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Abstract

It is known that sunspots can trigger panic-based bank runs and that the optimal banking

contract can tolerate panic-based runs. The existing literature assumes that these sunspots

are based on a publicly observed extrinsic randomizing device. In this paper, I extend the

analysis of panic-based runs to include an asymmetric-information, extrinsic randomizing device.

Depositors observe different, but correlated, signals on the stability of the bank. I find that if

the signals that depositors obtain are highly correlated, there exists a correlated equilibrium for

some demand deposit contracts. In this equilibrium, either a full bank run, or a partial bank

run, or non bank run occurs depending on the realization of the signals. Computed examples

indicate that in some economies, a demand-deposit contract that tolerates bank runs and partial

bank runs is optimal; while in some other economies a run-proof contract is optimal.

JEL Classification Numbers: D82, G21, P11

Keywords: Bank runs, randomizing device, sunspot equilibrium, correlated equilibrium,

imperfect information.

1 Introduction

In the classic Diamond and Dybvig (1983) bank runs model, bank runs are triggered by a commonly

observed random variable, which is formally modeled by Peck and Shell (2003) as a sunspot variable.
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The sunspot variable does not affect any of the fundamentals, such as endowment, preference,

or technology. Depositors perfectly observe the realization of the sunspot, and they make their

withdrawal decisions accordingly, given that everyone else makes the same decision. An individual

depositor faces no uncertainty when she makes the withdrawal decision, as she knows all other

depositors will behave in the same way because they observe the same thing. Thus, the publicly

observed sunspot serves as a randomizing device, and the probability of bank runs depends solely

on the distribution of the sunspot variable.

In this paper, I consider a more general extrinsic randomizing device in the sense that depositors

receive different, but correlated, sunspot signals. Depositors are grouped into networks according

to their observation of the signals. Depositors in the same network share sunspot information, but

depositors do not share information between networks. Receiving their own signals of the sunspot,

depositors try to infer the signals that others observe and the actions they take. In this situation,

a depositor faces uncertainty when she makes a withdrawal decision, as other people might observe

very different signals and make different decisions.

For simplicity, there are only two networks in the model. Each network observes a sunspot signal

that takes values of either 0 or 1. Signals are imperfectly correlated. This is the minimum structure

required for the analysis of imperfect coordination. I find that if the signals that depositors obtain

are highly correlated, there exists a correlated equilibrium for some demand deposit contracts. In

this equilibrium, either a full bank run, a partial bank run, or a non bank run occurs depending

on the realization of the signals. Depositors are coordinated by the imperfectly correlated sunspot

signals in the equilibrium. Thus, the sunspot signals serve as an imperfect randomizing device. The

probabilities of bank runs and partial runs are determined by the joint distribution of the sunspot

signals.

By assuming a more general extrinsic randomizing device, I intend to capture a more general

situation in the economy: Our judgement of the economy is based on different information sources.

Even if we have same information, our interpretation of the information can be different. How

does an individual depositor make his decisions knowing others might have different information

and might make different judgement? The extrinsic uncertainty can be understood as the intrinsic

uncertainty taken to the limit. By focusing on the extrinsic uncertainty, I explain that there

exist multiple equilibrium outcomes due to the imperfect coordination among the depositors in the

absence of any fundamental shocks. Empirical studies show that most banking crises are extrinsic-

driven panic runs (Boyd, et al, 2001). Specifically, before most banking crises happen, no indicator
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of the economy serves as a good predictor. Nevertheless, the randomizing device in this paper can

be understood in either way: as an intrinsic variable taken to the limit or as pure randomizing

device.

Partial bank runs are the unique result due to an imperfect coordination device. A partial run

results in a lower level of welfare than non bank run, however, it does less damage than a full bank

run. In this regard, this paper implies that imperfect coordination due to asymmetric information

can be a reason to explain why some banking crises are more serious than others.

Given the possibility that the bank runs happen ex post, the demand-deposit contract that

admits the first-best allocation is usually not optimal (Postlewaite and Vives (1987)). Cooper and

Ross (1998) show that with a perfect randomizing device, if the probability of bank runs is small,

then the optimal demand-deposit contract admits a run equilibrium, otherwise a run-proof contract

will be provided. Peck and Shell (2003) illustrate that within a broad class of banking mechanisms

including partial suspension of convertibility, the optimal contract can tolerate bank runs if the

probability is small. This paper confirms the findings of these authors. In some economies, full

bank runs and partial bank runs are tolerated.

This paper focuses on a simple demand-deposit contract. A simple demand-deposit contract is

widely used in the banking industry. However, the results in my model obtain in a broad class of

banking mechanisms. In the appendix, I consider a contract that allows for partial suspension of

convertibility. The results still hold.

There is some literature that is related to this model. Soloman (2003, 2004) considers an

imperfectly correlated sunspot randomizing device in a twin-crises model. By assuming ex-ante

different types of agents, the banking aspect of the twin crisis is reduced to a traditional sunspot

equilibrium model. Goldstein and Pauzner’s model (2005) construct a model by the approach

of gloable games in which the noisy signal about fundamentals determines the decisions of the

depositors.

The remainder of the paper is organized as follows: Section 2 introduces the model set-up.

Section 3 discusses the equilibrium in the post-deposit game. Section 4 discuss the optimal contract

in the predeposit game. Section 5 addresses the conclusions.
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2 The Model

There are three periods, t = 0, 1, 2, and a measure 1 of depositors in the economy. Each depositor

is endowed with 1 unit of consumption good in period 0. There are a measure of α (0 < α < 1)

impatient depositors, the rest are patient. Impatient depositors derive utility only from consump-

tion in period 1. Their utility is described by u(c1), where c1 is the consumption received at t = 1.

Patient depositors consume in the last period. If a patient depositor receives consumption at t = 1,

she can costlessly store it and consume it at t = 2. Thus, a patient depositor’s utility is described by

u(c1+c2), where c2 is the consumption received at t = 2. The coefficient of relative risk aversion of

the utility function, −xu00(x)/u0(x), is greater than 1 for x ≥ 1. The utility function is normalized
to 0 at x = 0, i.e., u(0) = 0. Whether a depositor is patient or impatient is his private information

and is revealed to the individual depositor at t = 1.

The investment technology is as follows: One unit of consumption goods invested in period 0

yields 1 unit in period 1, and R (R > 1) units in period 2.

The banking market is competitive. The representative bank offers a demand-deposit contract,

which describes the amount of consumption goods paid to the depositors who withdraw deposits

in periods 1 (c1) and 2 (c2), respectively. The bank pays c1 to the depositors until it runs out

of resources. It distributes the remaining resources equally among the depositors who wait until

the last period. Therefore, c2 = max
n
0, 1−nc

1

1−n R
o
, where n (0 ≤ n ≤ 1) denotes the measure of

depositors who withdraw the deposits in period 1. Depositors are isolated from one another (see

Wallce (1988)).

Depositors are grouped into two networks. Network i observes a sunspot variable, θi, i = 1, 2.

θi = {0, 1}. θ1 and θ2 are imperfectly correlated. The joint distribution of θ1 and θ2 is denoted

by Pr(θ1, θ2) = pθ1θ2 ,
P1

θ2=0

P1
θ1=0

pθ1θ2 = 1. The marginal probabilities are defined by pθ1 =P1
θ2=0

pθ1θ2 and pθ2 =
P1

θ1=0
pθ1θ2 .

Networks do not communicate with each other. Depositors in the same network share the

information of the sunspot they obtain and conjecture the sunspot signal that the other network

observes. The conditional distribution, derived from the joint distribution, is Pr(θ2 | θ1) =
pθ1θ2
pθ1

.

Network i has a measure of ni depositors. By law of large numbers, the measure of impatient

depositors in network i is αni, i = 1, 2. Impatient depositors withdraw at t = 1 regardless of other

people’s decisions. Patient depositors make withdrawal decisions given all available information.

Depositors know ex ante that there are two networks, but they do not know which network they

4



will be in until t = 1.

The sequence of timing is as follows:

Bank announces the contract;

Depositors make investment decision.

⎫⎬⎭ t = 0

Consumption types are revealed;

Information shock is realized;

Depositors make withdrawal decision.

⎫⎪⎪⎬⎪⎪⎭ t = 1

Bank allocates the remaining resource

to the rest of the depositors.

⎫⎬⎭ t = 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
post

deposit

game

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

pre-

deposit

game

The post-deposit game starts from t = 1 and ends at t = 2. In the post-deposit game, the

depositors are assumed to have already deposited at the bank. Depositors determine whether to

withdraw deposits or not, given the banking contract. Knowing how depositors behave in the post-

deposit game, at t = 0, the bank decides which contract to offer, and depositors decide whether or

not to accept the offer. The entire game, played from t = 0 to t = 2, is called the pre-deposit game.

3 Post-deposit Game

A demand-deposit banking contract in the post-deposit game m = (c1, c2) satisfies

c2 = max

½
0,
1− nc1

1− n
R

¾
, where 0 ≤ n ≤ 1, c1 ≥ 0. (1)

where n is the proportion of depositors who withdraw early.

The participation incentive compatibility constraint is defined as

u

µ
1− αc1

1− α
R

¶
≥ u(c1), (2)

which means that if all patient depositor wait until period 2, a patient depositor should receive at

least the same amount of consumption goods the impatient depositors receive in period 1. This is

the minimum requirement for a banking contract so that the patient depositors are willing to wait.

Given a demand-deposit contract satisfying (2), if all other patient depositors are honest about

their consumption type, then an individual depositor would find waiting until t = 2 a better choice

than withdrawing immediately at t = 1.

Let M denote the set that includes all banking contracts satisfying (1)-(2). This is the set that

includes all feasible banking contracts in the traditional bank run literature.
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A banking contract that satisfies (1)− (2) allows for a run equilibrium if

Eu(not withdraw|all other patient depositors withdraw) < (3)

Eu(withdraw|all other patient depositors withdraw),

where Eu denotes a patient depositor’s expected utility from his own action given the actions of all

other depositors. A contract that allows for a run equilibrium is called a run-admitting contract.

Given a run-admitting contract, if everyone else withdraws from the bank, the expected utility of a

patient depositor if she chooses to wait is strictly lower than the expected utility if she withdraws

as well. Let MRA denote the set that contains all run-admitting contracts. It is a subset of M .

In this simple model, a contract is run-admitting if c1 > 1. In the event that all people withdraw

their deposits from the bank, the bank will be out of resources. Each depositor receives payment

with probability 1/c1.

A banking contract m ∈M is run-proof if it satisfies

Eu(not withdraw|all other patient depositors withdraw) ≥ (4)

Eu(withdraw|all other patient depositors withdraw).

Let MRP denote the set that contains all run-proof contracts. It is a subset of M , and is the

complement to MRA by definition.

Given a run-admitting contract, let depositors be coordinated by the sunspot variables if pos-

sible. In particular, I look for a correlated equilibrium (Aumann 1987) that is based on the joint

distribution of the sunspot variables. Here I focus on the case in which depositors in the same

network adopt the same action, as I want to show how the sunspot signals coordinate people’s

behavior. I assume pure strategies. Depositor j’s strategy set Sj is described by Sj ={withdraw,

not withdraw}. Depositors adopt the same action for the same value of θi.

Definition 1 Given a run-admitting banking contract m ∈ MRA, the distritution of the sunspot

variables Pr (θ1, θ2) is a correlated equilibrium in the post-deposit game if (i) patient depositors

in network 1 withdraw their deposits when observing θ1 = 1 and do not withdraw when observing

θ1 = 0; (ii) patient depositors in network 2 withdraw their deposits when observing θ2 = 1 and do

not withdraw when observing θ2 = 0.

This definition is equivalent to the following four conditions.
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For a patient depositor in network 1:

p10Eu(W|W, NW) + p11Eu(W|W, W) ≥ p10Eu(NW|W, NW) + p11Eu(NW|W, W), (5)

p01Eu(NW|NW, W) + p00Eu(NW|NW, NW) ≥ p01Eu(W|NW, W) + p00Eu(W|NW, NW); (6)

For a patient depositor in network 2:

p11Eu(W|W, W) + p01Eu(W|NW, W) ≥ p11Eu(NW|W, W) + p01Eu(NW|NW, W), (7)

p10Eu(NW|W, NW) + p00Eu(NW|NW, NW) ≥ p10Eu(W|W, NW) + p00Eu(W|NW, NW), (8)

where W stands for withdraw, and NW for not withdraw. The first argument in Eu(·) is the action
of an individual depositor. The second argument denotes the action of the depositors in network 1,

and the third argument is the action of the depositors in network 2. The expected utility depends

on an individual depositor’s own action, the actions of his network members, and the actions of

depositors in the other network. Other parameters such as c1, α, n1, and n2 are suppressed here.

If a patient depositor in network 1 observes θ1 = 1, then by conditional probabilities he knows

that with probability p11
p11+p10

network 2 observes θ2 = 1 and withdraws, and with probability
p10

p11+p10

network 2 observes θ2 = 0 and wait. For a correlated equilibrium, a patient depositor in network 1

should find “withdraw” the best response given the strategies of the members of the other network

and his own network. Therefore, (5) holds. If θ1 = 0, then a patient depositor in network 1 knows

that network 2 will run on the bank with probability p01
p01+p00

, and will not run with probability
p00

p01+p00
. His network members will not withdraw, and he should find “not withdraw” the best

response that maximizes his expected utility. Thus, (6) holds. Similarly, we have equations (7) and

(8) for a patient depositor in network 2.

Let MCE denote the set of run-admitting banking contracts that satisfy (5)− (8). (5) and (7)
can be interpreted as the incentive compatibility constraints for running on the bank given the

probability that some, but not all, patient depositors wait until the last period. (6) and (8) are the

incentive compatibility constraints for waiting given the probability that some, but not all, patient

depositors run on the bank. Because a contract inMCE has to satisfy four additional constraints in

addition to that it is feasible and run-admitting, MCE is a subset of MRA. Two noises exist in the

randomizing device, p01 and p10. If both of them are zero, then the randomizing device is perfect,

and we are back to Peck-Shell sunspot approach. For a perfect randomizing device, MCE =MRA.

Given the information structure, not all contracts permit a correlated equilibrium. Proposition

1 demonstrates that for any feasible run-admitting contract, there are upper bounds of the noises,
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below which the contract permits a correlated equilibrium. Proposition 2 shows that the set of

feasible contracts that allow for a correlated equilibrium diminishes when the noises in signals (p01

and p10) increase.

Proposition 1 Given any feasible demand-deposit contractm ∈M and p11, there exist ε
¡
p11, c

1
¢
≥

0 and δ
¡
p10, p11, c

1
¢
such that if p01 ≤ ε

¡
p11, c

1
¢
and p10 ≤ δ

¡
p10, p11, c

1
¢
the contract allows for

a correlated equilibrium in the post-deposit game. ε
¡
p11, c

1
¢
= 0 and/or δ

¡
p10, p11, c

1
¢
= 0 if and

only if c1 = R
1−α+αR .

Proof. See appendix.

With noises in the sunspot information, depositors face uncertainty when they make with-

drawals. (5) − (8) are the conditions for individual depositors to follow their signals given the

probability that the other network runs on the bank. When the participation incentive compatibil-

ity constraint is binding, only the minimum requirement for a patient depositor to wait is satisfied.

Any increase in the measure of depositors running on the bank, or any increase in the probability

of more than α measure of depositors running on the bank, breaks down the participation incentive

compatibility constraint. Therefore, if c1 = R
1−α+αR , the contract does not allow for a correlated

equilibrium unless p10 = p01 = 0. On the other hand, if the participation incentive compatibility

constraint is unbinding, then there is room for the possible increase in the measure of depositors

running on the bank, and in an individual depositor’s own interest, she still prefers to wait. Hence,

all other feasible contracts allow a correlated equilibrium if noises are small enough.

Given the joint probability of θ1 and θ2, denote the set of contracts that satisfies (5) − (8) by
MCE (p11, p01, p10). The following proposition illustrates that the set MCE (p11, p01, p10) shrinks

when the noises (p01 and p10) get larger.

Proposition 2 If (−p011, p001, p010) ≥ (−p11, p01, p10) , (p001, p010) ≥ (p01, p10) andMCE (p011, p
0
01, p

0
10) 6=

∅, then MCE (p011, p
0
01, p

0
10) ⊂MCE (p11, p01, p10).

Proof. See appendix.

The strategies in the post-deposit game are complementary. If more people run on the bank or

the probability of bank runs is increased, then an individual depositor’s incentive to wait falls as

the expected payoff in the last period is lowered. Similarly, if more people wait or the probability

of non-run is increased, then a patient depositor’s expected payoff at t = 2 is raised, and she
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is more willing to wait. With a perfect randomizing device, that is, p01 = 0 and p10 = 0, an

individual depositor knows that all other depositors adopt the same action as she does. With the

decrease in p11 and the increase in p01 and p10, the conditional probabilities Pr(θi = 0|θj = 1)

and Pr(θi = 1|θj = 0) are increased. Receiving a signal, an individual depositor knows that the

other network is more likely to take a different action. Given the contract, due to the strategic

complementarity, it is better for an individual depositor to switch to the other network’s action

rather than follow her own signal as p01 and p10 are above the thresholds. Hence, as p10 and p01

increase, there are fewer contracts consistent with the definition of the correlated equilibrium. In

an extreme case, for example, if p01 = 1−p11 and p11 is small enough, there is no contract allowing
for a correlated equilibrium. When a banking contract m falls in the subset of MRA\MCE, it

neither allows for a coordinating equilibrium, nor is run-proof.1 In this situation, we are back to

the original Diamond-Dybvig world in which a contract has a run as well as a non-run equilibrium.

According to the traditional Diamond-Dybvig interpretation, if such a contract is offered, at t = 0,

depositors would either accept it, believing non-run equilibrium will take place, or not accept it,

believing the run equilibrium will occur.

The following example is provided to explain the partitions of feasible banking contracts.

A Numerical Example:

Let u(c) =
(c+ b)γ − bγ

γ
, γ = −1, b = 0.5. R = 1.5, α = 0.4, n1 = n2 = 0.5, p11 = p01 = p10 =

0.001.

In this example, M , MRP , MCE and MRA\MCE are as follows (summarized by c1):

Banking contract c1

M [0, 1.2500]

MRP [0, 1]

MCE (1, 1.2495]

MRA\MCE (1.2495, 1.2500]

In a correlated equilibrium, there are three possible outcomes. If θ1 = θ2 = 1, all depositors

withdraw deposits. If θ1 = 0 and θ2 = 1, or θ1 = 1 and θ2 = 0, only a fraction of patient depositors

run on the bank. No patient depositor runs on the bank when θ1 = θ2 = 0. I define a full bank

run, partial bank run and non bank run as follows:

1Soloman (2003, 2004) does not have this problem because of the assumptions that foreigners are paid in nominal
asset and they are risk neutural.
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Definition 2 (Full Bank Run) In the post-deposit game, if all depositors withdraw deposits, then

a full bank run occurs.

Definition 3 (Partial Bank Run) In the post-deposit game, if some, not all patient depositors

withdraw deposits, then a partial bank run occurs.

Definition 4 (Non Bank Run) In the post-deposit game, if all patient depositors do not withdraw

deposits in period 1, then non bank run occurs this post-deposit game.

By definition, in a correlated equilibrium, depositors in both networks interpret a signal of value

1 as the sign to withdraw, and 0 as the sign to wait. Generally speaking, because sunspots do not

affect the fundamentals, people can interpret the signals in the way they please. For example, one

network views 1 as the signal to wait, and the other network treats 0 as the signal to run. Thus,

an imperfect information structure can allow for more than one type of correlated equilibrium. In

this paper, the interpretations of signals are assumed to be exogenously given. Instead of varying

the interpretations, the joint probability distribution of θ1 and θ2 can be changed to achieve the

same results. If the exogenous uncertainty is understood as the uncertainty in fundamentals taken

to the limit, then it can be understood as people usually have common views on which signal is

good and which is bad.

Given the imperfect randomizing device, not every run-admitting contract allows for a correlated

equilibrium. Before I start the welfare analysis, let me clarify the strategies of an individual

depositor in the post-deposit game. To start with a banking contract m ∈M,

1. If m ∈ MCE, that is, m allows for a correlated equilibrium, then patient depositors are

coordinated by the sunspots. Patient depositors withdraw the deposits when θi = 1, i = 1, 2,

is observed, and wait otherwise.

2. If m ∈ MRP , then patient depositors do not run regardless of the realization of the sunspot

variable.

3. If m ∈MRA\MCE, then the contract neither allows for a correlated equilibrium, nor is run-

proof. The randomizing device fails. Depositors either accept the offer ex ante and do not

run ex post, or reject the offer ex ante and anticipate that the run equilibrium always occurs.

In the last two scenarios, sunspots do not matter in the post-deposit game, as the strategies of

depositors are independent of the realization of the sunspot signals.
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4 Pre-deposit Game

Knowing the strategies of depositors in the post-deposit game given the information structure,

the presentative bank chooses the optimal contract to offer at t = 0. As a result of a competitive

market, the bank offers a contract that maximizes depositors’ expected utility. If the contract yields

an ex-ante expected utility level higher than that under autarky, depositors will accept it and the

post-deposit game will be played. In all other cases, depositors prefer to stay in autarky.

Same notation is used in this section to denote the banking contracts in the pre-deposit game.

The bank can choose from three types of contracts, corresponding to the partitions ofM in the post

deposit game. I will first calculate the ex-ante expect utility obtained given a contract m ∈ MRP

and a contract m ∈ MCE, assuming the depositors always accept the banking contract. I also

calculate the ex-ante expected utility if non run occurs given a run-admitting contract that does

not allow for a correlated equilibrium. A sufficient condition for an optimal contract to tolerate a

correlated equilibrium in the post deposit game is that the best contract inMCE is better than the

best contract in MRP and than the best outcome (non run) given a best contract in MRA\MCE .

If the ex-ante utility is higher than that under the autarky, the depositor will accept the contract

ex ante.

A run-proof contract is a contract such that a patient depositor weakly prefers to wait even

though everyone else withdraws the deposits. In the demand-deposit contract framework, a banking

contract is run-proof if and only if c1 ≤ 1. It is equivalent to the autarky when c1 = 1. Because

the coefficient of relative risk aversion is greater than 1, the banking contract that depositors are

willing to accept ex ante should satisfy c1 ≥ 1. Thus, the only ex-ante acceptable run-proof contract
requires c1 = 1, which results in the same allocation as under autarky. I impose an assumption

that if a contract yields expected utility equal to that under autarky, people still deposit in the

bank. With this assumption, the bank can at least offer the run-proof contract to the depositors.

The expected utility under run-proof contract in the predeposit game is:

WRP (m) = αu(1) + (1− α)u(R) (9)

Next, I discuss the expected utility given a contract that allows for a correlated equilibrium in

the post deposit game. I define the correlated equilibrium in the predeposit game as follows.

Definition 5 Given a feasible contract m ∈M , the pre-deposit game has a correlated equilibrium
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if there is a subgame perfect Nash-Aumann equilibrium in which (i) depositors are willing to deposit

and (ii) the post-deposit game has a correlated equilibrium.

I use partial run 1 and partial run 2 to distinguish the partial runs conducted by networks 1 and

2, respectively. If the contract admits a correlated equilibrium, then the probabilities of full bank

runs, partial bank runs, and non bank run are determined by the information structure; they are

p11, p01, p10 and p00, respectively. I assume the social welfare is the aggregated expected utilities

of individual depositors and all depositors are equally weighted. In the following context, welfare

and ex-ante expected utility are used interchangeably.

When non bank run occurs, the welfare, denoted by Wnon−run(m), is

Wnon−run(m) = αu(c1) + (1− α)u

µ
1− αc1

1− α
R

¶
.

When partial run i occurs, the welfare, denoted by W p−run−i(m), i = 1, 2, is

W p−run−i(m) =

⎧⎪⎨⎪⎩
1

c1
u(c1), if (ni + αn−i)c1 > 1;

(ni + αn−i)u(c1) + (1− α)n−iu

µ
1− (ni + αn−i)c1

(1− α)n−i
R

¶
, otherwise.

Note thatW p−run−i(m) is continuous in c1. Also note that given c1 ≥ 1, the welfare under a partial
run is strictly less than that under non run.

When a full bank run occurs, the welfare, denoted by W run(m), is

W run(m) =
1

c1
u(c1).

Given the probabilities, the best contract offered by the bank, which allows for a correlated equi-

librium, is

Ŵ (m) = max
c1

p11W
run(m) + p10W

p−run−1(m) + p01W
p−run−2(m) + p00W

non−run(m) (PCE)

s.t. m ∈MCE .

Given p11, the value function of problem PCE is strictly decreasing in noises for two reasons:

First, the set of contracts that allows for correlated equilbrium shrinks when noises increase. Hence,

the choice set is smaller. Second, because the welfare under partial runs is lower than that under

non run, the same contract yields the lower expected utility if the probabilities of partial runs are

larger whereas the probability of non run is smaller.
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Lemma 1 Given p11, the value function of problem PCE is strictly decreasing in p01 and p10 for

MCE (p11, p01, p10) 6= ∅.

Proof. By proposition 2, given p11, the set of MCE diminishes when p01 and/or p10 increase.

Let (p001, p
0
10) ≥ (p01, p10) and (p001, p

0
10) 6= (p01, p10). The solution to PCE given (p11, p001, p

0
10) ,

m0 =
¡
c10, c20

¢
, is in MCE (p11, p01, p10) . Plug m0 =

¡
c10, c20

¢
into the objective function of PCE

given (p11, p01, p10) .Denote the welfare acheived byW (m0; p11, p01, p10). As the welfare under partial

runs is lower than non run, W (m0; p11, p01, p10) > Ŵ (m0; p11, p001, p
0
10). Because Ŵ (m; p11, p01, p10)

is at least as high as W (m0; p11, p01, p10), Ŵ (m; p11, p01, p10) > Ŵ (m0; p11, p001, p
0
10).

Proposition 3 and its corollary demonstrate that there exist upper bounds of the probabilities of

full runs, partial runs and non run, respectively, below which a contract has a correlated equilibrium

in the predeposit game.

Proposition 3 There exist p̄11 > 0, p̄01 (p11) ≥ 0, and p̄10 (p11, p01) ≥ 0 such that for p11 ≤ p̄11,

p01 ≤ p̄01 (p11) , and p10 ≤ p̄10 (p11, p01) , there exist at least one feasible demand-deposit contract

m =
¡
c1, c2

¢
allowing for a correlated equilibrium and is strictly better than the run-proof contract.

p̄01 (p̄11) = 0, and p̄10 (p11, p̄01) = 0.

Proof. The optimal contract allowing for a correlated equilibrium solves problem PCE. Given p11,

if p01 = p10 = 0, the problem is the same as the traditional symmetric sunspot equilibrium problem.

The conditions for a correlated equilibrium are always satisfied. According to Cooper and Ross

(1998), there is a unique cutoff level of p11, above which a run-proof contract is better, and below

which the optimal contract is run-admitting. Denote this cutoff level by p̄11.

Given p11 and p10 = 0, the value function of PCE is strictly decreasing in p01 by lemma 1. If

p11 = p̄11, only p01 = 0 can make a run-admitting contract as good as a run-proof contract. Hence,

p̄01 (p̄11) = p̄11.

If p11 < p̄11 and p01 = p10 = 0, the value of PCE is strictly higher than that of a run-proof

contract. Holding p11 < p̄11 and p10 = 0, p01 can be increased a little bit and the value of PCE is

still higher than the value of a run-proof contract. Note that the set of MCE is diminishing in p01.

Let p∅01 (p11) denote the cutoff of value of p01, below which the set of M
CE is not empty, and above

which it is empty. If the value of PCE at p∅01 (p11) is lower than W
RP , then by the monotonicity of

the value function, a cutoff p01 depending on p11 can be found, below which the contract allowing

for a correlated equilibrium is better than the run-proof contract, and above which the run-proof
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contract is better. Denote such p01 by pV01 (p11). Let p̄01 (p11) = min
©
p∅01 (p11) , p

V
01 (p11)

ª
. It is the

cutoff value of p01, below which the contract allowing for a correlated equilibrium is better than

the run-proof contract, above which the run-proof contract is better, or there is no contract which

allows for a correlated equilibrium.

The value function of PCE is not necessarily continuous, as the choice set can be non-convex.

We need to prove that p̄01 (p11) is not equal to 0 for p11 < p̄11. Let c1∗∗ denote the solution to

problem PCE with p01 = p10 = 0 and p11 < p̄11. According to Ennis and Keister (2004), c1∗∗ can

not be R
1−α+αR . By proposition 1, given p11, c1∗∗ is a feasible contract that allows for a correlated

equilibrium for p01 ≤ ε
¡
p11, c

1∗∗¢ , where ε ¡p11, c1∗∗¢ > 0. The welfare at c1∗∗ on p01 ≤ ε
¡
p11, c

1∗∗¢
is continuous in p01. So p01 can be increased at least to min{p̄11 − p11, ε

¡
p11, c

1∗∗¢} and c1∗∗ can

still be better than the run-proof contract. Thus, when p11 < p̄11, the cutoff level of p01 > 0.

Let p11 ≤ p̄11 and p01 ≤ p̄01 (p11), the same process can be repeated to prove there exists

p̄10 (p11, p01) ≥ 0. Therefore, if the probabilities of partial runs and full runs are small, then the
contract that allows for a correlated equilibrium is better than the run-proof contract.

Because the best run-proof contract is equivalent to autarky, we have the following corollary:

Corollary 1 For p11 ≤ p̄11, p01 ≤ p̄01 (p11) and p10 ≤ p̄10 (p11, p01), there exists at least one feasible

banking contract such that the pre-deposit game has a correlated equilibrium.

If m ∈ MRA\MCE , the best outcome one can hope for is that all depositors anticipate the

non-run equilibrium in the post-deposit game, and that depositors deposit at the bank ex ante and

they do not run at t = 1. The welfare of the best outcome is given by:

Ŵ (m) = max
c1

αu(c1) + (1− α)u

µ
1− αc1

1− α
R

¶
(PDD)

s.t. m ∈MRA\MCE.

A sufficient condition for allowing for a correlated equilibrium is that the welfare of the best

m ∈MCE is higher than that of the bestl run-proof contract and than that of the best outcome of

the best m in MRA\MCE. Similarly, a run-proof contract will be the best if the welfare is higher

than that of the best m inMCE and than the best outcome of the optimal contract inMRA\MCE .

The objective function of PDD is not effected by p11, p01 or p10, but the choice set increases

in p01 and p10 given p11. Thus, the value function of PDD is increasing in p01 and p10. However,

because the choice set is not necessarily convex, the value function can be discontinuous at p01 = 0

and/or p10 = 0.
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Some computed examples indicate that in some economies the optimal contract allows for a

correlated equilibrium and in other economies, the run-proof contract is optimal.

Proposition 4 In some economies, the optimal demand-deposit banking contract allows for a cor-

related equilibrium.

Proof. Prove by example. All parameters are the same as in the previous example. The expected

utilities of the optimal contracts inMCE, MRP and the best outcome inMRA\MCE are as follows:

m in c1∗∗ Ŵ (m)

MRP 1 1.4333

MCE 1.0707∗∗ 1.4341

MRA\MCE → 1.2495 → 1.4286

The optimal contract in this example is c1∗∗ = 1.0707, which yields a welfare level of 1.4341. It is

better than the best run-proof contract and autarky. If m in MRA\MCE, in the best situation,

that is, depositors accept the contract and do not run ex post, the highest welfare level is 1.4286,

which is still lower than that underMCE and also lower than that under autarky. Thus, depositors

will not accept the contract in the first place. Hence, the optimal m is in MCE in this example.

By Proposition 4, the asymmetric randomizing device can be part of the equilibrium in an

economy. The full bank runs and partial bank runs are equilibrium phenomena. Runs are tolerated

as the gain from liquidity smoothing is large.

Corollary 2 In some economies, the optimal demand-deposit banking contract is run-proof.

Proof. Prove by example. The example in the previous section is used here, but p11, p01 and p10

are varied. Let p11 = p01 = p10 = 0.005. The expected utilities of the optimal contracts in MCE,

MRP and the best outcome in MRA\MCE are as follows:

m in c1∗∗ Ŵ (m)

MRP 1∗∗ 1.4333

MCE 1.0610 1.4330

MRA\MCE → 1.2476 → 1.4287

The run-proof contract is the best one.
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The best outcome in MRA\MCE can achieve higher welfare than the best run-proof contract

and than the best contract that allows for a correlated equilibrium. Let us continue the example,

but let p11 = 0.1, p01 = 0.2 and p10 = 0.4. The welfare is as follows:

m in c1∗∗ Ŵ (m)

MRP 1 1.4333

MCE → 1 → 1.3933

MRA\MCE → 1.1407∗∗ → 1.4335

In this economy, it is hard to tell which contract is optimal. A run-proof contract is better than

a contract that allows for a coordinating equilibrium. But, if this randomizing device is not used,

then a higher welfare level may be achieved.

So far the analysis is based on a simple demand-deposit contract. However, the results hold in

a broad class of banking mechanism. In the appendix, I consider a banking contract that allows

for partial suspension of convertibility. A correlated equilibrium exists in some economies. Bank

runs and partial runs are tolerated in some economies.

5 Conclusions

In this paper, I extend the analysis of panic-based runs to include an asymmetric-information,

extrinsic randomizing device. I show that in an economy with asymmetric sunspot information

structure, there exists a correlated equilibrium for some demand-deposit contracts. In this equi-

librium, either a full bank run, or a partial bank run, or non bank run occurs depending on the

realization of the sunspot signals. In some economies, the optimal banking contract tolerates full

runs and partial runs. The run-proof banking contract is not the best, as it sacrifices too much

welfare.

Interestingly, there are banking contracts that are neither run-proof, nor consistent with cor-

related equilibrium if sunspots are imperfectly observed. It is hard to describe the equilibrium

without further discussion of game theory or further assumptions on the preference of depositors.

Therefore, the analysis provides a necessary condition for using a run-proof banking contract or a

contract allowing for a correlated equilibrium. Sufficient condition is also discussed, assuming the

best outcome of a run-admitting contract that does not allow for a correlated equilibrium. These

results hold in a broad class of banking mechanisms including partial suspension of convertibility.
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The exogenously given interpretation of the signal is assumed in this paper. However, taking

the sunspot seriously, depositors can interpret the signals in any way they prefer. When people are

allowed to choose networks, there also can be multiple equilibria in the pre-deposit game. Which

equilibrium is mostly likely to occur? In the extension of this paper, I will consider the refinement

of the equilibria and aim to provide a better answer to these remaining questions.
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6 Appendix

6.1 Proofs of Propositions

Proposition 1Given any feasible demand-deposit contractm ∈M and p11, there exist ε
¡
p11, c

1
¢
≥

0 and δ
¡
p10, p11, c

1
¢
such that if p01 ≤ ε

¡
p11, c

1
¢
and p10 ≤ δ

¡
p10, p11, c

1
¢
the contract allows for

a correlated equilibrium in the post-deposit game. ε
¡
p11, c

1
¢
= 0 and/or δ

¡
p10, p11, c

1
¢
= 0 if and

only if c1 = R
1−α+αR .

Proof. When p01 = 0, (6) − (7) are satisfied for any feasible demand-deposit contract. p01 does
not affect (5) and (8). Given p11 and c1, p10 can achieve its upper bound when p01 is 0.

Suppose (αn1 + n2) c
1 ≤ 1 and (n1 + αn2) c

1 ≤ 1. Let p01 = 0, rewrite equations (5) and (8)

explicitly, we get

p00

h
u
³
1−αc1
1−α R

´
− u

¡
c1
¢i
≥ p10

h
u
¡
c1
¢
− u

³
1−(n1+αn2)c1

n2(1−α) R
´i
≥ −p11

1

c1
u
¡
c1
¢

By simple algebra, we get ε
¡
p11, c

1
¢
, the upper bound of p10, ε

¡
p11, c

1
¢
, as follows:

ε =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

⎧⎨⎩1− p11,
p11

1
c1
u(c1)

u
1−(n1+αn2)c1

n2(1−α) R −u(c1)

⎫⎬⎭ , if u
¡
c1
¢
< u

³
1−(n1+αn2)c1

n2(1−α) R
´
;

(1−p11) u
1−αc1
1−α R −u(c1)

u
1−αc1
1−α R −u 1−(n1+αn2)c1

n2(1−α) R
, if u

¡
c1
¢
≥ u

³
1−(n1+αn2)c1

n2(1−α) R
´
.

It is easy to see that ε = 0 if and only if 1−αc
1

1−α R = c1.

Given p10 < ε
¡
p11, c

1
¢
, the upper bound of p01,

δ
¡
p11, p01, c

1
¢
= min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1−p11−p10) u
1−αc1
1−α R −u(c1)

u
1−αc1
1−α R −u 1−(αn1+n2)c1

n1(1−α) R
,

p11
1
c1 u(c

1)

u
1−(αn1+n2)c1

n1(1−α) R −u(c1)
, 1− p11 −

p10 u
1−αc1
1−α R −u 1−(n1+αn2)c1

n2(1−α) R

u
1−αc1
1−α R −u(c1)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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if u
¡
c1
¢
< u

³
1−(αn1+n2)c1

n1(1−α) R
´
;

δ
¡
p11, p01, c

1
¢
= min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1−p11−p10) u
1−αc1
1−α R −u(c1)

u
1−αc1
1−α R −u 1−(αn1+n2)c1

n1(1−α) R
,

1− p11 −
p10 u

1−αc1
1−α R −u 1−(n1+αn2)c1

n2(1−α) R

u
1−αc1
1−α R −u(c1)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
if u

¡
c1
¢
≥ u

³
1−(αn1+n2)c1

n1(1−α) R
´
.

With 1−αc1
1−α R = c1, we have ε = 0, the only possible value of p10 is 0. It is easy to see that

δ = 0. Also, the only way to make δ = 0 is to have 1−αc1
1−α R = c1 regardless the value of p10.

In the same way, we can get the upper bound of p01 and p10 for the other three cases in which

(1) (αn1 + n2) c
1 > 1 and (n1 + αn2) c

1 ≤ 1, or (2) (αn1 + n2) c
1 ≤ 1 and (n1 + αn2) c

1 > 1, or (3)

(αn1 + n2) c
1 < 1 and (n1 + αn2) c

1 < 1.

Proposition 2 If (−p011, p001, p010) ≥ (−p11, p01, p10) , (p001, p010) ≥ (p01, p10) and MCE (p11, p01, p10) 6=
∅, then MCE (p011, p

0
01, p

0
10) ⊂MCE (p11, p01, p10).

Proof. Prove the proposition in two steps. First, I illustrate that for any m in MCE (p011, p
0
01, p

0
10),

it is also inMCE (p11, p01, p10). Second, I determine that there exists some m inMCE (p11, p01, p10)

but not in MCE (p011, p
0
01, p

0
10).

Let m ∈ MCE (p011, p
0
01, p

0
10). Discuss cases by parameters. If (αn1 + n2)c

1 ≤ 1 and (n1 +

αn2)c
1 ≤ 1, rewrite (5)− (8) as

p010

h
u(c1)− u(1−(n1+αn2)c

1

(1−α)n2 R)
i
≥ −p011 1c1u(c

1) (50)

−p001
h
u
³
1−αc1
1−α R

´
− u(1−(αn1+n2)c

1

(1−α)n1 R)
i
− p010

h
u
³
1−αc1
1−α R

´
− u(c1)

i
≥ −(1− p011)

h
u
³
1−αc1
1−α R

´
− u(c1)

i
(60)

p001

h
u(c1)− u(1−(αn1+n2)c

1

(1−α)n1 R)
i
≥ −p011 1c1u(c

1) (70)

−p010
h
u
³
1−αc1
1−α R

´
− u(1−(n1+αn2)c

1

(1−α)n2 R)
i
− p001

h
u
³
1−αc1
1−α R

´
− u(c1)

i
≥ −(1− p011)

h
u
³
1−αc1
1−α R

´
− u(c1)

i
(80)

Note that (50)−(60) and (70)−(80) are symmetric in terms of p01 and p10. Therefore, the analysis
can be focused on (50) − (60). The RHS of (50) is negative. An increase in p011 to p11 decreases

the RHS. If u(c1) − u(1−(n1+αn2)c
1

(1−α)n2 R) ≥ 0, any change in p010 does not change the sign of (5
0). If

u(c1)− u(1−(n1+αn2)c
1

(1−α)n2 R) < 0, a decrease in p010 to p10 rises the LHS. Therefore, the inequality sign
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in (50) still holds for (−p011, p001, p010) ≥ (−p11, p01, p10) .In (60) , each term in the brackets is positive.
The LHS is decreasing in p001 and p010, and the RHS is increasing in p011. Therefore, the contract m

satisfies (60) for (−p011, p001, p010) ≥ (−p11, p01, p10). Same reasoning for (70) and (80).
In the second step, I show that for (−p011, p001, p010) ≥ (−p11, p01, p10), there exists a con-

tract m that is in MCE (p11, p01, p10) but not in MCE (p011, p
0
01, p

0
10). Suppose that there is m ∈

MCE (p11, p01, p10) such that at least one of (5)− (8) is binding. Change in the probabilities from
(−p11, p01, p10) to (−p011, p001, p010) breaks down the inequality sign, such that at least one of (5)−(8)
is no longer satisfied. Such a contract is not inMCE (p011, p

0
01, p

0
10) . Next, I prove that not every fea-

sible contract allows for a coordinating equilibrium, and some inequalities must be binding for some

m. Let p10, p01 ≥ 0. Because at least one of p010 and p001 is strictly greater than zero, c
1 = R

1−α+αR

is no longer in MCE (p011, p
0
01, p

0
10) by proposition 1, which means at least one of the inequalities

does not hold at c1 = R
1−α+αR . By the continuity of the utility function, the inequality must be

binding at some c1 because MCE (p11, p01, p10) is not empty.

The other three cases can be proved in a similar way.

Note, if p11 is small enough whereas p10 and p01 are large enough, MCE (p11, p10, p01) = ∅.

6.2 A Banking Contract Allowing Partial Suspension of Convertibility

6.2.1 Model Set Up

Banking contracts will be generalized in this section. I discuss an economy that bears aggregate

uncertainty and let the contract be contingent on the positions of the depositors in the queue. To

keep the illustration simple, a discrete case will be analyzed here. I follow the notations and the

definitions in Peck and Shell (2003) as much as possible. There are N depositors in the economy,

among them there are α number of impatient depositors, where α ≤ N is a random number with

probability density function f(α). Each depositor is endowed with 1 unit of consumption good at

t = 0. The utility function of the impatient depositors is denoted by u(c1), and the utility function

of the patient depositors is by v(c1+c2). u and v are strictly increasing, strictly concave, and twice

continuously differentiable. The coefficients of relative risk aversion of u and v are greater than 1.

The specification of the information structure is the same as in the previous framework. De-

positors do not know which network they will be in ex ante. Network i has Ni number of de-

positors, where i = 1, 2, and N1 + N2 = N1. N1 and N2 are known ex ante. Depositors have

probability N1/N to be in network 1, and probability N2/N to be in network 2. For each α,
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let αi (0 ≤ αi ≤ min{Ni, α}) be the number of impatient depositors in network i, i = 1, 2, and

α1+α2 = α. Denote the ex-ante conditional probability of having α1 impatient depositors in group

1, and α2 in group 2 conditional on α by g(α1, α2|α). The ex-ante probability that there are α
number of impatient depositors, α1 of them in group 1, and α2 of them in group 2 is:

h(α1, α2, α) = f(α)g(α1, α2|α).

After the consumption shock and information shock are realized, the patient depositors update

the probability of α by Bayes’ rule conditional on their consumption type and information type

(which group he is in). The ex-post probability of α, contingent on a depositor being patient is

denoted by fp(α). The ex-post probability that there are αi number of patient depositors in network

i contingent on α and on a patient depositor is in network i is denoted by gip(α1, α2|α). Hence, the
ex-post probability that there are α number of impatient depositors, and among them α1 are in

network 1, and α2 are in network 2 for a patient depositor in network i is:

hip(α1, α2, α) = fp(α)g
i
p(α1, α2|α)

The technology is the same as in the demand-deposit case. Following Peck and Shell (2003),

let c1(z) denote the period 1 withdrawal of consumption by the depositor in arrival position z. The

resource constraint is

c2(α1) =
N − Σα1z=1c1(z)

N − α1
R, c1(N) = N −

N−1X
z=1

c1(z). (10)

Depositors do not know their positions in the line when they make withdrawals. They have

equal chance to be in any position in the line. If there are α1 depositors withdrawing the deposits,

then the probability of getting c1(z) will be 1
α1
for z = 1, 2, .., α1. Therefore, the expected utility

for a patient depositor if she withdraws the deposit in period 1 is 1
α1
Pα1

z=1 v(c
1(z)).

6.2.2 Post-Deposit Game

A banking contract m that allows for partial suspension in the post-deposit game is described by

the vector

m = (c1(1), ..., c1(z), ..., c1(N), c2(0), ..., c2(N − 1)) and

(c1(1), ..., c1(z), ..., c1(N), c2(0), ..., c2(N − 1)) satisfies (10).
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The participation incentive compatibility constraint requires

N−1X
α=0

fp(α)v

µ
N − Σαz=1c1(z)

N − α
R

¶
≥

N−1X
α=0

fp(α)

"
1

α+ 1

α+1X
z=1

v(c1(z))

#
. (11)

The set of feasible banking contracts M is defined as:

M =
©
m ∈ R2N+ : (10)− (11) hold for all α

ª
.

A run-proof contract requires

v
³
(N − ΣN−1z=1 c

1(z))R
´
≥ 1

N

NX
z=1

v(c1(z)). (12)

The set of run-proof banking contracts MRP is defined as:

MRP = {m ∈M : (12) hold for all α} .

I continue to use the definition of correlated equilibrium as in the previous section. The corre-

sponding restrictions on the banking contract that allows for a correlated equilibrium are:

For a patient depositor in network 1:

p10

N−1X
α=0

min{N1−1,α}X
α1=0

h1p(α1, α2, α)

PN1+α2
z=1 v(c1(z))

N1 + α2
+ p11

1

N

PN
z=1 v(c

1(z)) ≥

p10

N−1X
α=0

min{N1−1,α}X
α1=0

h1p(α1, α2, α)v

Ã
N − ΣN1+α2−1z=1 c1(z)

α2 + 1
R

!
+ p11v

³h
N − ΣN−1z=1 c

1(z)
i
R
´ (13)

p01

N−1X
α=0

min{N1−1,α}X
α1=0

h1p(α1, α2, α)v

Ã
N − ΣN2+α1z=1 c1(z)

N1 − α1
R

!
+ p00

N−1X
α=0

fp(α)v

µ
Ny − Σαz=1c1(z)

N − α
R

¶
≥

p01

N−1X
α=0

min{N1−1,α}X
α1=0

h1p(α1, α2, α)

PN2+α1+1
z=1 v(c1(z))

N2 + α1 + 1
+ p00

N−1X
α=0

fp(α)

Pα+1
z=1 v(c

1(z))

α+ 1

(14)
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For a patient depositor in network 2:

p11
1

N

PN−1
z=1 v(c1(z)) + p01

N−1X
α=0

min{N2−1,α}X
α2=0

h2p(α1, α2, α)

PN2+α1
z=1 v(c1(z))

N2 + α1
≥

p11v
³h
N − ΣN−1z=1 c

1(z)
i
R
´
+ p01

N−1X
α=0

min{N2−1,α}X
α2=0

h2p(α1, α2, α)v

Ã
N − ΣN−α1−1z=1 c1(z)

α1 + 1
R

! (15)

p10

N−1X
α=0

min{N2−1,α}X
α2=0

h2p(α1, α2, α)v

Ã
N − ΣN1+α2z=1 c1(z)

N2 − α2
R

!
+ p00

N−1X
α=0

fp(α)v

µ
Ny − Σαz=1c1(z)

N − α
R)

¶
≥

p10

N−1X
α=0

min{N2−1,α}X
α2=0

h2p(α1, α2, α)

PN1+α2+1
z=1 v(c1(z))

N1 + α2 + 1
+ p00

N−1X
α=0

fp(α)

Pα+1
z=1 v(c

1(z))

α+ 1

(16)

The set of banking contracts that are consistent with a correlated equilibrium is defined as:

MCE = {m ∈M : (13)− (16) hold for all α} .

An Example

The parameters in the following example are similar to that in Peck and Shell (2003). There are

two depositors; one in each network. The probability of being in either group is equal for both of

them ex ante. Let u(x) =
Ax1−a

1− a
, v(x) =

x1−b

1− b
, A = 7, a = b = 1.01, R = 1.1, y = 3. A depositor

is impatient with probability p, p = 0.4. In this simple example, there is only one choice variable,

which is c1(1).

Let p11 = 0.001, p01 = 0.009, p10 = 0. Sets of banking contracts are described as follows:

m in c1 (1)

M [0, 3.2937]

MRP [0, 3.2852]

MCE [3.2928, 3.2936]

MRA\MCE (3.2852, 3.2928) ∪ (3.2936, 3.2937]

6.2.3 Pre-deposit Game

In the pre-deposit game, the bank decides the best contract to offer. The depositors compare the

welfare under autarky with the ex-ante welfare the contract yields. The optimal m ∈ MCE that
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allows for a correlated equilibrium can be calculated in the same way as in the previous section.

p11, p10, p01 and p00 are the probabilities of full runs, partial runs and non-run, respectively. The

examples below show that in some economies, the optimal banking contract with partial suspension

of convertibility tolerates a correlated equilibrium. In some economies, the optimal banking contract

with partial suspension of convertibility is run-proof.

Examples

The economy has three depositors: network 1 has 1 depositor and network 2 has 2 depositors.

α = 0.5. u(x) =
Ax1−a

1− a
, v(x) =

x1−b

1− b
, A = 10, a = b = 1.01, R = 2. There are two choice variables

here: c1(1) and c1(2). Welfare is normalized to be W + 1646. In autarky, W aut = −1.9473.
(1) p11 = 0.0001, p01 = 0.0009

The highest ex-ante welfare levels that the best contracts in each subset can achieve are:

m in c1∗(1) c1∗(2) Ŵ (m)

MRP 1.5780 0.9826 0.3366

MCE 1.6226∗ 1.0368∗ 0.4023∗

MRA\MCE 1.6545 1.0289 0.4005

(2) p11 = 0.0008, p01 = 0.0002

The highest ex-ante welfare levels that the best contracts in each subset can achieve are:

m in c1∗(1) c1∗(2) Ŵ (m)

MRP 4.7340 2.9479 0.3280

MCE 4.8678 3.1097 0.3911

MRA\MCE 4.9643∗ 3.0865∗ 0.3912∗

(3) The example in the post-deposit game continued. The welfare in each partition of M is

calculated as follows. The welfare is re-normalized to be W + 673.

m in c1∗(1) Ŵ (m)

MRP 3.2852 0.787

MCE 3.2936 0.791

MRA\MCE 3.2937 0.793

The welfare under autarky is W = 0.5427.
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In this example, the best run-proof contract and the best contract that allows for a correlated

equilibrium will be accepted ex ante. However, a run-proof contract is inferior to a contract that

allows for a correlated equilibrium.
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