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1 Introduction

The theory of optimal forest management occupies an important place in the
economic theory of natural resources, since forests constitute a major renewable
resource. It is also important in one’s understanding of the general theory of
intertemporal allocation, as it constitutes one of the key examples of vintage
capital theory.

This paper examines the theory of optimal forest management with a view to
describing the forester’s (optimal) policy function. In contrast to the literature’s
(almost exclusive) emphasis on long-run behavior of optimally managed forests,
we focus on the optimal harvesting and replanting decisions that should be
implemented currently, given any inherited forest.

For this purpose, we use an extremely simplified forestry model (introduced
by Wan (1989)) involving a single species of trees on a unit piece of land, in
which trees grow from newly planted saplings to young trees in one year, and
at the end of two years achieve full maturity; after that the trees decay and
become worthless. This allows us to describe the forest in terms of a single
real variable, x, which represents the stock of (fraction of the land occupied
by) mature trees. The growth of the timber content as young trees grow to
maturity can be captured in terms of a real valued biological parameter, a.
Welfare is derived from timber (by harvest of young or mature trees) using
a (strictly concave) welfare function w, and future welfares are discounted by
a discount factor δ. The optimal forest management problem is to determine
the harvesting (and replanting) decisions over time in order to maximize the
discounted sum of welfares.

From the point of view of the general theory of intertemporal allocation, it
is important to point out that a key feature of the model is the fact that its
transition possibility set does not have free disposal of the initial stock. If one
has a higher stock of mature trees today, then one necessarily has a lower stock
of young trees today and therefore a lower stock of mature trees tomorrow. This
“time to build” mature trees imposes a significant constraint on the forester,
leading to important implications for the nature of the policy function.

We use standard dynamic programming methods to establish the existence of
a (continuous) policy function on the set of stocks I ≡ [0, 1]. Thus the transition
dynamics as well as long-run behavior of the optimally managed forest are fully
described by the dynamical system (I, h). In describing the nature of the optimal
policy function the key concept is the Faustmann threshold.

Faustmann (1968) was concerned with the optimal forest rotation problem
when (in our terminology) the welfare function w is linear. In this case, it is
optimal to cut all the mature trees and only the mature trees, regardless of
the inherited forest. This policy can be called the Faustmann policy.1 The
Faustmann policy leads to persistent fluctuations in harvests, except when the
initial forest is the stationary optimal forest.

1The formal demonstration of this, for a general forestry model, is contained in Mitra and
Wan (1985, Theorem 4.2) for the discounted case, and in Mitra and Wan (1986, Theorem 5.2)
for the undiscounted case..
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When the welfare function w is strictly concave, dynamic optimization has
a tendency to smooth consumption over time. When future utilities are not
discounted, this desire to smooth consumption takes over completely, leading
to asymptotic convergence of optimal forests to the stationary optimal for-
est.2 When future utilities are discounted, the consumption smoothing aspect
is dampened by the fact that the benefits of such smoothing come in the future,
which have less weight in the objective function compared with the present.
This conflict is precisely captured by the existence of a stock of mature trees
x(δ), such that for all initial stocks x ∈ [x(δ), 1], the Faustmann policy is op-
timal, while for all initial stocks x ∈ [0, x (δ)) , the Faustmann policy is not

optimal. We refer to x(δ) as the Faustmann threshold.
For initial stocks x ∈ [0, x (δ)) where the Faustmann policy is not optimal, an

explicit solution of the policy function will depend on the actual welfare function
used (apart from a and δ). However, the following qualitative description can
be provided. The policy function is monotone non-decreasing in this range, and
exhibits growth in the stock of mature trees.

This description of the policy function enables us to characterize the long-
run behavior of the forest stock starting with any initial forest stock. The range
of stocks M ≡ [x(δ), 1 − x(δ)] is seen to be an invariant set of the dynamical
system (I, h); all other stocks are transitory, and M is the global attractor of all
trajectories generated by the optimally managed forest. But, the policy function
also enables us to describe the optimal transition dynamics. For instance, when
the initial stock x of mature trees is small, the forester should cut down all
the mature trees and some young trees as well, but take care to see that the
remaining stock of young trees exceeds x, so that one ends up with a higher
stock of mature trees tomorrow than one started out with today.

From the point of view of the general theory of intertemporal allocation,
a particularly noteworthy aspect of the forestry model is that the amplitude

of the period two Faustmann cycle that represents the long-run optimal forest
depends on the inherited forest. The history dependence of long-run behavior
suggests the intriguing possibility that starting with low initial forest stocks,
which differ from each other only slightly, one might end up with significantly
different long-run behavior in terms of the volatility of optimal harvests. This
sensitive dependence of long-run behavior on initial conditions can be viewed as
an “anti-turnpike” result.

In the final section, we provide an analysis of the change in long-run optimal
behavior with respect to the parameters of the forestry model. Since long-
run behavior is captured by the invariant set [x(δ), 1 − x(δ)], we provide a
formula characterizing the Faustmann threshold x(δ). Using this, we see that
the average amplitude of fluctuations in the long-run increases with increases
in the intertemporal elasticity of substitution and with the growth rate (b =
(1−a)/a) of trees. The relationship is seen to be non-monotonic with respect to
changes in the discount factor. We are able to identify a critical discount factor
(δ̂ = (1/

√
b)) such that for all larger discount factors, the average amplitude

2This turnpike result was established in Mitra and Wan (1986, Theorem 6.1).

3



of long-run fluctuations decreases with increases in the discount factor; as one
approaches the limiting case of perfect patience, the maximum amplitude of
long-run fluctuations goes to zero, consistent with McKenzie’s neighborhood
turnpike theorem.

2 Preliminaries

2.1 A Model of Forest Management

The model of forest management we use is the simplest one whose primitives
are described by a triplet (a,w, δ) where a ∈ (0, 1) is a biological parameter
reflecting the growth possibilities of trees, w is a real valued function on the non-
negative reals which measures the welfare from timber harvest, and δ ∈ (0, 1) is
the discount factor, representing the forest manager’s time preference.

Trees are assumed to grow from newly planted saplings to one year trees
(young trees), and at the end of two years achieve full maturity, after which the
trees decay and become worthless. It is assumed that no part of the land is left
fallow so that at the end of each period, the forest is occupied by either mature
trees or young trees. Denote by x the fraction of land currently occupied by
mature trees; then 1 − x is the fraction of land occupied by young trees. The
mature trees are necessarily going to be harvested because they decay after
reaching maturity. However, for existing young trees, a decision has to be
made as to what fraction y of the land is to be to left with young trees, to
mature during the coming period, while the remainder is harvested. Clearly,
0 ≤ y ≤ 1 − x. At the end of the period then, the fraction of land occupied
by mature trees equals y. Assuming that the stock of each vintage of tree is
proportional to the area occupied by that vintage and normalizing the area of
land occupied by the forest to be one unit, we may identify the fractions x and
y with the stocks of mature trees occupying the forest at the beginning and at
the end of one period.

Choosing the timber content of a mature tree as the unit of measurement, we
denote by a the timber content of a young tree. The amount of timber harvested
in the current period equals the timber content of the mature trees, x, together
with the timber content of the young trees which are cut down. Since a fraction
1−x of the land is occupied by young trees, of which a part y is left to mature,
the fraction of land occupied by young trees which are harvested during the
period equals (1− x− y) and the timber content of this equals a (1− x− y) .
The total timber harvested, therefore, equals [x+ a (1− x− y)].

Denoting the total timber harvested, by cutting trees of the two different
maturities, during any period t ≥ 0 by the number ct, the welfare obtained from
the timber harvested in that period is w(ct). The optimal forest management
problem, starting from an initial stock of mature trees and young trees, is one
of making a decision in each period t = 0, 1, 2.... as to how much to harvest (ct),
so as to maximize the discounted sum of welfare obtained

∑
∞

0 δtw(ct).
The problem of optimal forest management can be viewed as a special case of
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discounted dynamic optimization in a standard reduced form model of optimal
intertemporal allocation, described by the triplet (Ω, u, δ), where Ω is a transi-

tion possibility set, defined by: Ω ≡ {(x, y) : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1− x}, and
u : Ω → R is a utility function defined by u (x, y) ≡ w (x (1− a) + a (1− y)) .
A path from x ∈ I ≡ [0, 1] is an infinite sequence 〈xt〉 satisfying x0 = x and
(xt, xt+1) ∈ Ω for all t ≥ 0. A path 〈x∗

t 〉 from x is optimal if for every path 〈xt〉
from x,

∞∑
0

δtu(x∗

t , x
∗

t+1) ≥
∞∑
0

δtu(xt, xt+1)

The problem of optimal forest management is equivalent to that of finding an
optimal path in this reduced form model.

2.2 Value and Policy Functions

The theory of dynamic programming is ideally suited to characterizing optimal
behavior in our model. To apply this theory, we note some basic properties of
the model.

The transition possibility set Ω is a compact, convex set which contains
(0, 0). For every x ∈ I, there is y ∈ I such that (x, y) ∈ Ω. There is “free
disposal” of the terminal stock: if (x, y) ∈ Ω and 0 ≤ y′ ≤ y then (x, y′) ∈ Ω.
However, free disposal of the initial stock is not possible; in fact, what is true
is that if (x, y) ∈ Ω and 0 ≤ x′ ≤ x then (x′, y) ∈ Ω. It is this last feature of
Ω which distinguishes the forestry example from other examples of the general
model of optimal intertemporal allocation that have been studied in detail in
the literature.

The properties of the reduced form utility function, u, depend on properties
of both Ω and w. In what follows, we assume that w is continuous, concave
and increasing on R+, twice continuously differentiable on R++ with w′(c) > 0
and w′′(c) < 0 for all c > 0, and that it satisfies the end-point condition:
w′(c) → ∞ as c → 0. Then it can be verified that u is continuous on Ω and
twice continuously differentiable on the interior of Ω, with u strictly increasing
in the first argument and strictly decreasing in the second argument. Further,
u is concave on Ω, with u strictly concave in each argument separately.

These properties of the reduced form model (Ω, u, δ) ensure that the dis-
counted utility sum along any path 〈xt〉 from x ∈ I,

∑
∞

0 δtu(xt, xt+1), is abso-
lutely convergent and that there is a unique optimal path from each initial stock
x ∈ I. The value function associated with our dynamic optimization problem is
a function V : I → R, defined by:

V (x) =
∞∑
0

δtu(x∗

t , x
∗

t+1)

where 〈x∗

t 〉 is the optimal path from x ∈ I. The standard theory can then be
used to show that V is a concave and continuous function of x in I, and that it
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satisfies the principle of optimality :

V (x) = max
y ∈Ω(x)

{u(x, y) + δV (y)} for each x ∈ I

where Ω(x) = {y : (x, y) ∈ Ω} = [0, 1 − x]. Further, a path 〈xt〉 from x ∈ I is
optimal if and only if: V (xt) = u(xt, xt+1) + δV (xt+1) for all t ≥ 0.

The policy function h : I → I is defined by:

h(x) = arg max
y ∈Ω(x)

{u(x, y) + δV (y)} for each x ∈ I

noting that for each x ∈ I, the maximization problem involved has a unique

solution. The standard theory (see, for example, Mitra (2000)) can be used to
verify that h is continuous on I, and for all (x, y) ∈ Ω, with y �= h(x), we have:

u(x, y) + δV (y) < V (x) = u(x, h(x)) + δV (h(x))

Further, a path 〈xt〉 from x ∈ I is optimal if and only if xt+1 = h(xt) for all
t ≥ 0. 3

In our framework, given x ∈ I, it need not be the case that (x, h(x)) belongs
to the interior of Ω. However, if for some x ∈ I, we do have (x, h(x)) and
(h(x), h2(x)) in the interior of Ω, then (using the differentiability property of u
in the interior of Ω) the following Ramsey-Euler equation must hold:

u2(x, h(x)) + δu1(h(x), h
2(x)) = 0 (RE)

2.3 Stationary Optimal Stock

A stationary optimal stock (SOS) is any stock k ∈ I, satisfying h(k) = k. Since
h is a continuous function from I to I, there exists a stationary optimal stock.
The definition of Ω implies that h(x) ≤ (1− x) for all x ≥ 0, and therefore for
all x ∈ (x̂, 1], where x̂ = (1/2), we must have h(x) < x. Thus, any stationary
optimal stock k must be in [0, x̂].

When a young tree grows to maturity, the the timber content grows from a to
1, producing an increase in timber content of (1−a); the growth rate associated
with this process is therefore b ≡ (1− a)/a. In what follows we assume:

δb ≡ δ(1− a)/a > 1 (DP)

Condition (DP) corresponds to what is called the δ−productivity condition in
the general theory of optimal intertemporal allocation. When this condition
does not hold (that is, δb ≤ 1), there is no incentive to increase the stock of
mature trees even when one starts from a very low initial stock of mature trees,
and in particular h(0) = 0.

3The policy function, h, of course, depends on the parameters of the model (a,w, δ). For
later use, we note here that the standard theory (see Mitra (2000)) also establishes that the
policy function varies continuously with δ.

6



Under condition (DP), a stationary optimal stock k cannot be in [0, x̂). For, if
an SOS k ∈ [0, x̂), then (k, k, k, k, ...) is optimal from k ∈ [0, x̂). But a necessary
condition for this is: w′(c)(−a)+δw′(c)(1−a) ≤ 0, where c = (k+a(1−2k)) > 0,
and this violates condition (DP). Thus, the only stationary optimal stock is
x̂ ≡ (1/2). Further, since h(0) ∈ I, the argument just given establishes that
h(0) > 0, and the continuity of h on I also ensures that h(x) > x for all
x ∈ [0, x̂).

3 The Nature of the Policy Function

A full qualitative description of the policy function enables one to describe the
behavior of optimal paths completely. It not only provides information about
long-run optimal composition of forests (which can be studied even without a full
description of the policy function), but it also tells the forester what harvesting
and replanting decisions to take today in order to attain optimality.

We have already established some useful properties of the policy function
in the last two subsections of Section 2. In this section we describe two key
qualitative features of the policy function, a monotone property and what we
call the Faustmann threshold. After examining these features in the first two
subsections, we proceed to indicate in the last two subsections how these prop-
erties enable us to describe the transition dynamics and asymptotic behavior of
optimal paths.

3.1 A Monotone Property

As already noted, given x̄ ∈ (0, 1), it need not be the case that (x̄, h(x̄)) belongs
to the interior of Ω. But, if (x̄, h(x̄)) ∈ int Ω, then one can establish the following
(local) monotone property:

There is η ∈ (0, x̄) such that h is non-decreasing on N(x̄; η) = (x̄− η, x̄+ η)
(LM)

To see this, note that we can find ε ∈ (0, x̄) such that the set A defined by:

A ≡ {(x, z) : (x̄− ε, h(x̄)− ε) ≤ (x, z) ≤ (x̄+ ε, h(x̄) + ε)}

is in the interior of Ω. Since h is continuous, we can find η ∈ (0, ε) such that
if x ∈ N(x̄, η) then (x, h(x)) ∈ A. Since u is C2 on int Ω and u12(x, y) =
−a(1−a)w′′(x+a(1−x−y)) > 0 on intΩ, it follows that u(x, y) is supermodular
on A, and so is [u(x, y) + δV (y)]. Now, the standard theory (see Topkis (1968),
Mitra (2000)) of maximizers of supermodular functions ensures that h is non-
decreasing on N(x̄, η).

The monotone property in turn can be shown to yield the following useful
result on optimal behavior at the boundary :

If x′ ∈ (0, 1] satisfies h(x′) = 1− x′, then h(x) = 1− x for all x ∈ [x′, 1] (B)
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3.2 Existence of the Faustmann Threshold

Since the welfare function w is strictly concave, dynamic optimization has a
tendency to smooth consumption over time. Since future utilities are discounted,
the consumption smoothing aspect is dampened by the fact that the benefits
of such smoothing come in the future, which have less weight in the objective
function compared with the present.

The conflicting effects of impatience and strict concavity of the welfare func-
tion lead to the following phenomenon in our example of the forestry model.
There is an initial stock of mature trees x(δ) ∈ (0, x̂), such that for all initial
stocks x ∈ [x(δ), 1], the Faustmann policy (of cutting down all the mature trees
and only the mature trees, and replanting in the cleared area) is optimal, while
for all initial stocks x ∈ [0, x (δ)) , the Faustmann policy is not optimal. We call
x(δ) the Faustmann threshold. A key feature of the policy function is therefore
to establish the existence of the Faustmann threshold, which is a bifurcation

value of the initial stock.
To this end, the first observation we make is that for initial stocks x ∈ [0, x̂)

close to x̂, it is not optimal to reach x̂ immediately, even though it is feasible
to do so. That is, there is ε′ ∈ (0, x̂), such that for all ε ∈ (0, ε′), we have
h(x̂ − ε) �= x̂. To see this, let ε ∈ (0, x̂), and note that if h(x̂ − ε) = x̂, then
(x̂ − ε, x̂, x̂, ....) is optimal from x̂ − ε. However, it can be checked that the
sequence (x̂− ε, x̂+ ε, x̂− ε, x̂+ ε, ...) is a path from x̂− ε, which gives a higher
discounted sum of utilities for all ε small enough, by using condition (DP).

This leads us to make the claim that there is some initial stock x ∈ (x̂−ε′, x̂)
for which h(x) > x̂. For, if the claim is not true, then for all x ∈ (x̂− ε′, x̂), it
must be the case that h(x) < x̂. But, since h(x) > x for all x ∈ [0, x̂), this implies
that for all x ∈ (x̂− ε′, x̂), we have (x, h(x)) ∈ intΩ, and further x < h(x) < x̂,
so that (h(x), h2(x)) ∈ intΩ. This implies that the Ramsey-Euler equation:

u2(x, h(x)) + δu1(h(x), h
2(x)) = 0 (RE)

holds for all x ∈ (x̂−ε′, x̂). But, it is easy to check that if (RE) holds for x close
to x̂, then condition (DP) is violated. This establishes our claim that there is
some x0 ∈ (x̂− ε′, x̂) such that h(x0) > x̂.

We define the Faustmann threshold as: x(δ) = min{x ∈ [0, x̂] : h(x) = 1−x}.
This is well-defined and we have h(x(δ)) = 1 − x(δ). We claim that x(δ) < x̂.
For, if the claim is not true, then h(x) < (1 − x) for all x ∈ [0, x̂). And, since
h(x) > x for all x ∈ [0, x̂), we have (x, h(x)) ∈ intΩ for all x ∈ (0, x̂). Then,
the local monotone property ensures that D+h(x) ≥ 0 for all x ∈ (0, x̂). But,
this implies4 h(x̂) ≥ h(x0) > x̂, a contradiction to the definition of a stationary
optimal stock. This establishes our claim.

Next we claim that x(δ) > 0. For, if the claim is not true, x(δ) = 0, and
so h(0) = 1. Since Ω(1) = {0}, we also have h(1) = 0. Thus, (0, 1, 0, 1, 0, ...)
must be the optimal path from initial stock 0. But, for ε ∈ (0, 1), the sequence
(0, 1 − ε, 0, 1, 0, ...) is a path from 0, which gives a higher discounted sum of

4Use Proposition 2 on page 99 of Royden (1988).
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utilities for all ε small enough, by using the fact that w′(c) → ∞ as c → 0. This
contradiction establishes our claim, and we have x(δ) ∈ (0, x̂).

Notice that by definition of x(δ), we have h(x) < (1−x) for all x ∈ [0, x (δ)) ,
and h(x(δ)) = 1 − x(δ), by continuity of h on I. Further, h(x) > x for x ∈
[0, x(δ)). Thus, for all x ∈ (0, x (δ)) , we have (x, h(x)) ∈ intΩ, and soD+h(x) ≥
0 for all x ∈ (0, x (δ)) .

We are now in a position to describe completely the nature of the policy
function. On [0, x(δ)], we have h non-decreasing with (1−x) > h(x) > x for all
x ∈ [0, x(δ)). And, for x ∈ [x(δ), 1], we have h(x) = 1− x by property (B). This
makes x(δ) a bifurcation value of the initial stock.

The policy function contains the answer to the question: “What is the
forester’s optimal harvesting and replanting decision today?” If the initial forest
has mature tree stock x ∈ [x(δ), 1], the forester should follow the Faustmann
policy of cutting down all the mature trees and only the mature trees (and
replanting with seedlings in the cleared area). While the Faustmann threshold
x(δ) depends on the form of the welfare function w, the policy itself (for this
range) can be described independent of w. If, on the other hand, the initial forest
has mature tree stock x ∈ [0, x(δ)), the forester should cut down all the mature
trees and some young trees as well (reflecting the fact that h(x) < 1− x), but
taking care to see that the remaining stock of young trees exceeds x (reflecting
the fact that h(x) > x), so that one ends up with a higher stock of mature trees
tomorrow than one started out with today. The tension between consumption
smoothing and impatience will determine the actual harvest of the young trees,
so the description of the policy here necessarily depends on the actual welfare
function w used (apart from a and δ).

3.3 Transition Dynamics of Optimal Paths

Our qualitative description of the policy function allows us to fully character-
ize the transition dynamics of optimal paths. To this end, it is convenient
to separate three ranges of stocks (of mature trees), which we might call low,
medium and high. Let us define L ≡ [0, x(δ)) to be the range of low stocks,
M ≡ [x(δ), 1−x(δ)] to be the range of medium stocks, and H ≡ (1−x(δ), 1] to
be the range of high stocks.

We start with the range of medium stocks. If x ∈ M, then clearly (x, 1 −
x, x, 1− x, ...) is the optimal path from x, exhibiting period two cycles.

Next, consider the range of low stocks. If x ∈ L, then the stock of mature
trees will increase until it enters the range M (in a finite number of periods),
after which it will exhibit period two cycles as described in the previous para-
graph.

Finally, consider the range of high stocks. If x ∈ H, then the stock of mature
trees will enter the low range L in one period, after which it will exhibit the
transition dynamics described in the previous paragraph.
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3.4 History Dependent Long Run Behavior

It is clear from the previous subsection that the middle range of stocks M ≡
[x(δ), 1−x(δ)] is an invariant set of the dynamical system (I, h). All other stocks
are transitory, and M is the global attractor of all trajectories generated by the
system.5 Thus, M describes the long-run behavior of the forest stock (of mature
trees), starting with any initial forest stock.

But, this description hides more than it reveals regarding the long-run be-
havior of the optimally managed forest. As mentioned before, in a variety of
examples of intertemporal allocation models, discounting of future welfares can
lead to persistent fluctuations, even when the welfare function is strictly con-
cave, since discounting dampens the desire for consumption smoothing. [See
Mitra and Nishimura (2001) for a detailed analysis of the well-known examples
of Weitzman (described in Samuelson (1973)) and Sutherland (1968)]. However,
in many of these examples, the unique golden-rule stock (which is the global
attractor in the undiscounted case), is replaced by a unique cycle (which be-
comes the global attractor in the discounted case) as representative of long-run
optimal behavior.

What distinguishes the forestry example is that the period two cycle that
represents the long-run optimal forest depends on the forest one started with.
This history dependence of long-run behavior can be seen by noting that for
some initial forest stocks, one may end up at the stationary optimal stock af-
ter a finite number of periods (thereby exhibiting no fluctuations in harvests
in the long-run) while from other initial forests, one may reach the Faustmann
threshold x(δ) in a finite number of periods (thereby exhibiting harvests fluctu-
ating between x(δ) and (1− x(δ)) in the long-run). And, from still other initial
forests, one may end up at x ∈ (x(δ), x̂) after a finite number of periods, thereby
exhibiting persistent fluctuations in the long-run but of smaller amplitude than
in the previously mentioned case.

The history dependence of long-run behavior suggests the intriguing possi-
bility that (when h(0) is small) starting with low initial forest stocks, which
differ from each other only slightly, one might end up with significantly dif-
ferent long-run behavior in terms of the volatility of optimal harvests. This
sensitive dependence of long-run behavior on initial conditions can be viewed as
an “anti-turnpike” result.

The nature of the dependence of long-run behavior on history appears to be
quite complex. If one starts with a completely even distribution of young and
mature trees (the initial stock is x = x̂ = (1/2)), then of course the long-run
behavior exhibits no fluctuations in the harvest. But, it is not the case that
if one starts with two distributions of young and mature trees, the first more
uneven than the second, one necessarily ends up in the long-run with higher
amplitude fluctuations in the first case compared with the second.

This can be seen most transparently as follows. Keeping (a,w) fixed, write
the policy function as h(x; δ), to explicitly recognize the dependence of the

5That is, if 〈xt〉 is optimal from any x ∈ I, then d(xt,M) → 0 as t → ∞, where d(x,M) is
defined as inf{d(x, z) : z ∈ M} for all x ∈ I.
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policy on the stock (x) and the discount factor (δ). Recall from Section 2 that
h(x, δ) is continuous in δ, and that h(0; (1/b)) = 0. Now, consider δ > (1/b), so
that (DP) is satisfied, with δ close to (1/b). Then, h(0, δ) will be close to 0, and
consequently, there must be x̃ ∈ (0, x(δ)), such that h(x̃; δ) = x̂. Thus, starting
from the forest consisting of x̃ mature trees and (1 − x̃) young trees, one ends
up at x̂ in one period, leading to no fluctuations in harvest in the long-run.
On the other hand, from the more evenly distributed initial forest, consisting
of x(δ) ∈ (0, x̂) mature trees and (1 − x(δ)) young trees, the optimal harvest
fluctuates between x(δ) and (1− x(δ)) in the long-run.

4 Bifurcation Analysis

In this section, we provide an analysis of the change in the policy function with
respect to the parameters of the forestry model. Since the Faustmann threshold
is a key feature of the policy function, our primary task is to provide a formula
to characterize this threshold in terms of the parameters of the model.

4.1 A Formula for the Faustmann Threshold

We first show that the value function is continuously differentiable on (0, 1−
x(δ)). Let us define a function, W : I → R as follows:

W (x) = [w(x) + δw(1− x)]/(1− δ2)

Note that from any x ∈ I, the sequence (x, 1 − x, x, 1 − x, ...) is a (feasible)
program from the initial condition, x. Then, W (x) is the discounted utility sum
obtained by following this program. Clearly, W is concave and continuous on I,
and twice continuously differentiable on J ≡ (0, 1), with W ′′(x) < 0 for x ∈ J.

For x ∈ (0, x(δ)), we have, of course V (x) > W (x), while at x = x(δ), we
have V (x) = W (x). Thus, we have:

V (x(δ))− V (x) < V (x(δ))−W (x) = W (x(δ))−W (x) for x ∈ (0, x(δ))

This yields V ′−(x(δ)) ≤ W ′(x(δ)).For x ∈ M ≡ [x(δ), 1−x(δ)], we have V (x) =
W (x). This yields V ′+(x(δ)) ≤ W ′(x(δ)).Combining the two inequalities we
get V ′−(x(δ)) ≤ V ′+(x(δ)). But, by concavity of V, we also have V ′−(x(δ)) ≥
V ′+(x(δ)). Thus, V ′−(x(δ)) = V ′+(x(δ)) and V is differentiable at x(δ), with
V ′(x(δ)) = W ′(x(δ)).

For x ∈ M ≡ [x(δ), 1−x(δ)], we have V (x) = W (x), and so V is continuously
differentiable on (x(δ), 1−x(δ)). For x ∈ (0, x(δ)), we have (x, h(x)) ∈ intΩ and
so, by the standard theory (see Benveniste and Scheinkman (1979)), we have
V continuously differentiable on (0, x(δ)). We have now demonstrated that V
is differentiable for all x ∈ (0, 1 − x(δ)). Since V is concave, V is continuously
differentiable on (0, 1− x(δ)).6

6Use Theorem B on page 7 of Roberts and Varberg (1973).
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By the envelope theorem, we have V ′(x) = u1(x, h(x)) = w′(x + a(1 − x −
h(x)))(1 − a) for all x ∈ (0, x(δ)). By the continuity of V ′ at x(δ), we get
V ′(x(δ)) = w′(x(δ))(1− a). But, since V ′(x(δ)) = W ′(x(δ)), we also have:

V ′(x(δ)) = [w′(x(δ))− δw′(1− x(δ))]/(1− δ2)

And this yields the formula for the Faustmann threshold:

w′(x(δ))/w′(1− x(δ)) = δ/[1− (1− δ2)(1− a)] (FT)

4.2 Sensitivity of Long-Run Behavior

We concentrate on studying the effect of a change in the parameters of the
model (a,w, δ) on long-run behavior. Since long-run behavior is captured by
the invariant set [x(δ), 1− x(δ)], our focus is on how the Faustmann threshold
changes when the parameters change.

4.2.1 Change in the Growth Rate of Trees

A decrease in a can be interpreted as an increase in the growth rate b ≡ [(1−
a)/a] achieved as young trees become mature. Note that, in order to satisfy
condition (DP), we must have a ∈ (0, δ/(1+δ)). As a increases (the growth rate
b falls), the right-hand side of (FT) decreases and accordingly the Faustmann
threshold x(δ) increases monotonically, leading to lower amplitude long-run
fluctuations (on the average).

As a ↑ δ/(1+δ), it can be checked that the right hand side of (FT) decreases
to 1, and so x(δ) increases to x̂ = (1/2). Thus, in this limiting case, all long-run
fluctuations are eliminated. On the other hand, as a ↓ 0, the right-hand side of
(FT) increases to (1/δ) > 1, and so x(δ) decreases to a lower limit x ∈ (0, x̂).
Since x > 0 the optimal asymptotic composition of the forest is one of part
young and part mature trees.

4.2.2 Change in Impatience

An increase in the discount factor (δ) is to be interpreted as a decrease in impa-
tience. Note that, in order to satisfy condition (DP), we must have δ ∈ (1/b, 1) ≡
(a/(1− a), 1). As δ approaches the value 1 (the forester becomes very patient)
the right-hand side of (FT) converges to 1 and so the Faustmann threshold x(δ)
converges to x̂ = (1/2). Thus, the maximum amplitude of long-run fluctuations
goes to zero, consistent with the neighborhood turnpike theorem of McKenzie
(1982).

However, as the discount factor decreases from 1 to (1/b), we observe that
the right-hand side expression behaves non-monotonically, first increasing and
then decreasing. As δ → (1/b), the right hand side of (FT) converges to 1,
and again long-run fluctuations are eliminated in the limiting case (this case
being exactly the limiting case of the previous subsection when a converges to
δ/(1 + δ)).
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The expression on the right-hand side of (FT) attains a maximum at the

critical discount factor, δ̂ = 1/
√
b. Thus, for this discount factor, the corre-

sponding Faustmann threshold x(δ) reaches its minimum, and (1 − x(δ)) its
maximum, producing the highest-amplitude two-period optimal cycle among
all specifications of discount factors.

4.2.3 Change in the Intertemporal Substitution Elasticity

In our framework, the intertemporal elasticity of substitution is the inverse of
the elasticity of the marginal welfare (for the welfare function w). For example,
for w(c) = c1−α/(1− α), the elasticity of the marginal welfare is:

−cw′′(c)

w′(c)
= α

and the intertemporal elasticity of substitution is (1/α).
Intuitively, the higher the intertemporal substitution elasticity, the more the

agent can tolerate fluctuations, and therefore the less the agent’s need for con-
sumption smoothing. This leads to a lower Faustmann threshold and therefore
higher amplitude long-run fluctuations (on the average). As the intertemporal
substitution elasticity approaches infinity, the welfare function approaches the
linear case considered by Faustmann, and the Faustmann threshold goes to zero,
indicating that in this limiting case, the Faustmann policy becomes optimal to
follow from all initial stocks.

To confirm this intuition, consider welfare functions w and v with the prop-
erties described in Section 2. Define:

gw(x) =
w′(x)

w′(1− x)
; gv(x) =

v′(x)

v′(1− x)
for all x ∈ (0, 1)

and denote by Rw(c) ≡ −cw′′(c)/w′(c) and Rv(c) = −cv′′(c)/v′(c) the elastici-
ties of the marginal welfare for the two functions for all c ∈ (0, 1). Assume that
for all c ∈ (0, 1), we have Rw(c) > Rv(c), so that w has the lower intertemporal
substitution elasticity for all c ∈ (0, 1).

It is straightforward to verify that:

g′w(x)

gw(x)
= −

[
Rw(x)

x
+

Rw(1− x)

1− x

]

and a similar formula holds for the function v. Defining Gw(x) = ln gw(x) and
Gv(x) = ln gv(x) for all x ∈ (0, 1), we then obtain for all x ∈ (0, x̂),

−
∫ x̂

x

[
Rw(s)

s
+

Rw(1− s)

1− s

]
ds =

∫ x̂

x

G′

w(s)ds = Gw(x̂)−Gw(x) = −Gw(x)

This establishes that Gw(x) > Gv(x) and therefore gw(x) > gv(x) for all x ∈
(0, x̂), using Rw(c) > Rv(c) for all c ∈ (0, 1).

Given a and δ, the right hand side of (FT) is independent of the welfare
function. Thus, we must have the Faustmann threshold higher for the welfare
function w, leading to smaller amplitude long-run fluctuations (on the average),
compared to the welfare function v.
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