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0.  Introduction

In assessing the impressive development of the Walrasian equilibrium theory from the

1950s, a number of themes were stressed by the leading researchers.  To begin with, let us recall

Arrow and Hahn (1971):

“There are two basic, incompletely separable aspects of the notion of general

equilibrium...: the simple notion of determinateness, that the relations describing the economic

system must be sufficiently complete to determine the values of its variables, and the more

specific notion that each relation represents a balance of forces.  The last, usually, though not

always, is taken to mean that a violation of any relation sets in motion forces tending to restore

it”.

We are thus led to two questions of interest: namely, the existence of a Walrasian

equilibrium, and its stability.  Both of these questions were recognized in many of the earlier

landmarks in economic theory.  For example, in his Value and Capital, Hicks carefully pointed

out that if the price system in the model of general equilibrium of exchange is such as to achieve

the equality of demand and supply in each market, we have a “position of equilibrium.  If not,

some prices will be bid up or down” and went on to assert that “the determinateness...was

ensured by equality between the number of equations and the number of unknowns” as shown by

Walras [see Hicks (1939,  p. 89) and the mathematical appendix on p. 314].  Samuelson 

(1947) provided the mathematical formulation of the Walrasian tatonnement process and its

stability, and a definitive treatment of the topic came from Arrow, Hurwicz and Block (1958,

1959).  A few remarks on the “stability” question will be made later.  I shall begin with the

question of “determinateness” and see the link between this and the celebrated “fixed point”
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theorems of mathematics.  Two other questions were also studied: uniqueness of equilibrium and

comparative statics.  Efforts to identify conditions under which there is a unique Walrasian

equilibrium eventually led to the recognition that the property holds only 

“under strong assumptions and...economies with multiple equilibria must be allowed for.  Such

economies will seem to provide a satisfactory explanation of equilibrium as well as a

satisfactory foundation for the study of stability provided that all the equilibria of the economy

are locally unique.  But if the set of equilibria is compact (a common situation) local uniqueness

is equivalent to finiteness.  One is thus led to investigate conditions under which an economy has

a finite set of equilibria”. [Debreu (1970)]

One of the most influential contributions of Debreu was to point out that such finiteness

is “typical” in a precise sense (it holds generically over a class of models).

Some of the difficulties in deriving comparative statics results are discussed in Arrow

and Hahn (1971), and, are also suggested by a line of research initiated by Sonnenschein, and a

remarkable theorem of Debreu (1972).  But the techniques introduced in Debreu (1970, 1972)

are quite different from those we use in these lectures.

 In his assessment of the development of general equilibrium analysis, Koopmans (1957,

p. 60) noted: 

“Our authors have abandoned demand and supply functions as tools of analysis, even as applied

to individuals.  The emphasis is entirely on the existence of some set of compatible optimizing

choices.  This question can be answered without making assumptions that cause unique choices

to be associated with any prevailing prices, a precondition for the definition of single-valued

demand and supply functions.  The problem is no longer conceived as that of proving that a

certain set of equations has a solution.  It has been reformulated as one of proving that a number
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of maximizations of individual goals under interdependent constraints can be simultaneously

carried out.”

Keeping these observations in mind, I shall introduce the celebrated Debreu-Gale-Nikaido

lemma on set-valued mappings, which is proved by using the Kakutani fixed point theorem. 

Next, we look at the remarkable result of Uzawa (1962) which shows that this lemma implies the

Brouwer fixed point theorem.  A model of an exchange economy [similar to the one developed

in Nikaido (1956)] is elaborated next, and the existence of a Walrasian equilibrium is proved by

appealing to the Debreu-Gale Nikaido lemma.

The discussion in Section 1 and 2 emphasizes the close link between the problems of

existence of a competitive equilibrium and a fixed point theorem.  In Section 3 I sketch another

equilibrium concept that has assumed a privileged position outside the Walrasian paradigm.  The

Cournot-Nash equilibrium is a foundation stone of game theory, and an elegant theorem on the

existence of such an equilibrium is proved by using Kakutani's fixed point theorem.

Yet another theme in this literature was the role of prices in coordinating individual

decisions based on self-interest and arriving at a socially optimal allocation of resources. While

Adam Smith’s invisible hand is usually regarded as a starting point, the literature on optimality

of competitive equilibrium was also enriched by the remarkable contributions of Arrow and

Debreu, and later provided useful insights into the problems of mechanism design and incentive

compatibility studied rigorously by Leonid Hurwicz.  In Section 4, I shall sketch the fundamental

theorems of new welfare economics.  In this context, let us note the following remarks of

Koopmans:

“The new tools allow us to shed new light on older and perhaps more fundamental problems. 
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(0.1)

(0.2)

(0.3)

The emphasis is shifted to the specification of conditions under which decentralization of

economic decisions through a price system is compatible with efficient utilization of resources”.

The “new” tools that Koopmans alluded to included the famous separation theorems for

convex sets.  The problem of characterizing Pareto optimality and linking it to competitive

equilibrium was attacked by Samuelson, Lange and others by using the techniques of calculus. 

It is still useful to keep in mind the “first order conditions” characterizing Pareto optimality.  But

the set theoretic arguments are often more general.

0.1 Notation

In what follows, for any two vectors a = (ak), b = (bk) in úR, we write

For any vector a = (ak), write

and

Also, a vector a = (ak) is non-negative (written a   0) if ak   0 for all k; a is semipositive
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(1.1)

(WL)

(1.2)

(written a $ 0) if ak $ 0 for all k, and ak > 0 for some k; a is strictly positive (written a >> 0) if 

ak > 0 for all k.  Write S = {x , RR    x  0}.

1.  A Model with Excess Demand Functions

As a first step, let us recall the celebrated:

Theorem 1.1.  Brouwer's Fixed Point Theorem.  

Let X be a non-empty compact convex set in Rn, and f : X 6 X be a continuous mapping. 

Then f has a fixed point  (satisfying  

There are R-commodities in the economy.  The set of admissible price vectors is given by

A continuous function z : P 6 RR is an excess demand function if

The relation (WL) is the well-known Walras Law which is often derived from other assumptions

when one introduces economic agents explicitly (see, the discussion below in the context of

exchange economy, and Debreu (1959) for a more general model with consumers and

producers).

An element p* , P is an equilibrium price vector if
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(1.3)

(1.5)

(1.4)

(1.6)

(1.7)

Take a continuous function M(p) on P with úR such that

(example: Mk(p) = max (- pk, zk(p)))

Now define a mapping T from P into P as follows:

where [see (0.2)]  .

First, verify that T is well-defined by noting that for any p , P, *p + M(p)* > 0.  If

 for some  in P, then by (1.5),  for       

all k = 1,2,...,R.  But   implies that   for some k'.  For each k' with 

 so that   for all such k'.  This means that   for all

such k'.  Hence, .  This violates (WL).

Clearly the mapping T defined in (1.6) is continuous.  By Brouwer's fixed point theorem

there is some p* in P such that T(p*) = p*, or,
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(1.8)

(1.9)

(1.10)

or,

where   .

Now, from (WL) and (1.8) 

But zk(p*)Mk(p*) $ 0     for all k [use (1.3) - (1.5)].  Hence   implies

This implies that

To summarize our discussion, let us state formally

Theorem 1.2.  Existence of an Equilibrium

Assume that the excess demand function z is continuous on P and satisfies (WL).  Then

there is some p* such that z(p*) .

Continuity of z on the compact set P implies that there is some constant M’ such that

*z(p)* # M’ for all p , P.  In particular, even when the price of some commodity k equals zero,

the excess demand for each commodity remains bounded.  This assumption is problematic if

more of some commodity is always preferred to less, and the consumers attempt to maximize

utility.  A more satisfactory approach is to define z to be continuous at any p in P such that 
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(2.1)

p >> 0, and to impose an appropriate boundary condition [see Arrow-Hahn (1971, Chapter 2) or

Debreu (1970) for such results].

2.  A Model of an Exchange Economy

In a number of contexts, the Debreu-Gale-Nikaido Lemma is the key step in proving the

existence of a Walrasian equilibrium.

Lemma 2.1.  The Debreu-Gale-Nikaido Lemma.  

Let Z be a compact subset of RR.  If . is an upper semicontinuous correspondence from P

into Z such that for every p in P, the set .(p) is (nonempty) convex and satisfies p.(P)  0, then

there is p* in P such that .(p*) 1 (- S) is nonempty.

Proof.  It is easy to verify that P is (non-empty) compact and convex.  Replace Z by a compact,

convex subset Z' of RR which contains it.  As P is nonempty, so clearly is Z, hence Z'.

Given z in Z', let :(z) be the set of p in P which maximize p.z on P.  Since P is non-

empty, compact, :(z) is nonempty, and the correspondence : from Z' to P is upper

semicontinuous on Z' (by the maximum theorem).  Since P is convex, so is :(z) for either 

(i) z = 0, and then :(z) = P or (ii), z … 0 and then :(z) is the intersection of two convex sets: P

and the set {p , RR : p.z = Max P.z}.

Consider now the correspondence N from P × Z' into itself defined by

The set P × Z', a subset of R2R, is non-empty, compact, convex since P and Z' are.  The
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(2.2)

(2.3)

correspondence N is upper semicontinuous since : and . are.  Finally, for all (p,z) in P × Z', the

set N(p,z) is (non-empty and) convex, since both :(z) and .(p).  Hence, all the conditions of

Kakutani's fixed point theorem are satisfied, and N has a fixed point (p*, z*), i.e., 

(p*,z*) , :(z*) × .(p*), which is equivalent to

The first relation in (2.2) implies that for every p in P, one has p* z*   pz*.  The second implies

that p* z*   0.  Hence, for every p in P, one has

Taking the point p of P defined by pK = 1, pK' = 0 for k' … k, one obtains (from (2.3))   

Hence, z* , - S.  This, with z* , .(p*), proves that p* has the desired property.

Q.E.D.

We shall now prove the striking result of Uzawa (1962) that links the Debreu-Gale-

Nikaido Lemma to the fixed point theorem of Brouwer. 

Theorem 2.1 Uzawa’s Theorem.  

The Debreu-Gale-Nikaido Lemma implies Brouwer's fixed point theorem.

Proof.  It suffices to prove that Debreu-Gale-Nikaido Lemma implies that any continuous

function f from P into itself has a fixed point [see, e.g., Nikaido (1968, Chapter 1, Theorems 2.7

and 4.3)].  Write f(p) = (fk(p)) for p , P.  Then,
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(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Now, **p**2 > 0 for all p in P.  Noting this fact, define for p in P, 

and define R single-valued functions

Writing .(p) = (.k(p)) we obtain a continuous mapping from P into P.  Since P is compact, there

is a compact subset Z in RR that contains .(p) for all p in P.  Since .(p) consists of a single point,

it is surely true that (viewed as a correspondence) .(p) is convex.  Continuity of the function

.(p) means that - again viewed as a correspondence - .(p) is an upper semicontinuous

correspondence.  Now,

Hence, by using the Debreu-Gale-Nikaido Lemma we get the existence of some p* in P such that 
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(2.9)

(2.10)

This means that

or

The last step in the proof is to show that 8(p*) = 1 and that equality holds in (2.9).  Note first that

the validity of (2.7) implies that (2.9) must hold with equality for any k such that    On

the other hand, (2.9) implies that    if    Using (2.4) we get fk(p*) = 0 if 

  Hence, equality holds in (2.9) for all k = 1,...,R, i.e.,

Now, summing over k and using (2.4) we get 8(p*) = 1.  Hence,

so that p* is a fixed point of the mapping f.  

Q.E.D.

2.2.  A Decentralized Exchange Economy

To get an example of the application of the Debreu-Gale-Nikaido lemma, let us quickly

review the model of a decentralized exchange economy similar to that of Nikaido (1956).  This
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pioneering work has been interpreted as a rigorous presentation of a substantial literature on the

“neo-classical” theory of international trade.  In his masterly survey, Chipman (1965) introduced

this theme as follows:

“What is generally considered to be the “neo-classical” theory of international values

actually consists of at least two separate strands that have been gradually woven together.  One

is the Marshallian apparatus of the reciprocal demand curve (or “offer curve” as it is now

usually called).  The other strand consists of what appears to be a spontaneous development on

the part of different writers writing (in many cases) independently of one another in the early

1930's....  The diagrammatic technique introduced by these writers was finally perfected by

Meade, and the model was given mathematical rigor by Nikaido (1956, 1957).”

Consider a model of an exchange economy with m agents (indexed by i) and R

commodities (indexed by k).  I shall refer to the agents as consumers, but they can be interpreted

as countries.  Each agent i is characterized by its preferences   and its endowment vector Ti. 

We assume that:

(A.1) Ti >> 0    for all i

Note that this assumption is particularly problematic when the agent is identified as a

country.  It can be weakened, however, at the cost of considerable technical difficulties (see

Nikaido (1957)).

(A.2)  defined on S is reflexive, transitive and complete.

(A.3) For any y , S, and for each i=1,2,...,m, the sets {x , S : x   y} and {x , S : y }

are closed.
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Given (A.2) and (A.3), for each agent i, there is a continuous utility function ui : S 6 R

representing the preferences , i.e., there is a continuous function ui : S 6 R such that

I shall now introduce convexity properties of preferences.  In the following statements, x2

and x1 are different points of S, and 8 is a real number in (0,1).

(A.4) weak convexity: if x2   then 8 x2 + (1-8)x1  

This property (P.1) is equivalent to:

(A.4') For every    in S, the set {x , S : x   is convex.

(A.4") For every  in S, the set {x , S : x   is convex.

It is useful to take a minute and look at the implications.  First, we prove that (A.4')

implies (A.4).  Let   then .  Also, ; hence, 

  By (A.4'), for any 8 , (0,1),    Next, (A.4)

implies (A.4").  Let x2 and x1 , {x , S : x   Suppose x2    Then by (A.4), for 

8 , [0,1], 8 x2 + (1-8)x1    This establishes the convexity property (A.4").  A

similar argument applies if x1    Finally, we show that (A.4") implies (A.4').  Let x1, x2 ,

{x , S :  .  If (A.4') is not valid, then there is some   such that x' ™i

  But, then, by transitivity,   and 

  By (A.4"),   a contradiction.

(A.5) Convexity: if   then 8x2 + (1-8)x1 ™i x1 .

When   satisfies (A.2), i.e., the preferences are continuous, (A.5) implies (A.4).  We

note this formally.  Suppose (A.2) - (A.3) hold, and let   For convenience, write 
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(2.11 )

[x2, x1] to indicate the line joining x2 to x1 i.e. [x2, x1] = {x,S : x = 8x2 + (1-8)x1, 8, [0,1]}.  We

want to conclude that if (A.5) holds, the set

is empty.  It cannot consist of a single point, since its complement in [x2, x1] is the set 

{x , [x2, x1] :  which is closed.  Therefore, if the set (2.11) is nonempty, it must

contain two distinct points say .  

_______________
x1                 x2

However, implies that [by (A.5)]   Moreover,   implies that

 This leads to a contradiction.

(A.4) is consistent with “thick” indifference curves; (A.5) rules this out.

A Walrasian equilibrium consists of commodity bundles   and a price system

p in P such that

(")

($) For each agent i,   is a solution to the following optimization problem:

The first condition (") requires that for each commodity, excess demand is non-positive.  The

second condition ($) requires that for all i,   maximizes the utility of agent i on its budget set  
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 determined by the price system p*.

The competitive system is regarded as a canonical model of a decentralized resource

allocation mechanism, and the equilibrium price system coordinates individual decisions made in

the pursuit of individual interest.  In equilibrium, one can think of the following verification

scenario [paraphrased from Hurwicz (1986)] as an interpretation of the model: the agents are

presented (say, on a display board) with a proposed message (consisting of an allocation (xi)

satisfying   and a price system p*).  The ith agent says “yes” if and only if xi is an

equilibrium for him or her (i.e., xi maximizes ui on the budget set {c , S : pc  

determined by the proposed p).  Note that this “yes” is based on calculations involving the

characteristics (Ti, ui) of the i-th agent alone, and the price system p that is common knowledge). 

If all the agents say “yes” the message is an equilibrium message for the organization.  If there is

any “no”, an alternative message must be proposed.

The difficulty of formally designing a system of proposing alternative messages if the

initial message is not an equilibrium has turned out to be formidable, particularly when one

demands ‘decentralization’ in some sense.  Even when the initial proposal is an equilibrium, one

is entitled to ask how the redistribution of the initial endowment pattern (T1,...,Tm) is achieved in

a decentralized manner.  Exploring this direction leads us to a better appreciation of the role of

‘money’ as a medium of exchange.

To prove the existence of equilibrium, we show that when (A.5) holds, under the

condition ("), the condition ($) can be replaced by

( For each agent i,   is a solution to the following optimization problem:
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(2.12)

(2.13)

(2.14)

Thus, in  we introduce an (ad hoc) constraint in terms of an upper bound on the choice of c. 

To show that [under (")], the conditions ($) and   are equivalent, it is trivial to see that  

satisfying ($) necessarily satisfies .  To go in the other direction, write 

.  Suppose that   satisfies   but ($) does NOT hold (for some

agent i).  Then there is c* , S, p*c*    Surely, c*   ó  .   Now, 

 For any 8 , [0,1], we have:

and

By the convexity assumption (A.5), for all 8 , [0,1)

Hence, for 8 sufficiently close to 1,  and this contradicts  

 is a (nonempty) compact, convex set.  Define, for each agent i, the correspondence

Bi(p) as follows:
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(2.15 )

(2.16)

(2.17)

(2.18)

Clearly Bi(p) is a (nonempty) compact, convex subset of .  We want to prove that

Let pn , P converge to some p , P, and cn , Bi(pn) converge to c, then c , ; and,

implies, in the limit, that

Hence, c , Bi(p).  This establishes the upper-semicontinuity of the correspondence Bi.  To

establish the lower semicontinuity of Bi, let pn , P converge to p , P and c , Bi(p).  One must

construct a sequence cn , Bi(pn) such that cn converges to c.

Two cases need to be considered.  

Case I.  Suppose that pc < pTi.  Then there is some n0 such that for all n $ n0, pnc < pTi. 

Hence, c , Bi(pn) for all n $ n0.  Now, choose the sequence cn as follows: for all n < n0, cn is an

arbitrary element of Bi(pn); for all n $ n0, cn = c.  Clearly, cn converges to c, and for all n, cn ,

Bi(pn).

Case II.  Suppose that pc = pTi.  Since Ti >> 0, pTi > 0.  Hence there is some  , S,

such that
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(2.19)

Hence, there is some n0 such that for all n $ n0,

Consider the point an where the line joining  to c intersects {z:pnz = pnTi}.  For all n $ n0, an

exists, is unique and tends to c.  The cn is chosen as follows: for n < n0, cn is an arbitrary element

of Bi(pn); for n $ n0, choose cn = an.  This establishes the lower semicontinuity of Bi(p), and

completes the proof of (2.16).

For any p , P, consider now the following optimization problem for agent i:

Since ui is assumed to be continuous, Weierstrass’ theorem ensures the existence of a solution to

(2.19).  Let Ni(p) be the set of solutions to (2.19).  By (A.5), Ni(p) is convex.  By the maximum

theorem, Ni(p) is an upper semicontiuous correspondence on P.  Define

Then .i(p) is the excess demand correspondence of agent i which is upper semicontinuous on P

and is convex-valued.  Also, if x , .i(p), then x = y - Ti where y , Ni(p).  Hence   so

that .  Define
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Then, .(p) is an upper semicontinuous correspondence on P with values in the set 

 is convex for each p and if z , .(p),    By using the

Debreu-Gale-Nikaido lemma, there is some p* , P, and   such that

This implies that   where   such that

Hence, we get , and   satisfies   hence ($).  To summarize: under the

assumptions (A.1), (A.2), (A.3) and (A.5), there exists an equilibrium in the exchange economy.

3.  Cournot-Nash Equilibrium

While the Walrasian equilibrium focuses on the role of prices in coordinating self-

seeking actions of a ‘large’ number of ‘small’ agents, the Cournot-Nash equilibrium concept

captures the possibility of direct interaction among a ‘small’ number of agents.  As in the case of

the Debreu-Gale-Nikaido lemma, a proof of the existence of a Cournot-Nash equilibrium can be

obtained by the use of Kakutani’s fixed point theorem.

I shall sketch a general model due to Debreu (1952).  Consider an abstract social system 

(Ai Ni, ui)i,M  described as follows: there are m agents; write M = {1,2,...,i,...m} and 

M-i = {1,2, i-1, i+1,...,m}.  The i-th agent must choose an element ai in the Ai of his a priori

available actions.  The sets Ai are assumed to be nonempty, compact, convex sets of Euclidean

spaces.  When the agents other than the i-th choose actions am-1 / (a,...,ai-1, ai+1,...,am), the choice
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(3.1)

of the i-th agent is restricted to a nonempty subset of Ai, depending on aM-1.  Formally, we define

a correspondence Ni from   to Ai that associataes with the generic element a =

(a1,...,am) of A, the nonempty subset Ni(a) of Ai to which the choice of agent i must be restricted. 

The set Ni(a) is actually independent of the i-th component of a, but it is more convenient (from

the technical point of view) to define it formally on A, rather than on .  The

correspondence Ni is assumed to be continuous and convex-valued.  

The utility function (or the return function) ui : A 6 R specifying the utility to agent i

resulting from a = (a1,...,ai,...,am) (the m-tuple of actions) is assumed to be continuous and quasi-

concave in ai.

Let aM-i be the (m-1)-tuple of actions of the set M-i of agents (excepting agent i); the i-th

agent chooses ai so as to maximize ui(•,aM-i) on Ni(a) (again, it should be stressed that Ni(a)

depends only on aM-i).  Thus, the i-th agent chooses an element of the set

By the Weierstrass' theorem, :i(a) is nonempty, and by quasi-concavity of ui, :i(a) is convex-

valued.

An element a* of A is an equilibrium if for every i g M,  maximizes ui(•,  on

Ni(a*), i.e., if for every i g M, 

Thus, if the correspondence : is defined from A into A by
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the element a* of A is an equilibrium if and only if a* g :(a*), i.e., if and only if a* is a fixed point

of the correspondence :.

The basic existence theorem on Cournot-Nash equilibrium is now stated:

Theorem 3.1.  Cournot-Nash Equilibrium

If for each i Ai is a nonempty, compact, convex subset of a Euclidean space, :i is a

continuous, real-valued function on  which is quasi-concave in the i-th variable and

Ni is a continuous, convex-valued correspondence from A to Ai, then the social system 

(Ai, ui, Ni)i0M  has a Cournot-Nash equilibrium.

Proof:

First, by using the maximum theorem, show that :i is upper-semi-continuous.  Moreover,

for every a in A, :i(a) is convex, since it is the intersection of two convex sets Ni(a) and {xgAi :

ui(x, aM-i) .  The set A is nonempty, compact, convex.  The correspondence :

is (nonempty) upper-semicontinuous and convex valued, from A into A.  Hence, by Katutani’s

theorem, : has a fixed point. Q.E.D.

4.  Pareto Optimality

Let us go back to an economy without production and without any specification of

ownerships of endowments: an economy E now consists of m individuals, each characterized by

a preference preordering  and a total resource vector 

  An allocation [or, a redistribution]   of T consists of m-nonnegative R-vectors
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(4.1)

(4.2)

(4.3)

(x1,...,xm) such that 

An allocation   is said to dominate another allocation   strongly if

We shall say that   dominates   weakly if

and

It is clear that if   dominates   strongly,   also dominates   weakly.  It is an exercise to

identify monotonicity and continuity properties of the preferences   such that weak

domination implies strong domination.

An allocation   is said to be Pareto optimal if there is no other allocation 

 such that   dominates   weakly.  An allocation  is said to be weakly Pareto

optimal if there is no other allocation   such that   dominates   strongly.

We now introduce the concept of a valuation equilibrium relative to a price system p* > 0

in this economy.  An allocation   is a valuation equilibrium relative to a price system   
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(4.4)

(4.5)

(4.6)

(4.7)

p* > 0 if for each i,

In other words, an allocation   [satisfying (4.1)] is a valuation equilibrium p*

if any consumption vector x that the agent i prefers to   costs more at the price system p*.  We

can now state and prove:

Theorem 4.1.  

If   is a valuation equilibrium at the price system p* > 0, it is weakly Pareto

optimal.

Proof.  Suppose that   is not weakly Pareto optimal; then there is some allocation   that

Pareto dominates   strongly.  This means that, for all i,

Since   is a valuation equilibrium relative to p*, we have:

Now, summing over all i,

But since   and   are both allocations,
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(4.8)

(4.9)

(4.10)

(4.11)

This leads to

We have a contradiction between (4.7) and (4.9).

The argument above needs a minor extension to arrive at a stronger conclusion with an

additional assumption.  A consumption vector x ,  is locally nonsatiated for a consumer i, if

every neighborhood Nx,g, (g > 0)) of x contains some y such that y ™i x.  Here, for any g > 0

We now have:

Theorem 4.2 The First Fundamental Theorem of Welfare Economics

Suppose   is a valuation equilibrium relative to p* > 0, and, for every i,  is locally

non-satiated.  Then   is Pareto optimal.

Proof.  Suppose not.  Then there is some allocation  such that
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Consider, first, the nonempty set of agents for whom (4.12) is satisfied.  We follow the

arguments of Theorem 4.1 to establish that for each such agent i,

Now, consider the (possibly empty) set of agents for whom (4.11) hold, but (4.12) does not. 

This means that for all these agents

We shall show that for each of these agents

If not, suppose that  .  Then, since   is locally nonsatiated, there is some y such

that y ™  and   (write out the details) and this contradicts (4.4).

Now, using (4.13) and (4.15) and summing over all i we still get

But
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(4.17)

(4.18)

(4.19)

again leads to

and we have a contradiction.

It should be stressed that this ‘first’ fundamental theorem does not appeal to convexity

(this statement continues to hold even when we introduce production).  The weaker version

(Theorem 4.1) does not impose any non-satiation or monotonicity condition on preferences

either.

We now turn to the second fundamental theorem.  A commodity vector y , S is not a

satiation consumption for agent i if there is some z , S such that z ™i y.

Theorem 4.3. The Second Fundamental Theorem

Suppose that the preferences   of all agents satisfy (A.2), (A.3) and (A.4). 

Furthermore, there is some agent  who satisfies the monotonicity condition:

Let   be a Pareto optimal allocation.  Then there is p* > 0 such that for

all i,
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(4.20)

(4.21)

(4.22)

Proof: Name the agents so that the first agent satisfies the monotonicity property (4.19).  Write

Note that by (A.4), all the sets   are convex.  Of course,   is nonempty.  Define

Clearly, S is convex.  Next, we verify that S cannot contain any  >> 0.  Suppose it does.  Then

there are bundles (xi), i=1,...,m, x1 ,  xi , Mi (i=2,...,m) such that

Now, define y1 = x1 +   ™1 x1 and yi = xi = (i=2,...,m).  Then we have:

and, y1 ™1 x1 ™1 , yi   for i=2,...,m.  Thus,  = (yi) is an allocation that Pareto dominates 

 weakly, a contradiction.

By a separation theorem (see, Appendix), there is p* $ 0 such that



29

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

This means that for any   one has

Now, if x1 , M1, note that x1 +   ,   for all  >> 0.  Hence, for any (x1,...,xm) such that 

xi , Mi, i=1,...,m, one continues to have

But   so that, for any (x1,...,xm) with xi , Mi,

or, for any (x1,...,xm) such that xi , Mi,

Now consider any particular agent i, and let   i.e., x , Mi.  Set xj =  

for all j … i, and use (4.26) to conclude

This establishes (4.20) Q.E.D.
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It is useful to amplify (4.20) a bit and relate it to the concept of a valuation equilibrium

(4.4).  Note that (4.20) does NOT preclude the possibility that for some agent i, there is some y ,

S, y ™i  AND p*y = p*

However, assume that at the price system p* > 0 - whose existence we asserted by

appealing to a separation theorem - p*  > 0 for all i.  This assumption clearly holds if 

 for all i (i.e., if the Pareto optimal allocation we are considering is an ‘interior’

allocation).

In this situation if (4.20) holds, but (4.4) does not, we get a contradiction.  If for some i,

(4.4) does not hold, then there is y , S, y ™i  and p*y = p*  By (A.2), {z , S : z ™i  is

open.  Hence, there is some 8 , (0,1) such that 8y ™i  (choose 8 ‘sufficiently close’ to 1). 

Clearly, p*(8y) = 8(p*y) = 8(p*  and we have a contradiction.
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Appendix

In what follows, S is a subset T of Rm and T is a compact subset of Rn.  A

correspondence N from S into T is a rule that associates with each x in S, a nonempty subset

N(x) of T.  The correspondence N is upper semicontinuous at x0 if:

"for every sequence xn converging to x0, and every sequence yn , N(xn) converging to y0"

it follows that "yo , N(x0)".  

The correspondence is lower semicontinuous at x0 if:

"for every sequence xn converging to x0, and every y0 , N(x0), there is a sequence 

yn , N(xn) such that yn converges to y0."

The correspondence N is continuous at x0 if it is upper and lower semicontinuous at x0.  The

correspondence N is upper (lower) semicontinuous (continuous) on S if it is upper (lower)

semicontinuous (continuous) at every x , S.

Now, consider a continuous real valued function f on S × T.  Let N be a continuous

correspondence from S into T.  Fix x , S, and consider the function f(x,y) on N(x) [i.e. with x

fixed, vary y over N(x)].  Let .  Since N is upper semicontinuous, and T is

compact, one can show that N(x) is compact.  By continuity of f, M is well-defined.  Write

A.1 The Maximum Theorem

The correspondence : is upper semicontinuous.  

We also have the celebrated:
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A.2 Kautani Fixed Point Theorem

Let S be a nonempty, compact, convex subset of Rm, and N be an upper semicontinuous

correspondence from S to S such that for all x , S, N(x) is (nonempty) convex.  Then, there is

some x , S such that x , N(x).

R.2.  Separation Theorem

Let X be a convex set in RR containing no strictly positive vector u >> 0.  Then there is a

semipositive p $ 0 such that px  for all x , X.

Proof: See Nikaido (1968, Theorem 3.5).
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