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1 Introduction
� Suppose each of NA = N/A customers (n≥ 1) receives a loan of A dollars from
a bank, and the probability is p that the customer will return RA dollars to the
bank at the end of the year (R > 1), and the probability is 1− p that he or she will
default, returning no money to the bank (0 < p < 1). Assume also that apart from
the N dollars the bank lends each year, it has a backup asset of M dollars per year
(M ≥ 0). We will say that the bank fails at the end of T years if

RA
T

∑
j=1

S j ≤ NT −MT, (1)

where S j is the number of customers in the jth period returning RA dollars to
the bank. We assume S j, 1 ≤ j ≤ T , are independent, as are the NA customers
in each period. Then S j has the binomial distribution Binom(NA, p), 1 ≤ j ≤ T ,
and ∑

T
j=1 S j is also Binom(NAT, p). The probability of bank failure at the end of

period T is then

Q(T )≡ P

(
T

∑
j=1

S j ≤
(N−M)T

RA

)
, (2)
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which may also be represented as

P

(
NAT

∑
i=1

Yi ≤
(N−M)T

RA

)
, (3)

where Yi, 1≤ i≤NAT , are i.i.d., with P(Yi = 1) = p, and P(Yi = 0) = 1− p. Note
that EYi = p ∀i.

Consider two cases.
Case I: p < 1

R

(
1− M

N

)
, Case II : p > 1

R

(
1− M

N

)
.

Case I. In this case, writing δ = 1
R

(
1− M

N

)
− p, δ > 0, we may express (3) as

QI (T ) = P

(
∑

NAT
i=1 Yi

NAT
≤ p+δ

)
(4)

By the theory of large deviations (see, e.g., Bhattacharya and Waymire (2007),
Theorem 4.8, pp. 54-55),

1−QI (T ) = e−λNAT (1+o(1)) as NAT ≡ NT
A
→ ∞, (5)

where, writing m(h) = EehYi = peh +(1− p), one has

λ = c∗ (p+δ) , c∗ (x) := sup
h∈R
{xh− lnm(h)} . (6)

Clearly, c∗ (x)≥ 0. Also, for 0 < |x|< 1, xh− lnm(h)→−∞ as h→±∞. Hence
c∗ (x) may be obtained by solving (for h) the equation

0 =
d
dh
{xh− lnm(h)}= x− peh

m(h)
, or, peh =

1− p
1− x

− (1− p) =
(1− p)x

1− x
. (7)

or h = ln
{

(1−p)x
p(1−x)

}
.

Then

c∗ (x) = x ln
{
(1− p)x
p(1− x)

}
− ln

(
1− p
1− x

)
, (8)

and

λ = c∗ (p+δ) =
1
R

(
1−M

N

)
ln

{
1− p

p
·
(
1− M

N

)
/R

1−
(
1− M

N

)
/R

}
− ln

{
1− p

1−
(
1− M

N

)
/R

}

= B ln
(

1− p
p
· B

1−B

)
− ln

(
1− p
1−B

)
,
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B :=
(

1−M
N

)
1
R
. (9)

Thus the probability that the bank does not fail at the end of period T is
e−λNT/A (1+o(1)), which goes to zero exponentially fast as NT/A→ ∞. One
may, in this case prove the stronger result that

1−Q∗I (T ) = {e−λNT/A}(1+o(1)) , (10)

Q∗I (T ) := P(the bank fails at some period t, 1≤ t ≤ T ) . (11)

Remark 1. Note that λ (in (9)) does not depend on A. Thus the exponent
λNT/A decreases as A increases, so that e−λNT/A increases as A increases. This
shows that, in Case I, the probability of bank failure increases as A increases. That
is, with the same capital outlay of N dollars per year, the same probability 1− p
of default by a customer, and the same expected revenue NRp per year (i.e., the
same interest rate R− 1 charged to a customer), the probability of bank failure
rises as the amount of loan per customer rises. One may think of this as the ef-
fect of higher volatility, since var

(
RAS j

)
= R2A2NA p(1− p) =

(
R2N p(1− p)A

)
(although ERAS j = RN p is not affected by A).

Remark 2. Note that

d
dx

c∗ (x) = ln
{
(1− p)x
p(1− x)

}
, (0 < x < 1) (12)

Hence (d/dx)c∗ (x)> 0 if (1− p)x> p(1− x), and (d/dx)c∗ (x)< 0 if (1− p)x<
p(1− x). Since (1− p)(p+δ)> p(1− p−δ),

λ = c∗ (p+δ)≡ c∗
(

1
R

(
1−M

N

))
decreases as R increases. (13)

In other words, the chance of bank failure decreases as R (or the interest rate)
increases - a rather obvious conclusion, but with a precise calculation of the rates.

Case II. Assume now that p > 1
R

(
1− M

N

)
. Then one may rewrite (3) as

QII (T )≡ P

(
NAT

∑
i=1

Zi ≥−
(N−M)T

RA

)
, (14)

where Zi = −Yi, 1 ≤ i ≤ NAT , are i.i.d., P(Zi =−1) = p, P(Zi = 0) = 1− p,
EZi =−p, m(h) = EehZi = pe−h +1− p. One now has

1
R

(
1−M

N

)
= p−δ,δ := p− 1

R

(
1−M

N

)
. (15)
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Then, by the large deviation principle,

QII (T ) ≡ P

(
∑

NAT
i=1 Zi

NAT
≥−p+δ

)
= e−λNAT (1+o(1)) (16)

= e−λNT/A (1+o(1)) , as NAT → ∞,

where
λ = c∗ (−p+δ) , c∗ (x) := sup

h

[
xh− ln

(
pe−h +1− p

)]
. (17)

By symmetry, or by direct calculation as in (7), (8), one may show that, in this
case,

λ ≡ c∗ (−p+δ) = (p−δ) ln
{

1− p
p
· p−δ

1− p+δ

}
− ln

1− p
1− p+δ

= B ln
{

1− p
p
· B

1−B

}
− ln

(
1− p
1−B

)
= B ln

(
B
p

)
− (1−B) ln

(
1− p
1−B

)
,(18)

B : =
1
R

(
1−M

N

)
.

Remark 3. Since λ in (18) does not involve A, it follow that the (exponen-
tially small) probability of bank failure, as given by (16), increases as A increases
(showing the effect of volatility). Also, as in Remark 2, if R increases then the
probability of bank failure decreases, since the revenue grows (given that p re-
mains the same). The relation (18), however, refines this obvious fact.

A numerical illustration.
Case II. N = 1000, T = 5, p = 0.9, R = 1.2
(a) A = 10 [NA = 100]. Then

λ =
1

1.2
ln
(

1
(1.2)(0.9)

)
− 2

1.2
ln
(
(0.1)(1.2)

0.2

)
= 0.02101

QII (T ) ≈ e−(0.02101)500 = e−10.505 = 0.00027

(b) A = 100 [NA = 10]. Then

QII (T )≈ e−1.0505 = 0.35

.
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The calculation in (b) for the approximate probability of ruin is better done
using the central limit theorem, rather than large deviations. For in this case the
Normal approximation to the probability is

P(Z > 1.58) = 0.057,

where Z is a standard Normal random variable.
In Case II, the probability of bank failure before or in period T is (for M = 0)

Q∗I (T ) = P(Bank failure occurs at the end of period 1)
+P(First failure occurs at the end of period 2)
+ · · ·+P(First failure occurs at the end of period T)

6 e−λNA(1+o(1))+ e−2λNA(1+o(1))+ · · ·+ e−T λNA(1+o(1))

= e−λNA + e−2λNA + · · ·+ e−T λNA +o(e−λNA)

≈ e−λNA

(19)

On the other hand, obviously,

Q∗I (T )≥ P(Bank fails at the end of period 1) = e−λNA(1+o(1)). (20)

It follows from (19) and (20) that

Q∗I (T ) = e−λNA(1+o(1)) (21)

We consider next the more realistic model in which the probability p depends on
the state θ of nature. Given the state θ that obtains, the customers behave indepen-
dently with regard to loan repayment, with a common probability pθ of repayment.
The distribution of customers is thus exchangeable. It is also assumed that the se-
quence θn : n > 1 of values of θ. For simplicity, let θ have two possible values
θ = a1 (e.g., ’normal rainfall’) and θ = a2 (’drought’). Let π(ai) = Prob(θ = ai),
i = 1,2. Assume pa1 >

1
R

(
1− M

N

)
, pa2 <

1
R

(
1− M

N

)
. In one period (i.e., T = 1),

the probability of bank failure is

Q(1) =
2

∑
i=1

π(a1) ·P
(

S1 6
N−M

RA
|θ = ai

)
. (22)

By the preceding (see (6),(10), and (16), (18)),

Q(1) = π(a1) · e−λa1N/A(1+o(1))+π(a2)(1− e−λa2NT/A(1+o(1)), (23)
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where, with B = 1
R

(
1− M

N

)
as in (10), one has (see (10) and (18)).

λa1 = B ln
(

B
pa1

)
− (1−B) ln

(
1− pa1

1−B

)
,

λθ2 = B ln
(

1− pa2

pa2

· B
1−B

)
− ln

(
1− pa2

1−B

)
. (24)

For the case T = 2, the corresponding failure probability is

Q(2) =
2

∑
i, j=1

π(ai) ·π(a j)P
(

S1 +S2 6
2(N−M)

RA
|θ1 = ai,θ2 = a j

)
= π(a1)

2e
−2λa1 N

A (1+o(1))+π(a2)
2 · [1− e−

2λa2 N
A (1+o(1))]

+2π(a1)π(a2)P
(

S1 +S2 6
2(N−M)

RA
|θ1 = ai,θ2 = a j

)
.

(25)

The last summand on the right side in (25) may be expressed as

2π(a1)π(a2)
NA

∑
y=0

(
NA

y

)
py

a1
· (1− pa1)

NA−y ·P
(

S2 6
2(N−m)

RA
|θ2 = a2

)
. (26)

For asymptotics, one may use a number of approximations to (26) (or the last
term in (25)).

Consider two cases. First, suppose
(

pa1+pa2
2

)
> 1

R

(
1− M

N

)
. Then, by Bern-

stein’s inequality( ), we can show that P(S1 + S2 ≤ 2(N−M)
RA |θ1 = a1,θ2 = a2) is

exponentially small, namely, O(exp−cNA) for some positive constant c. In this
case,

Q(2) = π(a2)
2 +0(e−c′NA) (27)

for some constant c′ > 0 Thus Q(2) is essentially π(a2)
2. Secondly, suppose(

pa1+pa2
2

)
< 1

R

(
1− M

N

)
. Then, again by Bernstein’s inequality, one can show that,

P
(

S1 +S2 ≤ 2(N−M)
RA |θ1 = a1,θ2 = a2

)
= 1− δNA , where δNA → 0 exponentially

fast with NA. In this case,

Q(2) = π(a2)
2 +2π(a1)π(a2)+o(e−c′′NA) (28)

for same positive constant c′′.
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In the general case of T periods (T > 1), one may express the failure proba-
bility as

Q(T ) = π(a2)
T +

(
T
1

)
π

T−1(a2)π(a1)·

P
(

S1 + · · ·+ST 6
T (N−m)

RA
|θ1 = a1,θi = a2 for 2 6 i 6 T

)
+

(
T
2

)
π

T−2(a2)π
2(a1)·

P
(

S1 + · · ·+ST 6
T (N−m)

RA
|θ1 = a1,θ2 = a1,θi = a2 for 3 6 i 6 T

)
+ · · ·+

(
T
r

)
π

T−r(a2)π
r(a1)·

P
(

S1 + · · ·+ST 6
T (N−m)

RA
|θi = a1, for 1 6 i 6 r, θi = a2 for r+1 6 i 6 T

)
+ · · ·+π

T (a1)·

P
(

S1 + · · ·+ST 6
T (N−m)

RA
|θi = a1, for 1 6 i 6 T

)
.

(29)

Assume, for simplicity, that rpa1 +(T − r)pa2 does not equal T (N−M)
RA for any

r. Again we consider several cases. Suppose r, 0≤ r≤ T−1, is the largest integer
such that,

case r : rpa1 +(T − r)pa2 <
T (N−M)

RA
(r = 0,1, · · · ,T −1). (30)

Then

Q(T ) =
r

∑
j=0

(
T
j

)
π

j(a1)π
T− j(a2)+o(1) for r = 0,1, · · · ,T −1. (31)

The error o(1) is of the order exp−cr ·NA, where cr > 0 can be estimated using
Bernstein’s inequality. Note cr is increasing in r.
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