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Abstract

Incorporation of expert information in inference or decision settings is
often important, especially in cases where data are unavailable, costly or
unreliable. One approach is to elicit prior quantiles from an expert and then
to fit these to a statistical distribution and proceed according to Bayes rule.
An incentive-compatible elicitation method using an external randomization
is available.
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1 Introduction

Incorporation of prior information is important in any decision or inference setting,
whether it is done formally or informally. The formal Bayesian approach encour-

ages transparency in assumptions, clear thinking and coherence. One example is
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risk management in financial institutions in which prudent management requires
understanding default probabilities for groups of homogeneous assets. In the case
of very safe or new types of assets, there may not be enough data information to
support a practical conventional estimator, for example the frequency estimator in
the case of binomial defaults. This issue has attracted regulatory and industry as
well as academic attention, see Kiefer (2009), and references given there. Kiefer
(2010) proposes eliciting prior quantiles for an expert’s prior on the value of the
default probability for a particular group of assets. For example, the median can
be assessed by asking the expert at what value of a default rate # would he be
equally suprised to see a realization above or below . These quantiles (perhaps
after feedback and revision) are assembled into a distribution, either by fitting a
specific functional form or as proposed by Kiefer (2010) fit to a smoothed maximum-
entropy distribution. The idea is to impose as little information as possible beyond
that elicited from the expert. This distribution is then used to process data infor-
mation through Bayes rule and the likelihood function. The latter is itself typically
a representation of a large number of probabilities in terms of a few parameters, so
the statistical treatment and the approximations involved are the same in the prior
and the likelihood.

Other examples of elicitation of quantiles and their use to form a prior dis-
tribution are cited in O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson,
Oakley, and Rakow (2006) and include applications to drug testing, sales of engines,
the effect of nuclear waste on temperature, and future earnings. The incentive com-
patibility question does not seem to have been addressed.

The difficult part is the elicitation of the quantiles, which requires thought and
therefore some effort from the expert. Since the quantiles can never be observed,

and therefore the assessment checked, there is an issue of providing an incentive for



the expert to provide the required thought. The problem of eliciting probabilities
for given sets is well-studied and a widely-used approach is scoring. The scoring
method does not naturally extend to the quantile assessment problem, as shown in
Section 2. Savage (1971) reviews techniques for assessing probabilities and notes
an interesting interpretation of probabilities as prices. He notes that the device
of outside randomization, used by Marschak (1964) to compel a true valuation for
a bid or asked price applies also to probability assessment. An ingenious recent
method due to Karni (2009) introduces a second outside source of randomness to
eliminate possible effects of risk aversion. This method does extend naturally to
eliciting quantiles as shown in Section 2 with a different development than that of

Marschak or Karni. Section 3 concludes.

2 Eliciting Quantiles

Assume at the outset that the expert’s information about the unknown quantity 6
is coherent, that is that it can be described by a probability distribution. Classical
discussions of the necessity of describing uncertainty in terms of probability are
Savage (1954), De Finetti (1974), and Lindley (1982). We do not review these well-
known demonstrations and simply assume that the expert’s information is described
in a probability distribution with cdf F(0) and pdf f(6). We wish to elicit the
probability a quantile g, with F(g¢,) = «. Assume that f(q,) > 0 so that the
quantile is well-defined. Assume for convenience that Supp(f) C [0,1]. This is
natural when the uncertain quantity 6 is a default probability; in other cases a

parameter transformation may be appropriate. The method of scoring for eliciting



the probability (3 associated with a given set, say [0, ¢], rewards the expert with

r(Blq) = (1(0 € [0,q])g1(B) + (1 = 1(0 € [0,4])90(5)

where I() is the indicator function g¢;(3) is a nondecreasing function, go(/3) is a
nonincreasing function and 3 is the elicited probability, after the single realization
of 6 is seen. The scoring rule is proper if the expectation Er(5|q) = F(q)g1(8) +
(1 — F(q))g0(B) is maximized at 5 = g,. See Schervish (1989). The optimal choice
of § for a risk-neutral expert rewarded by a proper scoring rule is F(q). Fixing
and using this method to elicit the quantile ¢ does not work as the optimal choice
of ¢ is 0 for go(3) = ¢1(5) and 1 for go(8) < g1(5).

The new method based on outside randomness works as follows. Suppose the
elicitor wishes g,. The elicitor has access to a genie which generates a random vari-
able ¢ from the uniform distribution on [0, 1] and independently a random variable
d € {0,1} from the Bernoulli with probability «. Nature supplies one realization
of #. The expert supplies a value ¢ for the a — th quantile. The expert receives
a reward equal to rI(6 € [0,¢]) if ¢ < £ and rd if ¢ > £. We introduce a utility
function explicitly to show how the second random variable d eliminates the effect

of risk aversion. The expert’s utility of a payoff = is u(z).Then

Theorem 1 With the reward described above the optimal policy for the expert is to
report the true quantile.
Proof. Consider the expected utility to the expert of supplying q. First, suppose the

genie supplies & to the expert. Then the expected utility is

v(q€) = u(r)(F(&)I(q < &)+ Flga)I(q > €))



piecewise constant with a break at £&. Marginalizing with respect to the uniform ran-

dom variable £ yields the unconditional expected utility function

v(q) = u(r) / F(t)dt + Flan)q)

The first-order condition is v'(q) = w(r)(—F(q) + F(qa)) = 0 and the function is

concave, so the optimal policy for the expert is to report the true quantile. m

The binomial random variable is not needed if the expert is risk neutral. In that
case the rd payoff can be replaced by ra.

An alternative proof from a decision-theoretic point of view and using lotteries
can be given. This proof uses preferences over lotteries but does not require the full
expected utility framework. Let (z,p) € R x [0, 1] denote the lottery that pays $x
with probability p and $0 with probability (1 — p). The expert payoff is (r, F'(§)) if
€ > qand (r,a) if £ < ¢. Consider the report ¢ > ¢,. If £ > ¢ then the expert’s
payoff is (r, F'(§)) whether he reports ¢ or q,. If £ < ¢, then the expert’s payoff is
(r, &) whether he reports g or g,. If g, < £ < ¢ then the expert’s payoff is (r, «).
However, had he reported ¢, instead, his reward would have been (r, F(§)) . But
F(§) > a hence (r, F(§)) first-order stochastically dominates (r,«) so the expert
cannot win and may lose as a result of reporting g > ¢,.Similarly, reporting g < ¢,

is dominated.

3 Conclusion

The classical elicitation problem concerns eliciting probabilities for given events.
This paper studies the complementary problem of eliciting events for given prob-

abilities. This is the problem involved in obtaining prior quantiles. Although the



reward r does not affect the optimality condition, it is clear that the actual effort
expended by the expert will depend on the value of the reward (precisely, on its
utility). Perhaps some part of a bonus could be tied into the probability assessment.
Interesting open questions include: Which quantiles and how many should be as-
sessed? How much accuracy can be expected in a quantile assessment? Can experts
be trained to improve their assessments? How can prior quantiles be assessed from

a group of experts?
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