

(5.23)

This implies:
P{ω : lim

t→∞
[ln yt+1(y, ω)] = −∞} = 1 (5.24)

which can be rewritten as: P{ω : limt→∞[yt(y,ω)] = 0} = 1.
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Proof of Lemma 3:

Suppose that for some y > 0, we have Xm(y) = 0. Consider an alternative
policy from y, where ε ∈ (0, y) is invested, (y − ε) is consumed in the initial
period, and the entire output f(ε, r) > 0 is consumed in the next period.
From the definition of optimality, we must have:

0 ≤ [u(y) + δu(0)]− [u(y − ε) + δEu(f(ε, r))]

= ε{
[u(y)− u(y − ε)]

ε
−
δ[Eu(f (ε, r))− u(0)]

ε
}

= ε{
[u(y)− u(y − ε)]

ε
− E[{

[u(f (ε, r))− u(0)]

f(ε, r)
}{
δf (ε, r)

ε
}]}(5.25)

However, given condition (3.3), the last line in (5.25) is clearly negative, a
contradiction.

Proof of Proposition 6:

Since u′(f(x,a)−x) ≤ 0, we have Xm(f(x, a)) ≥ x, so that m(f(x, a)) =
f(Xm(f(x, a)), a) ≥ f (x, a). The result now follows from Proposition 1.

Proof of Proposition 7:

Recall the definitions of x̂(r) and x̂ in Section 3, and define a modified
production function F (x, r) as follows:

F (x, r) =

{
[f(x̂(r), r)/x̂(r)]x for x ∈ [0, x̂(r))
f (x, r) for x ≥ x̂(r)

Clearly, F (x, r) is concave in x for all r, and F is identical to f for x ≥ x̂.
To prove the proposition, it suffices to confine attention to the mod-

ified dynamic optimization problem in which F replaces f, and to show
that there is a safe standard in that modified problem, which lies above
f(x̂, a) = F (x̂, a).

For the modified problem, let W denote the value function, and χ the
optimal investment policy correspondence.17 Define χm(y) = min{x : x ∈
χ(y)}. Since F (x, r) is concave in x, it is easy to show that W (y) is concave
in y. Denote the right hand derivative of W at any y > 0 by W ′

+(y). If c is an
optimal consumption from y in the modified problem, then it can be shown
18that:

W ′
+(y) ≥ u′(c)

17In our framework, u is not assumed to be strictly concave, and F (x, r) is not strictly
concave when x̂ > 0. Thus, there need not be a unique solution to the maximization
problem on the right hand side of the functional equation of dynamic programming.

18See, for example, Mirman and Zilcha (1975).
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and if c > 0, then W is differentiable at y, with:

W ′(y) = u′(c)

Let x ∈ (x̂, x̄), and define y′ = F (x, a) = f (x, a), and x′ = χm(y
′). We

will now show that x′ ≥ x, so that the stock y′ = f (x, a) is a safe standard of
conservation in the modified problem. Suppose, on the contrary that x′ < x.
Since x′ is an optimal investment from stock y′ = f(x, a), it must be the case
that u′(f(x, a)− x′) ≥ 0, so that x′ ≥ max{f (x, a)− ξ, 0}. Thus, we get:

x > x′ ≥ max{f(x, a)− ξ, 0} (5.26)

Observe now that y′ − x′ = f (x,a) − x′ > 0 and therefore the principle
of optimality yields for sufficiently small ε > 0,

u(y′ − x′)− u(y′ − x′ − ε) ≥ δE[W (F (x′ + ε, r))−W (F (x′, r))]

Using Fatou’s lemma, this yields:

u′(y′ − x′)

≥ lim inf
ε↓0

δE{[
W (F (x′ + ε, r))−W (F (x′, r))

F (x′ + ε, r)− F (x′, r)
][
F (x′ + ε, r)− F (x′, r)

ε
]}

≥ δE{lim inf
ε↓0

[
W (F (x′ + ε, r))−W (F (x′, r))

F (x′ + ε, r)− F (x′, r)
][
F (x′ + ε, r)− F (x′, r)

ε
]}

= δE{W ′
+(F (x

′, r))F ′(x′, r)} (5.27)

Since x′ < x, we get:

δE{W ′
+(F (x

′, r))F ′(x′, r)}

≥ δE{W ′
+(F (x, r))F

′(x, r)}

≥ δE{u′(F (x, r)− χm(F (x, r))F
′(x, r)}

≥ δE{u′(F (x, r)− x′)F ′(x, r)} (5.28)

the last inequality in (5.28) following from the fact that χm(F (x, r)) ≥ x′ =
χm(F (x, a)). Since x > x̂, we have F (x, r) = f(x, r) and F ′(x, r) = f ′(x, r).
Thus, (5.27) and (5.28) yield:

u′(f(x,a)− x′) ≥ δE{u′(f (x, r)− x′)f ′(x, r)} (5.29)

But this contradicts condition (4.4) of the Proposition, given (5.26).
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Thus, we have established that x′ = χm(f(x, a)) ≥ x. That is, in the
modified dynamic optimization problem, the stochastic process of optimal
investments generated by χm starting from any initial stock y ≥ f(x, a) is
bounded below by x for almost every ω ∈ Ω, and the optimal stocks are
bounded below by f(x, a) for almost every ω ∈ Ω.

Note that for y ≥ f(x, a), the path generated by χm is feasible in the
original (non-convex) dynamic optimization problem, which has a smaller
feasible set than the modified problem. Thus, this path must be optimal in
the original dynamic optimization problem. Thus, f(x, a) is a safe standard
of conservation for the original problem.

Proof of Proposition 8:

We will show that there exists η > 0 such that m(y) = f (Xm(y), a) ≥ y
for all y ∈ (0, η). This will establish the result, by an appeal to Proposition
2.

Suppose on the contrary that there exist sequences {xn} and {yn}, with
xn ↓ 0 and yn ↓ 0 as n → ∞, such that:

f (xn, a) < yn and xn = Xm(yn) for n ≥ 1

Then, we have:

u′(yn − xn) ≤ u′(f(xn, a)− xn) for n ≥ 1 (5.30)

Since 0 < xn < yn for n ≥ 1, the Ramsey-Euler equation (Lemma 4)
yields:

u′(yn − xn) = δE{u′(f (xn, r)−Xm(f(xn, r))f
′(xn, r)}

≥ δE{u′(f (xn, r))f
′(xn, r)} (5.31)

Combining (5.30) and (5.31), we get:

δE[{
u′(f (xn, r))

u′(f (xn, a)− xn)
}f ′(xn, r)] ≤ 1 (5.32)

Letting n → ∞ in (5.32), we contradict condition (4.5) of the Proposition.
Proof of Proposition 9:

It is sufficient to show that:

sup{(f(XM(y), a)/y : y ∈ [h, x̄]} < 1 for all h > 0 (5.33)
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Suppose, contrary to (5.33) that there is some h > 0 such that:

sup{(f(XM(y), a)/y : y ∈ [h, x̄]} ≥ 1 (5.34)

Then, by Proposition 1, it follows that there is y∗ > 0 such that under the
policy generated by the optimal investment function XM , starting from any
initial stock y ∈ (y∗, x̄], the optimal stocks {yt(y, ω)} are bounded below by
y∗ for almost every ω ∈ Ω. It also implies that XM (y) > 0 for all y ∈ (0, x̄].
Define:

c̃ = inf{(y −XM (y)) : y ∈ [y∗, x̄]}

Using the upper hemi-continuity of the optimal investment correspon-
dence X(y), and the fact that XM(y) < y for y ∈ (0, x̄], it can be shown
19that (i) c̃ > 0 , (ii) there exists ŷ ∈ [y∗, x̄] such that c̃ is the optimal
consumption from stock ŷ; that is,

ŷ −XM(ŷ) = c̃ (5.35)

and (iii) from any initial stock y ∈ [y∗, x̄], for t ≥ 1,

ct(y, ω) = yt(y, ω)−XM (yt(y, ω)) ≥ c̃ > 0 for a.e. ω ∈ Ω (5.36)

Given the interiority of the optimal policy generated by XM from y ∈
[y∗, x̄], Lemma 4 yields:

u′(ŷ −XM(ŷ)) = δE{u′(y1(y, ω)−XM (y1(y, ω)))f
′(XM (ŷ), ω1)} (5.37)

Using (5.35) and (5.36) in (5.37), we obtain:

u′(c̃) ≤ u′(c̃)δE{f ′(XM (ŷ), ω1)}

which contradicts the fact that δE{f ′(XM(ŷ), ω1)} < 1.

19See, for example, the proof of Lemma 2A, a part of the proof of Theorem 5, in
Majumdar, Mitra and Nyarko (1989).
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