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Abstract
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a competitive path, investment in the augmentable capial good equals
the rents on the exhaustible resource (known as Hartwick’s rule), then
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1 Introduction

The purpose of this paper is to show that equitable paths in an infinite-
horizon exhaustible resource model can be completely characterized in terms
of Hartwick’s rule: invest the rent from the exhaustible resource used at each
date in the net accumulation of the produced capital good.

This area of study originates with a paper by Solow (1974), who ana-
lyzed a capital accumulation model, with Cobb-Douglas technology, in the
presence of an exhaustible resource. He was interested in the possibility of
sustainable consumption levels in this context and, eschewing the use of the
traditional discounted integral of utilities as a measure of welfare, concen-
trated attention on the welfare of the least well off generation. His choice
of the objective was of the Rawlsian Maximin type, seeking to maximize the
least consumption level that can be assured along growth paths from given
initial resources. Such a path is efficient as well as equitable, where eq-
uity in this context means that the path maintains a constant consumption
level at all dates. Subsequently, Hartwick (1977) made the interesting ob-
servation that a competitive path, which follows the simple rule of thumb of
investing the rents from the exhaustible resources used at each date, in the
net accumulation of produced capital goods, is equitable. We shall refer to
this investment rule as Hartwick’s rule. As Solow (1986) has observed, this
is an intuitively appealing investment rule of maintaining the consumption
potential of society, in a generalized sense, by replacing exhaustible resource
stocks, which are used up, with produced capital goods of equal value.

It turns out that Hartwick’s Rule has significance in a wider class of
models than the special context in which it arose initially. In particular,
Dixit, Hammond and Hoel (1980) recognized that Hartwick’s Rule is really a
statement that the valuation of net investment (including the dis-investment
in the exhaustible resource) is zero at each date. They then proceeded
to show in a general model of accumulation involving heterogenous capital
goods (which could include various non-renewable resource stocks) that if
the valuation of net investment is constant over time (the constant is not
required to be zero) then this would ensure intertemporal equity (in the
sense described above, but with “consumption” interpreted now as the utility
based on a vector of consumption goods). Furthermore, this investment rule,
which might justifiably be called the Dizit-Hammond-Hoel rule was also a
necessary condition for intertemporal equity along competitive paths.

This is an elegant characterization of competitive equitable paths. But it



also naturally leads one to re-examine the special significance of Hartwick’s
rule for intertemporal equity. This question is prompted by the observation
that in Solow’s original exercise in the context of the exhaustible resource
model, the maximin equitable paths do in fact satisfy Hartwick’s rule, not
just the Dixit-Hammond-Hoel rule. There has been quite a bit of interest
in this issue more recently; see Withagen and Asheim (1998) for references
to some of the literature that has emerged.

Roughly speaking, this literature might be summarized as showing that
for competitive paths which are both equitable and efficient, Hartwick’s Rule
must hold. In the exhaustible resource model (but without the special struc-
ture of the Cobb-Douglas technology of Solow (1974)), a result like this was
first noted by Dasgupta and Mitra (1983). However, their treatment of
equity and efficiency was in the context of a discrete-time model, where
Hartwick’s rule does not hold in the original form but rather in a modified
form. In the continuous time framework of this exhaustible resource model,
Hartwick’s rule does hold in its original form as a necessary condition along
efficient equitable paths (see, for example, the discussion in Hamilton (1995)
in the context of CES production functions). In more general models, ver-
sions of this result appear in Withagen and Asheim (1998) and Mitra (2000).

The result that we prove in this paper shows that, in the context of the ex-
haustible resource model in which Hartwick first proposed his rule, Hartwick’s
rule is both necessary and sufficient for intertemporal equity of competitive
paths, provided the exhaustible resource is “important” in production. That
is, in contrast to the literature mentioned in the previous paragraph, the issue
of (long-run) efficiency of these paths is irrelevant in this particular context.
Our result also implies the rather intriguing fact that in the context of this
model, competitive paths which satisfy the Dixit-Hammond-Hoel rule (that
the value of net investment be constant) must also satisfy Hartwick’s rule
(that the value of net investment be zero).

Our analysis also reveals a richer set of equivalence results, which may be
described as follows. Consider the following three conditions that a feasible
path may satisfy : (i) it is competitive; (ii) it is equitable; (iii) it satisfies
Hartwick’s rule. It turns out that if the path satisfies any two of these three
conditions, it must also satisfy the third. In particular, this indicates that
along equitable paths, Hartwick’s rule ensures “myopic efficiency”, which is
quite different from the role for which it was originally introduced in the
literature.



2 The Framework

2.1 An Exhaustible Resource Model

This is a model with one produced good, which serves as both the capital
as well as the consumption good, and an exhaustible resource. Labor is
assumed to be constant over time. The model described below is a standard
one employed in the literature on allocation of resources over time in the
presence of an exhaustible resource (see for example Dasgupta and Heal
(1974, 1979), Solow (1974)).

Denote by k the stock of the augmentable capital good and by S the
stock of the exhaustible resource. A number 4, satisfying 0 < § < oo,
denotes the constant exponential depreciation rate of augmentable capital.
Let G : R? — R, denote the gross production function for the capital cum
consumption good, using the capital input stock k and the flow of exhaustible
resource used, r. We define the net production function, F : Ri — R by:
F(k,r) = G(k,r) — 6k for all (k,r) € R% . It is assumed that the flow of
resource use cannot exceed a maximum level denoted by R > 0. The output
G(k,r) can be used to replace worn out capital (if any), 6k, to augment the
capital stock through net investment, z = &, or to provide consumption, c.

The following assumptions are made on G and w.

(A1) G(0,r) =G(k,0) =0for ke R;, r e R, .

(A.2) G is continuous, concave and nondecreasing on Ri, and contin-
uously differentiable on R? |, with Gy(k,r) > 0, Go(k,r) > 0.

(A.3)  a=infy,ysolrGa(k,r)/G(k,7)] > 0.

While (A.1) and (A.2) are standard assumptions in this context, (A.3) con-
veys the restriction that the exhaustible resource is “important” in produc-
tion [see Mitra (1978)]. The Cobb-Douglas production function (with capital
coefficient 3 > 0, resource coefficient @ > 0, and o + 3 < 1) satisfies (A.1)-
(A.3).

2.2 Competitive Paths

A path from initial stock (K, S) in R? is a triplet of functions (k(t), 7(¢), ¢(t)),
where k(-) : [0,00) — Ry, r(-) : [0,00) — R, and ¢(-) : [0,00) — R, such



that k(t),r(t),c(t) are differentiable functions of ¢, and satisfy:
c(t) = F(k(t),r(t)) — k(t), r(t) < R and k(t) > —6k(t) for t > 0;
/ r(t)dt < S; and k(0) = K (2.1)
0

A path (k(t),r(t), c(t)) from (K, S) in R? is called interior if k(t) > 0,r(t) >
0 and c(t) > 0 for ¢ > 0.

A path (k(t),r(t), c(t)) from (K, S) is called equitable if ¢(t) is constant
over time. It is called inefficient if there is another path (k'(t), r'(t),c(t))
from (K, S), such that ¢/(t) > ¢(t) for ¢ > 0, and denoting Lebesgue measure
on the reals by A,

Mt:d(@t)>e(t)} >0 (2.2)
It is called efficient if it is not inefficient.

An interior path (k(t),r(t),c(t)) from (K, S) in R? is called competitive
if it satisfies Hotelling’s Rule equating the returns on the capital good and
the exhaustible resource:

Ey(k(t), r(1))/ Fa(k(t),r(t)) = Fy(k(t), r(1)) (2.3)
We can associate with (k(t),r(t),c(t)) a path of prices (p(t)) as follows:
p(t) = 1/ Fa(k(t), (1)) (2.4)

Then, given the concavity of F, one can verify that Hotelling’s Rule (2.3)
implies intertemporal profit maximization; that is, for all ¢ > 0, and all
(k,r) € R%, we have:

p)F(k(t),r(t)) = (=p(0)k(t) —r(t) = p(t)F(k,7) = (=p(t))k =7 (2.5)

where (—p(t)) is to be interpreted as the rental rate on capital.

Conversely, if p(-) : R — R, is any differentiable function of time, such
that (2.5) is satisfied by the interior path (k(t),r(t),c(t)) for all t > 0, and
all (k,r) € R%, then it also satisfies:

p()F(k(E),7(8)) + p(t) = 0; p(t)Fa(k(t),r(t) =1 fort >0  (2.6)

so that Hotelling’s Rule (2.3) must hold.

In view of this, given an interior path (k(t),r(t),c(t)) from (K, S) in R?
which is competitive (that is, which satisfies Hotelling’s rule (2.3)), we will
always associate with it the price path (p(t)), defined by (2.4), and refer to
the path (k(t),r(t),c(t)) as competitive at the prices (p(t)).

5



3 Hartwick’s Rule

3.1 Hartwick’s Rule implies Equity

Hartwick’s rule is a prescription to invest resource rents in the accumulation
of the (augmentable) capital good; that is:

k(t) = r(t)Fa(k(t),r(t) for t >0 (3.1)

Hartwick (1977) showed that if an interior competitive path (k(t), r(t), c(t))
satisfies (3.1), then it is equitable.

Hartwick’s result may be seen as part of the following observation: if an
interior path (k(t),r(t),c(t)) satisfies Harwtick’s rule (3.1) then, it is equi-
table if and only if it is competitive.

To see this, differentiate the feasibility condition:

c(t) = F(k(t),r(t)) — k()

to get:
. d

c(t) = Fu(k(t), r(#)k(t) + Fa(k(t), r(£))7(t) — Ei%(t) (3.2)

Use Hartwick’s rule (3.1), to substitute for %(t) and %l%(t) in (3.2), and
get

ot) = Filk(t

= [F(k(t), r(0) Fa(k(t),r(t) — Ea(k(t), r(£))]r(2)

Since r (t) > 0 for an interior path, this yields that ¢(t) = 0 if and only if
Hotelling’s rule (2.3) holds. This establishes that the path (k(t),r(t),c(t)) is
equitable if and only if the path is competitive.

3.2 Equity implies Hartwick’s Rule

We show in this subsection that if an interior competitive path (k(t), r(t), c(t))
is equitable, then it satisfies Hartwick’s Rule (3.1). Establishing this converse
theorem is considerably more involved than the result discussed in the pre-
vious section. However, the proof can be conveniently split up into several
steps, which are of some independent interest.
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First, one establishes (one-half of) the result of Dixit,Hammond and Hoel
(1980) [which we mentioned in Section 1] that for an interior competitive path
which is equitable, the value of net investment (in both the augmentable
capital good and the exhaustible resource) be constant. Second, one notes
that equity implies that the rate of depreciation, §, must equal zero'. Third,
the second step is used to establish that the constant obtained in the first
step must be zero.

Step 1: Let (k(t),r(t),c(t)) be an interior equitable competitive path
from (K, S) € R%, with associated prices (p(t)), defined as in (2.4). Denote
the value of net 1nvestment p(t)z(t) by n(t) for t > 0. Then, we have for
t>0:

p)F(k(t),r(t)) = p(t)c(t) + n(t) (3-3)

Differentiating (3.3) with respect to ¢, we obtain:

PO kL), r()E(E) + Fak(e), r(0)# ()] + HOF (k(0), (1)
= p(t)e(t) + () (3.4)

Using (2.4) and the fact that n(t) = p(t)z(t) + p(t)2(t), we have:

p(OFu(k (1), r(£)k(t) + () + p(t) F(k(2), (1))

= p(t)e(t) +pt)z(t) + p(t)2(t) (3.5)
Noting that F(k(t),r(t)) = c(t) + z(t) for t > 0, we obtain:
(O FL((E), r(6))k(t) +7(t) = p(1)#(t) (3.6)

Using (2.3) and (2.4), we can rewrite (3.6) as

p(t)[=5(8) /p(£)]k(t) +7(t) = p(t)#(t)

which yields:
r(t) = p(t)z(t) + p(t)z(?) (3.7)
Clearly, (3.7) implies that:

ZIpl)=(t) — (1)) = 0 (38)

'In establishing Step 2, we employ some of the arguments, which we have used previ-
ously in Mitra (1978) and Dasgupta and Mitra (1999).




This shows that the value of net investment in both the augmentable capital
good and the exhaustible resource, m(t) = p(t)z(t) — r(t) is constant over
time.

Step 2: We establish this step by contradiction. Let (k(t),r(t),c(t)) be
an interior equitable competitive path from (K,S) € R2. Then there is
some number ¢ > 0 such that ¢(t) = ¢ for ¢ > 0. Suppose that § > 0. Then,
it is shown below that (a) k() must be bounded above; and (b) in order
to maintain the constant consumption level ¢ > 0, the path (k(t),r(t), c(t))
violates the feasibility condition (2.1).

We establish (a) as follows. Using (A.1) and (A.2), we can find a > 0,
such that G(1,a) < (6/2). Define B = max{1, (R/a), K}, where R is given
as in (2.1). Then, we have the following property:

If k(t) > B for some t = s, then k(s) < 0 (3.9)

To establish (3.9), we write the following string of inequalities when k(t) > B
for t = s,

k(s) < F(k(s),r(s)) < G(k(s), R) — 6k(s)
k(s)G(1,a) — 0k(s) < —(6/2)k(s) <0 (3.10)

IA A

The inequalities in (3.10) are all self-evident, except for the third one. The
third inequality in (3.10) follows from (A.1) and (A.2) and the fact that
B > max{1, (R/a)}. To see this, note that, since k(s) > 1,and G is concave,

we have:

G, %) > %G (k(s), R) +[1 ﬁ]G(M) _ %G(k (s). R)
This yields:
G (k(s),R) < k(s) G(1, %) < k(s)G(1,0)
since (R/k(s)) < a.
Having established (3.9), we now claim that :
k(t) < B fort>0 (3.11)

Clearly, k(t) < B for t = 0. So, if (3.11) is violated, there exists ¢ > 0 such
that k(t') > B. Denote {[k(t') — B]/2} by b; then b > 0. Then k(t') > B + b,
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while £(0) < B+b. Let A = {t € [0,t] : k(t) < B + b}. Clearly A is
non-empty and bounded. Furthermore, if (¢*) is a sequence of elements in
A which converges to some ¢ € R, then £ € [0,#], and k(t*) < B + b for all
s. Thus, by continuity of k(-), we have k() < B +b. Thus, £ € A, and A is
closed. Define 7 = max A; note that 7 is well-defined, and 7 < t'.

Now, clearly, from the definition of 7, it follows that:

k(t) > B+0b forall t € (1,t) (3.12)

By (3.9), we must then have k(t) < 0 for all ¢t € (7,#). This produces the
contradiction:
B+b<k(t)<k(r)<B+b

and establishes (3.11) and hence (a).
To establish part (b) of Step 2, we note that by (2.1), G(k(t),7(t)) =
c(t) + k(t) + 6k(t) > c(t) = ¢ for t > 0. Thus, we have, using (3.11) :

G(B,r(t)) > c forallt >0 (3.13)

Clearly, (A.1),(A.2), and (3.13) imply that there is some b’ > 0 such that
r(t) > b for t > 0. But, this clearly violates the feasibility condition:

/OO r(t)dt < S (3.14)

This completes Step 2.

Step 3: We showed in Step 1 that [p(t)k(t) — r(t)] is constant over time.
Denote this constant by E. We will now show that £ = 0.

Suppose E < 0. Since k’(t) > —0k(t) = 0 by Step 2, we have [—r(t)] =
E — p(t)k(t) < E, and so r(t) > (—E) > 0 for t > 0. But this violates the
feasibility condition (3.14).

Suppose E > 0. Then, p(t)k(t) = r(t)+E > E for t > 0. But, then, using
Step 2, we get for t > 0:

[1/adr(t) > [Gk(1). r(1))/r(B)Ca(k(t), r(0)]r(2)
= pOGk(),r(1) = p(O)k(t) > (3.15)

the first inequality in (3.15) following from assumption (A.3). Thus, for
t > 0, we have r(t) > aF > 0, which again violates the feasibility condition
(3.14). This completes Step 3, and shows that [p(t)k(t) — r(t)] = 0 for all
t > 0. Thus, using (2.4), we have k(t) = Go(k(t),r(t))r(t) for t > 0, which is
Hartwick’s rule.
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