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Abstract

A Bayesian approach to default rate estimation is proposed and illustrated using

a prior distribution assessed from an experienced industry expert. The principle

advantage of the Bayesian approach is the potential for coherent incorporation of

expert information - crucial when data are scarce or unreliable. A secondary ad-

vantage is access to efficient computational methods such as Markov Chain Monte

Carlo. After a preliminary discussion of elicitation of expert beliefs, all steps in a

thorough Bayesian analysis of a default rate are illustrated. Using annual default

rate data from Moody’s (1999-2009) and a prior elicited from an industry expert, we

estimate three structural credit models in the asymptotic single risk factor (ASRF)

class underlying the Basel II framework (Generalized Linear and Generalized Linear

Mixed Models), using a Markov Chain Monte Carlo technique.

Keywords: Basel II, risk management, prior elicitation, maximum entropy,

MCMC



1 Introduction

All competent statistical analyses involve a subjective or judgmental component.

Sometimes the importance of this input is minimized in a quest for objectivity.

Nevertheless, it is clear that specification of a model, definition of parameters or

quantities of interest, specification of the parameter space, identification of relevant

data, all require judgment and are subject to criticism and require justification.

Indeed this justification is an important part of the validation procedure expected

of financial institutions OCC (2000). However, estimation of parameters after these

judgments are made typically proceeds without regard for potential nondata infor-

mation about the parameters, again in an attempt to appear completely objective.

But subject-matter experts typically have information about parameter values, as

well as about model specification, etc. For example, a default rate should lie be-

tween zero and one (definition of the parameter space), but if we are considering a

default rate for a particular portfolio bucket, we in fact have a better idea of the

location of the rate. The Bayesian approach allows formal incorporation of this in-

formation, formal combination of the data and nondata information using the rules

of probability. A simple example in the case of estimating default rates is sketched

in Kiefer (2007).

The Bayesian approach is most powerful and useful when used to combine data

and nondata information. There is also an advantage in that powerful computa-

tional techniques such as Markov Chain Monte Carlo (MCMC) and related tech-

niques are available. These are widely discussed in the economics literature and

have been applied in the default estimation setting. These applications invariably

specify a ”prior” which is convenient and adds minimal information - there is no

such thing as an uninformative prior - allowing computationally efficient data analy-
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sis. This approach, while valuable, misses the true power of the Bayesian approach,

the coherent incorporation of expert information.

The difficulty in Bayesian analysis is the elicitation and representation of expert

information in the form of a probability distribution. This requires thought and

effort, rather than mere computational power, and is therefore not commonly done.

Further, in ”large” samples data information will typically overwhelm nondogmatic

prior information, so the prior is irrelevant asymptotically, and economists often

justify ignoring prior information on this basis. However there are many settings in

which expert information is extremely valuable. In particular, cases in which data

may be scarce, costly, or of questionable reliability. These issues come up in default

estimation, where data may not be available in quantity for low-default assets or

for new products, or where structural economic changes may raise doubts about the

relevance of historical data.

We go through the steps in a Bayesian analysis of a default rate. Estimation of

long-run default rates for groups of homogeneous assets is essential for determin-

ing adequate capital. The Basel II (B2) framework (Basel Committee on Banking

Supervision (2006)) for calculating minimum regulatory capital requirements pro-

vides for banks to use models to assess credit (and other) risks. In response to

the credit crisis, the Basel Committee has stressed in a document for comment the

continuing importance of quantitative risk management, see Basel Committee on

Banking Supervision (2009). Our emphasis is on the incorporation of nondata in-

formation, so we focus on elicitation and representation of expert information and

then on the Bayesian approach to inference in the context of a simple model of

defaults. Uncertainty about the default probability should be modeled the same

way as uncertainty about defaults – represented in a probability distribution. A

future default either occurs or doesn’t, given the definition. Since we do not know
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in advance whether default occurs or not, we model this uncertain event with a

probability distribution. Similarly, the default probability is unknown. But there

is information available about the default rate in addition to the data information.

The simple fact that loans are made shows that some risk assessment is occurring.

This information should be organized and incorporated in the analysis in a sensi-

ble way, specifically represented in a probability distribution. We discuss elicitation

generally in section 2. Then we run through the steps of a formal Bayesian analysis

in a particular example. Definition of a parameter of interest requires a model, so

we turn to specification of a sequence of simple models (each generating a likelihood

function) consistent with B2 in section 3. Section 4 goes through the actual elic-

itation and representation for a particular expert. Section 5 sketches the MCMC

approach to calculating the posterior distribution (the distribution resulting from

combining data and expert information coherently using the rules of probability)

and illustrates all of the steps using Moody’s data on corporate defaults. Section 6

is the conclusion.

To summarize: The steps in a Bayesian analysis are 1) Specify an economic

model precisely defining the quantity of interest and generating a likelihood func-

tion for well-defined data (section 3). 2) Identify a qualified expert and elicit in-

formation about the quantity of interest (section 4), 3) Quantify this information

in a probability distribution (section 4), 4) Use the rules of probability to combine

coherently the likelihood and the prior distribution, generating the posterior dis-

tribution (section 5), 5) Analyze the posterior distribution using MCMC (section

5).
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2 Elicitation of Expert Information

A general definition of elicitation that we may offer in this context is a structured

process or algorithm for transforming an expert’s beliefs regarding an uncertain

phenomenon into a probability distribution. In deploying Bayesian statistical tech-

nology in the domain of credit risk, elicitation arises as a method for specifying a

prior distribution for one or more unknown parameters governing a model of credit

risk (i.e., a probability of default - PD), where the expert may be an experienced

statistician or a non-quantitatively oriented risk specialist (e.g., a loan officer). In

this setting, the prior distribution will be combined with a data likelihood through

Bayes’ Theorem, to derive the posterior distribution of the measure of risk (i.e., the

distribution of the default rate). While our focus is on formulating a probability

distribution for uncertain quantities for the purpose of inference about a parameter,

especially when there are no or very limited data, we note here that this is not the

only context in which elicitation is important. This situation also arises in decision

making where uncertainty about “states of nature” needs to be expressed as a prob-

ability distribution in order to derive and maximize expected utility. Similarly, this

methodology arises in the application of mechanistic models built in almost all areas

of science and technology to describe, understand, and predict the behavior of com-

plex physical processes. In that application a model developer will typically propose

sensible model parameters in order to obtain outputs in cases where in general there

is uncertainty about the inputs’ true values. As in our application, this highlights

the importance of having a coherent approach to represent that uncertainty.

A useful way to frame the elicitation is to identify the model developer or econo-

metrician as a facilitator, who helps the expert transform the “soft data” (i.e., expe-

rience or opinion) into a form amenable to statistical inference, which is the process
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of crafting expert’s knowledge into probabilistic form. Elicitation is a complex pro-

cess that, if it done well, calls for a facilitator to be skilled and multi-faceted, as

the role of the facilitator is central to the process of elicitation. Therefore, not

only is the facilitator an econometrician, but should also have knowledge of the

business of making loans and issues in managing credit risk, as well as be a strong

communicator.

We may be able to set criteria for the quality of an elicitation. In doing so,

we might believe that a meaningful distinction exists between the quality of an

expert’s knowledge on the one hand, and the accuracy with which that knowledge is

translated into probabilistic form on the other. Therefore, we say that an elicitation

is done well under the condition that the distribution so derived is an accurate

representation of the expert’s knowledge, no matter the quality of that knowledge.

We may conclude that accurate elicitation of expert knowledge is by no means

a straightforward task. This remains the case even if all we wish to elicit is expert’s

beliefs regarding only a single of event or hypothesis, an example in credit risk being

the proportion of defaulted obligors in a particular rating class (or segment) over a

given horizon. Here we seek an assessment of probabilities, but it is entirely possible

that either the expert may be either unfamiliar with the meaning of probabilities,

or if he can think intuitively in these terms then it still may be hard for him

to articulate precise statements about probabilities. Even in the case where the

expert is comfortable with probabilities and their meaning, still it is challenging to

accurately assess numerical probabilities with respect to a relatively rare event such

as that of default for a set of obligors, especially if they are highly rated and there

is a lack of historical performance data on a portfolio of similar credits.

Let us now consider the task of eliciting a distribution for a continuous parameter

θ, the proportion of customers in a given rating class defaulting. How may we
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proceed with this? One direct approach, impractical, involves implicitly eliciting

an infinite collection of probabilities regarding this uncertain proportion (itself a

probability), which we may write in terms of the distribution function for all of the

possible values of θ. Note the symmetry here, as we characterize the uncertainty

regarding the unknown probability governing the distribution of the default rate PD

itself in terms of probabilities. However, we realize rather early on in this process

that it is clearly impossible to do this, as in practice an expert can make only a

finite number (and usually a rather limited number) of statements of belief about

θ. It is likely that the best that we could hope for is that such statements might

take the form of a small set of either individual probabilities, or a few quantiles

of the distribution of θ; or possibly this might involve other summaries of the

distribution, such as modes. In the case of a joint distribution for a collection of

random quantities, for example default rates in conjunction with loss severities, the

elicitation task is much more complex.

Given the apparent formidable difficulties involved in the elicitation process, a

reasonable observer may question if it is worth the effort to even attempt this. The

answer to why this is a worthy endeavor lies in the use of elicitations as part of the

business decision making. We often find that a sensible objective for elicitation is

to measure salient features of the expert’s opinion, so that exact details may not be

of the highest relevance with respect to the decision to be reached. For example,

in forming a prior for the distribution of the default rate, a general sense of where

it is centered (5 bps, 1% or 10%?), and degree to which the tail is elongated,

may be enough to inform the data at hand. Note the similarity to the issue of

specification of the likelihood function, where typically an infinity (for continuous

data) of probabilities are specified as a function of a small number of parameters.

The point is strongly made in the normal case, when the whole set of probabilities
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are specified as functions of a mean and variance. This can hardly be credible as

an exact description of a real data distribution, but nevertheless it usefulness has

been proven in countless applications. Similarly, we specify a prior distribution

on the basis of a small number of elicited properties. Even for cases in which the

decision is somewhat sensitive to the exact shape of the elicited distribution, it may

not the decision but another metric that is of paramount importance, for example

the regulatory capital impact or the expected utility of the supervisor, which in

many cases may be quite often robust to details of the expert’s opinion. Another

reason that supports the importance of elicitation is its use in statistical inference,

in particularly in the estimation of posterior distributions or predictive densities.

This is a case in which elicitation promotes a careful consideration on the part of

both the expert and the facilitator regarding the meaning of the parameters being

elicited. This process results in two beneficial effects. First, it results in an analysis

that is closer to the application, through requiring an attention to the subject of

the modeling exercise; in our application, this insures that the focus is upon a

set of plausible observed default rates, over a set horizon, with respect to obligors

of a particular credit quality. Second, this discipline is useful in giving rise to a

posterior distribution that when finally calculated, is a meaningful object. By way

of illustration, this process not only produces a PD estimate that can be used in a

compliance exercise, but a complete predictive distribution of the default rate that

is potentially useful in other risk management contexts, such as credit decisioning,

account management or portfolio stress testing.

A natural interpretation of elicitation is to conceive of it as part of the process of

statistical modeling. When statisticians write down a likelihood function for an ap-

plied problem, this is nothing more than an informed (one hopes) opinion regarding

a data generation process, which is conditional on a parameter set. In hierarchical
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frameworks, examples being random-effects models or models incorporating latent

variables, we have distributions on a sub-set of parameters that are conditional on

another set of parameters. Therefore, what we term “elicitation” in this context

can be interpreted as nothing more than the final step in such a hierarchy, the

statement of the form of the probability distribution of the highest-level parame-

ters. This highlights that we should not loose sight of the fact that all of the usual

principles of statistical modeling apply to elicitation as well.

A stylized representation of the elicitation process consists of four separate

stages. First, in the setup stage, we prepare for the elicitation by identifying the

expert, training the expert, and identifying what aspects of the problem to elicit.

The second step, clearly the heart of the process, is to elicit specific summaries

of the experts’ distributions for those aspects. This is followed by the fitting of a

probability distribution to those summaries elicited in the second step. Note that in

practice, there may be overlap between this and the previous phase of the process,

in the sense that the choice of what data to elicit often follows from the choice

of distributional form that the facilitator prefers to fit. For example, if we prefer

a simple parametric distribution such as a beta to describe the prior of the PD,

then a few quantiles may suffice; whereas the more data intensive choice of a non-

parametric kernel density may require other pieces of information. Finally, we note

that elicitation is in almost all cases an iterative process, so that the final stage is

an assessment of the adequacy of the elicitation, which leaves open the possibility

of an iterative return to earlier stages in order to gather more summaries from the

expert. For example, the fitted prior distribution of the PD parameter may be

presented to the expert, and if the expert is not comfortable with the shape for

whatever reason, we may try to gather more quantiles, re-fit and return later to

make further assessments.
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Thus far, we have framed the process of conducting an elicitation as that of

formulating in probabilistic terms the beliefs regarding uncertainty from an expert,

which we argue is the appropriate way to think about credit risk. However, in this

context, who is the expert? There are two aspects here: the qualification of the

expert and the basis of his information. For the first, we look at education and

experience, particularly at experience in related risk-management situations. For

the second, we evaluate the quality of the arguments - would they be convincing

to other experts? Are they based on reasoning from particular similar portfolios or

configurations of economic conditions? In practice, the choice of expert or experts

must be justified. In our context the experts are not that difficult to identify:

they are the individuals who are making risk-management decisions for the relevant

portfolio in a successful financial institution.

In summary, we outline suggested criteria for the conduct of elicitations, in the

context of formulating beliefs regarding parameters governing default risk. While

some of these aspects may be ignored in an informal elicitation, they become con-

siderations of utmost importance wherever substantive decisions or inferences may

depend on the expert’s knowledge, such as deriving a distribution of the default rate

for either risk management or regulatory capital purposes. First, we should keep

in mind that the objective is elicitation of a PD rate distribution, that represents

the credit expert’s current knowledge on the risk inherent in a portfolio, and it is

very useful in this regard to have a summary of what that knowledge is based on

(e.g., state of the credit cycle, industry condition of the obligors or average features

of the portfolio that are drivers of default risk). Second, we must be wary of any

financial or personal interest that the credit expert may possess, and that any infer-

ences or decisions that will depend on the expert’s distribution so elicited should be

declared upfront (e.g., if the credit executive’s bonus is a function of the regulatory
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capital charge on his portfolio). Next, it is also paramount that training should be

offered in order to familiarize the expert with the interpretation of probability, as

well as whatever other concepts and properties of probability will be required in

the elicitation. It may be helpful in this regard to perform a “dry-run” through

an elicitation exercise with a view toward providing practice in the protocol that

the facilitator proposes to use. Finally, the elicitation should be well documented.

Ideally, this should set out all the questions asked by the facilitator, the expert’s

responses to those, and the process by which a probability distribution was fitted

to those responses (e.g., details of any moment matching or smoothing performed,

such as well-commented computer code).

3 Statistical Models for Defaults

Before elicitation can proceed the quantities of interest need to be defined precisely.

This requires a model. The simplest probability model for defaults of assets in a

homogeneous segment of a portfolio is the Binomial, in which the defaults are as-

sumed independent across assets and over time, and occur with common probability

θ ∈ [0, 1]. The Basel requirements demand an annual default probability, estimated

over a sample long enough to cover a full cycle of economic conditions. Thus the

probability should be marginal with respect to external conditions. Perhaps this

marginalization can be achieved within the binomial specification by averaging over

the sample period, thus many discussions of the inference issue have focussed on

the binomial model and the associated frequency estimator. Suppose the value of

the ith asset in time t is

vit = εit
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where εit is the time and asset specific shock (idiosyncratic risk) and default occurs if

vit < T ∗, a default threshold value. A mean of zero is attainable through translation

without loss of generality. We assume the shock is standard normal with distribution

function Φ(·). Let di indicate whether the ith observation was a default (di = 1)

or not (di = 0). The distribution of diis p(di|θ) = θdi(1− θ)1−di , where θ = Φ(T ∗),

our Binomial parameter. Let D = {di, i = 1, ..., n}, n ∈ I+ denote the whole data

set and r = r(D) =
∑

i di the count of defaults. Then the joint distribution of the

data is

p(D|θ) =
n∏
i=1

θdi(1− θ)1−di (1)

= θr(1− θ)n−r

Since this distribution depends on the data D only through r (n is regarded as

fixed), the sufficiency principle implies that we can concentrate attention on the

distribution of r

p(r|θ) =
(
n
r

)
θr(1− θ)n−r (2)

a Binomial(n,θ) distribution. This is Model I.

The Basel II guidance suggests there may be heterogeneity due to systematic

temporal changes in asset characteristics or to changing macroeconomic conditions.

There is some evidence from other markets that default probabilities vary over the

cycle. See Nickell, Perraudin, and Varotto (2000) and Das, Duffie, Kapadia, and

Saita (2007). The B2 capital requirements are based on a one-factor model due to

Gordy (2003) that accommodates systematic temporal variation in asset values and

hence in default probabilities. This model can be used as the basis of a model that

allows temporal variation in the default probabilities, and hence correlated defaults
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within years. The value of the ith asset in time t is modeled as

vit = ρ1/2xt + (1− ρ)1/2εit (3)

where εit is the time and asset specific shock (as above) and xt is a common time

shock, inducing correlation ρ ∈ [0, 1] across asset values within a period. The

random variables xt are assumed to be standard normal and independent of each

other and of the εit. The overall or marginal default rate we are interested in is

θ = Φ(T ∗). However, in each period the default rate θt depends on the systematic

factor xt. The model implies a distribution for θt. Specifically, the distribution of

vit conditional on xt is N(ρ1/2xt, 1− ρ). Hence the period t default probability (also

referred to as the conditional default probability) is

θt = Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2] (4)

Thus for ρ 6= 0 there is random variation in the default probability over time. The

distribution function for A ∈ [0, 1] is given by

Pr(θt ≤ A) = Pr(Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2] ≤ A) (5)

= Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]

using the standard normal distribution of xt and θ = Φ(d). Differentiating gives the

density p(θt|θ, ρ). This is the Vasicek distribution, see e.g. Bluhm, Overbeck, and

Wagner (2003) Section 2.5, for details.The parameters are θ, the marginal or mean

default probability and the asset correlation ρ. The conditional distribution of the
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number of defaults in each period is (from (2))

p(rt|θt) =
(
nt

rt

)
θrtt (1− θt)nt−rt (6)

from which we obtain the distribution conditional on the underlying parameters

p(rt|θ, ρ) =

∫
p(rt|θt)p(θt|θ, ρ)dθt

Since different time periods are independent, the distribution for R = (r1, ...rT ) is

p(R|θ, ρ) =
T∏
t=1

p(rt|θ, ρ) (7)

where we condition on (n1, ..., nT ) , i.e. they are considered to be known. Regarded

as a function of (θ, ρ) for fixed R, (7) is the likelihood function. This is Model II.

Model II allows clumping of defaults within time periods, but not correlation

across time periods. This is the next natural extension. Specifically, let the system-

atic risk factor xt follow an AR(1) process

xt = τxt−1 + ηt

with ηt iid standard normal and τ ∈ [−1, 1]. Now the formula for θt (4) still holds

but the likelihood calculation is different and cannot be broken up into the period-

by-period calculation, cf. (7). Write using (6)

p(R|θ1, ...θT ) =
T∏
t=1

p(rt|θt(xt, θ, ρ))

emphasizing the functional dependence of θt on xt as well as θ and ρ. Now we can
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calculation the desired unconditional distribution

p(R|θ, ρ, τ) =

∫
· · ·
∫ T∏

t=1

p(rt|θt(xt, θ, ρ))p(x1, ..., xT |τ)dx1...dxT (8)

where p(x1, ..., xT |τ) is the density of a zero-mean random variable following an

AR(1) process with parameter τ. Regarded as a function of (θ, ρ, τ) for fixed R, (8)

is the likelihood function. This is Model III.

Model I is a very simple example of a Generalized Linear Model (GLM) (Mc-

Cullagh and Nelder (1989)), see also Chapter 1, Section 2.1, in this volume. Models

II and III are in the form of the General Linear Mixed Model (GLMM), a paramet-

ric mixture generalization of the popular GLM class. These models were analyzed

using MCMC in the default application by McNeil and Wendin (2007) using conve-

nience priors and focussing on default rate estimation, and by Kiefer (2009) using

an elicited prior and focussing on predictability of default rates.

4 Elicitation: Example

We have asked an expert to consider a portfolio bucket consisting of loans that

might be in the middle of a bank’s portfolio. These are typically commercial loans

to unrated companies. If rated, these might be about S&P Baa or Moody’s BBB.

The elicitation method included a specification of the problem and some specific

questions over e-mail followed by a discussion. Elicitation of prior distributions is

an area that has attracted attention. General discussions of the elicitation of prior

distributions are given in Section 2 of this volume and also by Garthwaite, Kadane,

and O’Hagan (2005), O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson,

Oakley, and Rakow (2006) and Kadane and Wolfson (1998). Our expert is an ex-

perienced industry (banking) professional with responsibilities in risk management
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and other aspects of business analytics. He has seen many portfolios of this type

in different institutions. The elicitation took place in 2006. The expert found it

easier to think in terms of the probabilities directly than in terms of defaults in a

hypothetical sample. This is not uncommon in this technical area, as practitioners

are accustomed to working with probabilities. The mean value was 0.01. The min-

imum value for the default probability was 0.0001 (one basis point). The expert

reported that a value above 0.035 would occur with probability less than 10%, and

an absolute upper bound was 0.3. The upper bound was discussed: the expert

thought probabilities in the upper tail of his distribution were extremely unlikely,

but he did not want to rule out the possibility that the rates were much higher than

anticipated (prudence?). Quartiles were assessed by asking the expert to consider

the value at which larger or smaller values would be equiprobable given the value

was less than the median, then given the value was more than the median. The

median value was 0.01. The former, the .25 quartile, was 0.0075. The latter, the

.75 quartile, was assessed at .0125. The expert, who has long experience with this

category of assets, seemed to be thinking of a distribution with a long and thin

upper tail but otherwise symmetric. After reviewing the implications, the expert

added a .99 quantile at 0.02, splitting up the long upper tail.

At this point a choice must be made on the representation of the elicited informa-

tion. Of course, without further assumptions, we do not have enough information

to specify a probability distribution. In principle that would require an infinity

of elicitations. However, choosing a parametric form for a statistical distribution

allows determination of the parameters on the basis of the assessed information

(assuming standard identification properties - one cannot assess a median alone

and uniquely determine a k>1 - parameter distribution). This is the most common

approach in practice and parallels the usual practice in specifying the data distri-
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bution - a parametric form based (one hopes) on an economic model, allowing an

infinity (or large number in the discrete case) of probabilities to be determined by

finitely many parameters. This approach is illustrated in Kiefer (2010a), where the

elicited information was used to fit a truncated Beta distribution. The disadvan-

tage of this approach is that there is rarely good guidance beyond convenience on

the choice of functional form. Thus, this choice can insert information not elicited

from the expert nor really intended by the analyst. Based on experience, we prefer

a nonparametric approach (really, less parametric), the maximum entropy (ME)

approach (Kiefer (2010b)).

The ME approach provides a method to specify the distribution that meets the

expert specifications and imposes as little additional information as possible. Thus,

we maximize the entropy (minimize the information) in the distribution subject to

the constraints indexed by k given by the assessments. Entropy is

H(p) = −
∫

log(p(x))dP

Entropy is a widely used measure of the information in an observation (or an exper-

iment). Further discussion from the information theory viewpoint can be found in

Cover and Thomas (1991). The general framework is to solve for the distribution p

max
p
{−
∫
p ln(p(x))dx} (9)

s.t.

∫
p(x)ck(x)dx = 0 for k = 1, ..., K

and

∫
p(x)dx = 1
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In our application the assessed information consists of quantiles. The constraints

are written in terms of indicator functions for the αk quantiles qk; for example the

median constraint corresponds to c(x) = I(x < median)− 0.5. To solve this maxi-

mization problem, form the Lagrangian with multipliers λk and µ and differentiate

with respect to p(x) for each x. Solving the resulting first-order conditions gives

pME(θ) = κ exp{
∑
k

λk(I(θ < qk)− αk)} (10)

The multipliers are chosen so that the constraints are satisfied. For details see Cover

and Thomas (1991) or for an approach not using the Lagrangian Csiszar (1975).

This gives a piecewise uniform distribution for θ. It can be argued that the

discontinuities in pME(θ) are unlikely to reflect characteristics of expert information

and indeed this was the view of the expert. Smoothing was accomplished using the

Epanechnikov kernel with several bandwidths h chosen to offer the expert choices

on smoothing level (including no smoothing). Specifically, with pS(θ) the smoothed

distribution with bandwidth h we have

pS(θ) =

1∫
−1

K(u)pME(θ + u/h)du (11)

with K(u) = 3(1 − u2)/4 for −1 < u < 1. Since the density pME(θ) is defined on

bounded support there is an endpoint or boundary ”problem” in calculating the

kernel-smoothed density estimator. Specifically, pS(θ) as defined in (11) has larger

support than pME(θ), moving both endpoints out by a distance 1/h. We adjust for

this using reflection, pSM(θ) = pS(θ)+pS(a−θ) for a ≤ θ < a+1/h, pSM(θ) = pS(θ)

for a+1/h ≤ θ < b−1/h, and pSM(θ) = pS(θ)+pS(2b−θ) for b−1/h ≤ θ ≤ b. The

resulting smoothed density has support on [a, b] and integrates to 1. See Schuster
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(1985). The prior distribution for θ is shown in Figure 1.

Model 2 requires a prior on the asset correlation ρ. Here B2 provides guidance.

For this portfolio bucket, B2 recommends a value of 0.20. We did not assess further

details from an expert on this parameter. There appears to be little experience

with correlation, relative to expert information available on default rates. There is

agreement that the correlation is positive (as it has to be asymptotically if there are

many assets). Consequently, we choose a Beta prior with mean equal to 0.20 for ρ.

Since the B2 procedure is to fix ρ at that value, any weakening of this constraint

is a generalization of the model. We choose a Beta(12.6, 50.4) distribution, with

a standard deviation of 0.05. This prior is illustrated in Figure 2. Thus, the prior

specifications on the parameters for which we have no expert information beyond

that given in the B2 guidelines reflect the guidelines as means and little else. The

joint prior for θ and ρ is obtained as the product, which is the maximum-entropy

combination of the given marginals. Here, it does not seem to make sense to impose

correlation structure in the absence of expert information.

As to τ, here we have little guidance. We take the prior to be uniform on [-1,1].

It might be argued that τ is more likely to be positive than negative, and this could

certainly be done. Further, some guidance might be obtained from the literature

on asset prices, though this usually considers less homogeneous portfolios. Here we

choose a specification that has the standard B2 model at its mean value, so that

allowing for nonzero τ is a strict generalization of existing practice.

5 Inference

Writing the likelihood function generically as p(R|φ) with φ ∈ {θ, (θ, ρ), (θ, ρ, τ)}

depending on whether we are referring to the likelihood function (2), (7), or (8),
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Figure 1: Prior on the long-run default probability θ
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Figure 2: Prior on the asset correlation ρ
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and the corresponding prior p(φ), inference is a straightforward application of Bayes

rule. The joint distribution of the data R and the parameter φ is

p(R, φ) = p(R|φ)p(φ)

from which we obtain the marginal (predictive) distribution of R,

p(R) =

∫
p(R, φ)dφ (12)

and divide to obtain the conditional (posterior) distribution of the parameter φ :

p(φ|R) = p(R|φ)p(φ)/p(R) (13)

Given the distribution p(φ|R), we might ask for a summary statistic, a suitable

estimator for plugging into the required capital formulas as envisioned by Basel

Committee on Banking Supervision (2006). A natural value to use is the posterior

expectation, φ = E(φ|R). The expectation is an optimal estimator under quadratic

loss and is asymptotically an optimal estimator under bowl-shaped loss functions.

When applied to calculating minimum required capital, interest centers on the com-

ponent θ = E(θ|R). For default prediction, taken up in Section 5, interest centers

on θT+1, which depends on all components of φ.

In many applications the distribution p(φ|R) can be difficult to calculate due

to the potential difficulty of calculating p(R) which requires an integration over a

possibly high dimensional parameter. Here, the dimensions in models 1, 2, and

3 are 1,2, and 3. The first model can be reliably integrated by direct numerical

integration, as can model 2 (requiring rather more time). Model 3 becomes very
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difficult and simulation methods are more efficient. Since many applications will

require simulation and efficient simulation methods are available, and since these

methods can replace direct numerical integration in the simpler models as well,

we describe the simulation approach. Here we describe the Markov Chain Monte

Carlo concept briefly and give details specific to our application. For a thorough

and wide-ranging description see chapter 2, especially section 4.2. and Robert and

Casella (2004).

Markov Chain Monte Carlo methods are a wide class of procedures for calculat-

ing posterior distributions, or more generally sampling from a distribution when the

normalizing constant is unknown. We consider here a simple case, the Metropolis

method. The idea is to construct a sampling method generating a sample of draws

φ0, φ1, ..., φN from p(φ|R), when p(φ|R) is only known up to a constant. The key

insight is to note that it is easy to construct a Markov Chain whose equilibrium

(invariant, stationary) distribution is p(φ|R). Begin with a proposal distribution

q(φ′|φ) giving a new value of φ depending stochastically on the current value. As-

sume (for simplicity - this assumption is easily dropped) that q(φ′|φ) = q(φ|φ′).

This distribution should be easy to sample from and in fact is often taken to be

normal: φ′ = φ + ε where ε is normally distributed with mean zero and covari-

ance matrix diagonal with elements chosen shrewdly to make the algorithm work.

Then, construct a sample in which φn+1 is calculated from φn by first drawing φ′

from q(φ′|φn) then defining α(φ′, φn) = p(R, φ′)/p(R, φn)∧1 and defining φn+1 = φ′

with probability α(φ′, φn) or φn with probability (1− α(φ′, φn)). Note that p(R, φ)

is easy to calculate (the product of the likelihood and prior). Further, the ratio

p(R, φ′)/p(R, φn) = p(φ′|R)/p(φn|R) since the normalizing constant p(R) cancels.

The resulting sample φ0, φ1, ..., φN is a sample from a Markov Chain with equi-

librium distribution p(φ|R). Eventually (in N) the chain will settle down and the
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sequence will approximate a sequence of draws from p(φ|R).Thus the posterior dis-

tribution can be plotted, moments calculated and expectations of functions of φ can

be easily calculated by sample means. Calculation of standard errors should take

into account that the data are not independent draws. Software to do these calcu-

lations with a user-supplied p(R, φ) exists. We use the the mcmc package (Geyer

(2009)) used in R (R Development Core Team (2009)). Some experimentation with

these methods is useful to gain understanding. Valuable guidance and associated

warnings are available on the website noted in the package documentation. Gen-

erally, an acceptance ratio of about 25% is good (see Roberts, Gelman, and Gilks

(1997)). The acceptance rate is tuned by adjusting the variances of ε. Long runs

are better than short. There is essentially no way to prove that convergence has

occurred, though nonconvergence is often obvious from time-series plots. For our

illustrative application M samples from the joint posterior distribution were taken

after a 5000-sample burnin. Scaling of the proposal distribution allowed an ac-

ceptance rate between 22 and 25 percent. This procedure was used for Model II

(M=10000) and for Model III (M=40000). Calculation of posterior distributions

of the parameters and the functions of parameters considered below are based on

these samples.

We construct a segment of upper tier high-yield corporate bonds, from firms

rated Ba by Moody’s Investors Service, in the Moody’s Default Risk ServiceTM

(DRSTM) database (release date 1-8-2010). These are restricted to U.S. domiciled,

non-financial and non-sovereign entities. Default rates were computed for annual

cohorts of firms starting in January 1999 and running through January 2009. In

total there are 2642 firm/years of data and 24 defaults, for an overall empirical rate

of 0.00908. The data are shown in Figure 3.
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Markov Chain Monte Carlo Posterior Density: Probability of Default (1−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 4: Model I, p(θ|R)

The analysis of the binomial model is straightforward using direct calculations

involving numerical integration to calculate the predictive distribution and various

moments (recall we are not in a conjugate-updating framework due to the flexible

form of the prior representation).

The posterior distribution for the binomial model is shown in Figure 4.

This density has E(θ|R = r = 24) = 0.0098 and σθ = 0.00174. Note that

this is higher than the empirical default rate of 0.0091. The right skewness of the

distribution is evident, which has flowed through from the prior distribution. The

95% credible interval for θ is (0.00662, 0.0134), which corresponds to a relative

uncertainty of about 68% for the estimated PD..

Model II has asset value correlation within periods, allowing for heterogeneity in

the default rate over time (but not correlated over time) and clumping of defaults.

The marginal posterior distributions are shown in Figures 5 and 6.

We observe that the estimate of the probability of default in this model is
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Posterior Density: Probability of Default (2−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 5: Model II, p(θ|R)

Posterior Density: Asset Value Correlation (2−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 6: Model II, p(ρ|R)
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higher than in the 1-parameter model, this density having E(θ|R) = 0.0105 and

σθ = 0.00175. The 95% credible interval for θ is (0.0073, 0.0140). This density has

E(ρ|R) = 0.0770 and σρ = 0.0194, so that there is a higher degree of variability

relative to the mean in the estimated distribution of the asset value correlation, as

compared to the probability of default parameter. The 95% credible interval for ρ

is (0.0435, 0.119). Note that the prior mean (0.2) is well outside the posterior 95%

confidence interval for ρ. Analysis of the Vasicek distribution shows that the data

information on ρ comes through the year-to-year variation in the default rates. At

θ = 0.01 and ρ = 0.2 the Vasicek distribution implies an intertemporal standard

deviation in default rates of 0.015. With ρ = 0.077, the posterior mean, the implied

standard deviation is 0.008. In our sample, the sample standard deviation is 0.0063.

This is the aspect of the data which is moving the posterior to the left of the prior.

The marginal posterior distributions for Model III are shown in Figures 7-9.

We observe that the estimate of the probability of default in this model is slightly

higher than in the 1-parameter model, this density having E(θ|R) = 0.0100 and

σθ = 0.00176. This density has E(ρ|R) = 0.0812 and σρ = 0.0185 with a 95%

credible interval of (0.043, 0.132). The density of the autocorrelation parameter in

the latent systematic factor has E(τ |R) = 0.162 and στ = 0.0732. The 95% credible

interval is (-0.006, 0.293)

In summary, the picture on the default probability is pretty clear: it is around

0.01 in all models. The asset value correlation is around 0.08, estimated to be

somewhat but only slightly higher in model III than in model II. This is substantially

less than the value specified in B2. The temporal correlation in the systematic factor

is only present in model III. The evidence is sparse here (recall there are only 11

years of data and the prior information was as uninformative as possible) but it

appears to be slightly positive.
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Posterior Density: Probability of Default (3−Parameter Model)

Moody’s Ba Default Rates: Annual Cohorts 1999−2009
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Figure 7: Model III p(θ|R)
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Markov Chain Monte Carlo Posterior Density: Asset Value Correlation (3−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 8: Model III, p(ρ|R)
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Markov Chain Monte Carlo Posterior Density: Autocorrelation in Systematic Factor (3−Parameter Model)

Moody's Ba Default Rates: Annual Cohorts 1999−2009
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Figure 9: Model III, p(τ |R)
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6 Conclusion

In this and related applications the econometrician faces the dual chore of modeling

the data distribution with a specification of a statistical distribution and modeling

expert information with a statistical distribution. Adding the latter task substan-

tially increases the range of applicability of econometric methods. This is clearly an

area for further research. Our application has gone through the steps of a formal

Bayesian analysis, focussing on the default probability, a key parameter which is

required to be estimated under B2 by a large number of institutions worldwide.

We concluded our analysis by generating the posterior distributions for the param-

eters of a nested sequence of models and calculating summary statistics. The mean

default probability would be a natural estimator to use for calculating minimum

regulatory capital requirements using the formulas provided by B2. In practice,

these distributions have many uses, and the analysis would be ongoing. For exam-

ple, institutions might want to use the entire distribution of the default probability

in pricing credit and in setting in-house capital levels. The more general models

provide insight into the extent to which default rates over time are predictable, and

to the extent to which risk calculations should look ahead over a number of years.

An analysis of Loss Given Default (LGD) using Bayesian methods would be useful

- here there is substantial experience and a joint analysis of LGD and the default

probability is likely to be extremely interesting. These and many other possible

analyses build on the methods illustrated here.
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