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Abstract

Default is a rare event, even in segments in the midrange of a bank�s portfolio.

Inference about default rates is essential for risk management and for compliance

with the requirements of Basel II. Most commercial loans are in the middle-risk

categories and are to unrated companies. Expert information is crucial in inference

about defaults. A Bayesian approach is proposed and illustrated using a prior

distribution assessed from an industry expert. The method of All Likely Datasets,

based on su¢ cient statistics and expert information, is used to characterize likely

datasets for analysis. A check of robustness is illustrated with an �� mixture of

priors.

Keywords: Bayesian inference, robustness, expert information, Basel II, risk

management, prior assessment



1 Introduction

Estimation of default probabilities (PD), loss given default (LGD, a fraction) and ex-

posure at default (EAD) for portfolio segments containing reasonably homogeneous

assets is essential to prudent risk management. It is also crucial for compliance with

Basel II rules for banks using the IRB approach to determine capital requirements

(Basel Committee on Banking Supervision (2004)). Estimation of small proba-

bilities is tricky, and this paper will focus on estimating PD. The emphasis is on

segments in the middle of the risk pro�le of the portfolio. Although the risk is

in the middle of the asset mix, the probability of default is still "small." It is in

fact likely to be about 0.01; defaults, though seen, are rare. The bulk of a typical

bank�s commercial loans are concentrated in these segments (segments di¤er across

banks). Very low risk institutions are relatively few in number and they have access

to capital through many avenues in addition to commercial loans. Very high risk

loans are largely avoided and when present are often due to the reclassi�cation of a

safer loan as conditions change. To put this in perspective, the middle-quality loans

are approximately S&P Baa or Moody�s BBB. In practice the bulk of these loans

are to unrated companies and the bank has done its own rating to assign the loans

to risk "buckets." The focus of this paper is on estimation of the default probability

for such a risk bucket on the basis of historical information and expert knowledge.

We introduce the "All Likely Data" (ALD) approach, using su¢ cient statistics to

de�ne dataset types characterized by the number of defaults for a particular sample

size. The number of types is linear in the sample size, while the number of distinct

datasets is exponential. This a¤ords considerable simpli�cation. Next, we use ex-

pert information to identify likely types, and then run analyses for all likely types -

a set of types corresponding to the most likely datasets. Since defaults are expected

to be rare events, a small number of types characterize the likely samples. Finally,
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we conduct a robustness analysis, in the spirit of validation exercises required of

banks under Basel II.

Throughout the paper we take a probability approach to the quantitative de-

scription of uncertainty. There are many arguments that uncertainty is best de-

scribed in terms of probabilities. The classic axiomatic treatment is Savage (1954).

In the case of default modeling, where measuring and controlling risk is the aim,

it is natural to focus on anticipating defaults, or at least anticipating the aggre-

gate number of defaults. Suppose there are a number of default con�gurations, and

we wish to assign numbers to these events and to use these numbers to describe

the likelihood of the events. Simple arguments based on scoring rules (for exam-

ple minimizing squared prediction error) or odds posting (avoiding certain losses)

imply that these numbers must combine like probabilities. For constructions see

De Finetti (1974). Lindley (1982b) elaborates on the development using scoring

rules, Heath and Sudderth (1978) and Berger (1980) on betting. The probability

approach to describing and modeling uncertainty is central to risk management and

to the requirements of Basel II. There is no serious argument that the probability

approach is wrong or inappropriate for modeling uncertain future defaults as well as

other unknowns. The fact that probabilities combine in accordance with convexity,

additivity and multiplication is central for moving from probabilities of default on

an asset, to default rates in a segment, to rates in a portfolio, and to a default

probability for the bank. Economists and risk managers do not need convincing

that probabilistic reasoning is appropriate for modeling. It is less well appreciated,

especially in the applied community, that uncertainty about the unknown default

probability can be usefully modeled in exactly the same way as uncertainty about

unknown defaults, for exactly the same reasons.

Reasoning about probabilities is not easy. There is a long literature beginning
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with Kahneman and Tversky (1974) demonstrating that people in practice �nd it

di¢ cult to think about probabilities consistently. Theoretical alternatives to prob-

abilistic reasoning include possibility measures, plausibility measures, etc. These

are reviewed and evaluated by Halpern (2003). Although these practical and theo-

retical objections to probability are often used to criticize the Bayesian approach,

they apply equally to the likelihood speci�cation and the modeling approach to risk

management. While recognizing these objections, this paper will use the probability

approach, noting that alternatives invariably lead to incoherence.

2 A Statistical Model for Defaults

The simplest and most common probability model for defaults of assets in a homoge-

neous segment of a portfolio is the Binomial, in which the defaults are independent

across assets and over time, and defaults occur with common probability �: Note

that speci�cation of this model requires expert judgement, that is, information.

Denote the expert information by e. The role of expert judgement is not usually

explicitly indicated at this stage, so it is worthwhile to point to its contribution.

First, consider the statistical model. The independent Bernoulli model is not the

only possibility. Certainly independence is a strong assumption and would have to

be considered carefully. External factors not explicitly modeled, for example general

economic conditions, could induce correlation. There is evidence that default prob-

abilities vary over the business cycle (for example Nickell, Perraudin, and Varotto

(2000)); we return to this topic below. The Basel prescription is for a marginal an-

nual default probability, however, and correlation among defaults is accommodated

separately in the formula for the capital requirement. Thus, many discussions of the

inference issue have focussed on the binomial model and the associated frequency
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estimator. Second, are the observations really identically distributed? Perhaps

the default probabilities di¤er across assets, even within the group. Can this be

modeled, perhaps on the basis of asset characteristics? The requirements demand

an annual default probability, estimated over a sample long enough to cover a full

cycle of economic conditions. Thus the probability should be marginal with respect

to external conditions. For speci�city we will continue with the Binomial speci�-

cation. Let di indicate whether the ith observation was a default (di = 1) or not

(di = 0). The Bernoulli model (a single Binomial trial) for the distribution of diis

p(dij�; e) = �di(1� �)1�di. Let D = fdi; i = 1; :::; ng denote the whole data set and

r = r(D) =
P

i di the count of defaults. Then the joint distribution of the data is

p(Dj�; e) =
Q
�di(1� �)1�di (2.1)

= �r(1� �)n�r

As a function of � for given data D this is the likelihood function L(�jD; e): Since

this distribution depends on the data D only through r (n is regarded as �xed), the

su¢ ciency principle implies that we can concentrate attention on the distribution

of r

p(rj�; e) =
�
n
r

�
�r(1� �)n�r (2.2)

a Binomial(n,�) distribution. This is so well known that it is easy to underappreciate

the simpli�cation obtained by passing from 2.1 to 2.2. Instead of separate treatment

for each of the 2n datasets possible, it is su¢ cient to restrict attention to n+1 data

set types, characterized by the value of r. This theory of types can be made the

basis of a theory of asymptotic inference. See Cover and Thomas (1991). In our

application, the set of likely values of r is small, and an analysis can be done for

each of these values of r, rather than for the
�
n
r

�
distinct datasets corresponding to
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each value of r. Thus, by analyzing a few likely data set types, we analyze in e¤ect

all of the most likely data realizations. We refer to this approach as the method of

all likely datasets, or ALD.

Regarded as a function of � for �xed r, 2.2 is the likelihood function. Fig-

ure 1 shows the likelihood functions for n=500, our reference data set size, and

r={0,2,4,6,8}.

Figure 1

3 Uncertain Default Probabilities

Equation 2.2 is a statistical model. It generates probabilities for all default con�gu-

rations as a function of a single parameter � which remains unspeci�ed. The default

probability � is an unknown, but that doesn�t mean that nothing is known about

its value. In fact, defaults are widely studied and risk managers, modelers, valida-

tors, and supervisors have detailed knowledge on values of � for particular portfolio

segments. The point is that � is unknown in the same sense that the future default

status of a particular asset is unknown. The fact that default is in the future is

not important; the key is that it is unknown and the uncertainty can be described

and quanti�ed. We have seen how uncertain defaults can be modeled. The same

methods can be used to model the uncertainty about �: Continuing with the logic

used to model default uncertainty, we see that uncertainty about values of � are

coherently described by probabilities. We assemble these probability assessments

into a distribution describing the uncertainty about � given the expert information

e, p(�je):

The distribution p(�je) can be a quite general speci�cation, re�ecting in general

the assessments of uncertainty in an in�nity of possible events. This is in contrast
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with the case of default con�gurations, in which there are only a �nite (though

usually large) number of possible default con�gurations. However, this should not

present an insurmountable problem. Note that we are quite willing to model the

large number of probabilities associated with the possible di¤erent default con�gu-

rations with a simple statistical model; in fact, a 1-parameter model. This involves

an independence assumption, among other assumptions, but it simpli�es the analy-

sis and allows progress along empirical lines. The same can be done with the prior

speci�cation. That is, we can �t a few probability assessments by an expert to a

suitable functional form and use that distribution to model prior uncertainty. There

is some approximation involved, and care is necessary. In this regard, the situation

is no di¤erent from that present in likelihood speci�cation.

A convenient functional form is the beta distribution

p(�j�; �) = �(�+ �)

�(�)�(�)
���1(1� �)��1 (3.1)

which has mean �=(�+�) and variance ��=((�+�)2(1+�+�)). The special case

of � = � = 1 is the uniform distribution on the unit interval. This is unlikely to

represent information about default probabilities, since it assigns equal probabilities

to each equal length interval in [0,1], but it is of great historical interest and is

in common use as representing complete absence of information (it has maximal

entropy among distributions on [0,1]). It will be useful in constructing a robust

prior for a validation step in the analysis.

A particularly easy generalization is to specify the support � 2 [a; b] � [0; 1]:It

is possible that some applications would require the support of �. to consist of the

union of disjoint subsets of [0; 1]; but this seems fanciful in the current application.

A simple starting point is the uniform p(�je) = 1=(b � a). This prior would again

sometimes be regarded as "uninformative," since it assigns equal probability to
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equal length subsets of [a; b]. It is informative in that it requires � 2 [a; b]: The

mean of this distribution is (a + b)=2. We may think that this speci�cation is too

restrictive, in that consideration might require that intervals near the most likely

value should be more probable than intervals near the endpoints. A somewhat

richer speci�cation is the beta distribution 3.1 modi�ed to have support [a; b]. Let

t have the beta distribution and change variables to �(t) = a+(b� a)t with inverse

function t(�) = (� � a)=(b� a) and Jacobian dt(�)=d� = 1=(b� a). Then

p(�j�; �; a; b) = �(�+ �)

(b� a)�(�)�(�)((a� �)=(a� b))
��1((� � b)=(a� b))��1 (3.2)

over the range � 2 [a; b]: This distribution has meanE� = (b�+a�)=(�+�); allowing

substantially more �exibility than the uniform. Examples of this distribution on

the range [0,0.3] are graphed in Figure 2.

Figure 2

The four parameter Beta distribution allows �exibility within the range [a,b],

but in some situations it may be too restrictive. For example it may not be �ex-

ible enough to allow combination of information from many experts. A simple

generalization is the 7-parameter mixture of two 4-parameter Betas with common

support. The additional parameters are the two new {�; �g parameters and the

mixing parameter �.

p(�j�1; �1; �2; �2; a; b) =
��(�1 + �1)

(b� a)�(�1)�(�1)
((a� �)=(a� b))�1�1((� � b)=(a� b))�1�1

+
(1� �)�(�2 + �2)
(b� a)�(�2)�(�2)

((a� �)=(a� b))�2�1((� � b)=(a� b))�2�1

Computations with this mixture distribution are not substantially more com-
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plicated than computations with the 4-parameter Beta alone. If necessary, more

mixture components with new parameters can be added, although it seems unlikely

that expert information would be detailed and speci�c enough to require this compli-

cated a representation. A useful further generalization is given by the 9-parameter

mixture allowing di¤erent supports for the two mixture components. The prior

family is then

p(�j�1; �1; �2; �2; a; b; c; d) =

I(� 2 [a; b])��(�1 + �1)
(b� a)�(�1)�(�1)

((a� �)=(a� b))�1�1((� � b)=(a� b))�1�1

+
I(� 2 [c; d])(1� �)�(�2 + �2)

(d� c)�(�2)�(�2)
((c� �)=(c� d))�2�1((� � d)=(c� d))�2�1 (3.3)

Here [c; d] is the support set for the second mixture component and I[x] = 1

if condition x is true, 0 if false. As above, more than two mixture components

could be added as needed, possibly with di¤erent support sets. By choosing enough

Beta-mixture terms the approximation of an arbitrary continuous prior p(�je) for a

Bernoulli parameter can be made arbitrarily accurate, in the sense that the sequence

of approximations can be chosen to converge uniformly to p(�je): Note that there

is nothing stochastic in this argument. The proof follows the proof of the Stone-

Weierstrass approximation theorem for approximation of continuous functions by

polynomials. See Diaconis and Ylvisaker (1985).
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4 Inference

With the likelihood and prior at hand inference is a straightforward application of

Bayes rule. Given the distribution p(�je); we obtain the joint distribution of r, the

number of defaults, and � :

p(r; �je) = p(rj�; e)p(�je)

from which we obtain the marginal (predictive) distribution of r,

p(rje) =
Z
p(r; �je)d� (4.1)

If the value of the parameter � is of main interest we divide to obtain the conditional

(posterior) distribution of � :

p(�jr; e) = p(rj�; e)p(�je)=p(rje) (4.2)

which is Bayes rule. Since Basel II places more emphasis on the default probability

than on the number of defaults in a given portfolio segment, we focus our discussion

on p(�jr; e):

5 Prior Distribution

I have asked an expert to specify a portfolio and give me some aspects of his beliefs

about the unknown default probability. The portfolio consists of loans that might be

in the middle of a bank�s portfolio. These are typically commercial loans, mostly to

unrated companies. If rated, these might be about S&P Baa or Moody�s BBB. The

method included a speci�cation of the problem and some speci�c questions followed

by a discussion. General discussions of the elicitation of prior distributions are given
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by Kadane, Dickey, Winkler, Smith, and Peters (1980), Garthwaite, Kadane, and

O�Hagan (2005) and Kadane and Wolfson (1998). An example assessing a prior

for a Bernoulli parameter is Chaloner and Duncan (1983). Chaloner and Duncan

follow Kadane et al in suggesting that assessments be done not directly on the

probabilities concerning the parameters, but on the predictive distribution. That

is, questions should be asked about observables, to bring the expert�s thoughts

closer to familiar ground. In the case of a Bernoulli parameter and a 2-parameter

beta prior, Chaloner and Duncan suggest �rst eliciting the mode of the predictive

distribution for a given n (an integer), then assessing the relative probability of the

adjacent values ("dropo¤s"). Graphical feedback is provided for re�nement of the

speci�cation. Examples consider n=20. Gavasakar (1988) suggests an alternative

method, based on assessing modes of predictive distributions but not on dropo¤s.

Instead, changes in the mode in response to hypothetical samples are elicited and

an explicit model of elicitation errors is proposed. The method is evaluated in

the n=20 case and appears competitive. The suggestion to interrogate experts on

what they would expect to see in data, rather than what they would expect of

parameter values, is appealing and I have to some extent pursued this with our

expert. This approach may be less attractive in the case of large sample sizes

and small probabilities, and in our particular application, where the expert was

sophisticated about probabilities. Our expert found it easier to think in terms of

the probabilities directly than in terms of defaults in a hypothetical sample.

The sample period should be currently relevant, but should include a cycle, so

that it is marginal with respect to business conditions. It could be argued that

a recent period including the 2001-2002 period of mild downturn covers a modern

cycle. A period that included the 1980�s would yield higher default probabilities

but these are probably not currently relevant. The default probability of interest is
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the current and immediate future value, not a guess at what past estimates might

be. The precise de�nition of default is also at issue. In the economic theory of the

�rm, default occurs when debt payments are missed and ownership and control of

the �rm passes from existing owners (shareholders in the case of a corporation) to

debtholders. As a lesser criterion, loans that are assigned to "nonaccrual" may be

considered defaulted. We simply note the importance of using consistent de�nitions

in the assessment of expert information and in data de�nition.

We did the elicitation assuming a sample of 500 asset-years. For our application,

we also considered a "small" sample of 100 observations and a "large" sample of

1000 observations, and occasionally an enormous sample of 10000 observations.

Considering �rst the predictive distribution on 500 observations, the modal value

was �ve defaults. Upon being asked to consider the relative probabilities of �ve or

four defaults, conditional on four or �ve defaults occurring (the conditioning does

not matter here, for the probability ratio, but it is thought to be easier to think

about when posed in this fashion), the expert expressed some trepidation as it is

di¢ cult to think about such rare events. Ultimately, the expert gave probability

ratios not achievable by the binomial model even with known probability. This

experience supports the implication of Gavasakar (1988) that dropo¤ probabilities

are problematic. The expert was quite happy in thinking about probabilities over

probabilities however. This may not be so uncommon in this technical area, as

practitioners are accustomed to working with probabilities. The mean value was

0.01. The minimum value for the default probability was 0.0001 (one basis point).

The expert reported that a value above 0.035 would occur with probability less

than 10%, and an absolute upper bound was 0.3. The upper bound was discussed:

the expert thought probabilities in the upper tail of his distribution were extremely

unlikely, but he did not want to rule out the possibility that the rates were much
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higher than anticipated (prudence?). Quartiles were assessed by asking the expert

to consider the value at which larger or smaller values would be equiprobable given

the value was less than the median, then given the value was more than the median.

The median value was 0.01. The former was 0.0075. The latter, the .75 quartile,

was assessed at .0125. The expert seemed to be thinking in terms of a normal

distribution, perhaps using informally a central limit theorem combined with long

experience with this category of assets.

This set of answers is more than enough information to determine a 4-parameter

Beta distribution. I used a method of moments to �t parametric probability state-

ments to the expert assessments. The moments I used were squared di¤erences

relative to the target values, for example ((a � 0:0001)=0:0001)2. The support

points were quite well-determined for a range of f�; �gpairs at the assessed values

fa; bg = [0:0001; 0:3]. These were allowed to vary (the parameter set is overdeter-

mined) but the optimization routine did not change them beyond the 7th decimal

place. Thus, the expert was able to determine these parameter values consistently

with his probability assessments. Further, changing the weights did not matter

much either. Probably this is due to the fact that there is almost no probability

in the upper tail, so changing the upper bound made almost no di¤erence in the

assessed probabilities. Thus the rather high (?) value of b re�ects the long tail

apparently desired by the expert. The f�; �g parameters were rather less well-

determined (the sum of squares function was fairly �at) and I settled on the values

(7.9, 224.8) as best describing the expert�s information. The resulting prior distri-

bution p(�je) is graphed in Figure 3.

Figure 3

It is apparent that there is virtually no probability on the long right tail. A
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closer view of the relevant part of the prior is graphed in Figure 4.

Figure 4

The median of this distribution is 0.00988, the mean is 0.0103 and the standard

deviation is 0.00355. In practice, after the information is aggregated into an esti-

mated probability distribution, then additional properties of the distribution would

be calculated and the expert would be consulted again to see if any changes were

in order before proceeding to data analysis Lindley (1982a). This process would be

repeated as necessary. In the present application there was one round of feedback,

valuable since the expert had had time to consider the probabilities involved. The

characteristics reported are from the second round of elicitation. An application

within a bank might do additional rounds with the expert, or consider alternative

experts and a combined prior.

The predictive distribution 4.1 corresponding to this prior is given in Figure 5

for n=500.

Figure 5

With our speci�cation, the expected value of r; E(rje) =
nP
k=0

kp(kje) is 5.1 for

n=500. Total defaults numbering 0-9 characterize 92% of expected data sets. Thus,

carrying out our analysis for these 10 data types, comprising about 262 distinct

datasets, a trivial fraction of the 2500 possible datasets, actually covers 92% of the

expected realizations. Defaults are expected to be rare events. This is the key to

the ALD approach: we are not analyzing one particular dataset, rather we provide

results applicable to 92% of the likely datasets.
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6 Posterior Analysis

The posterior distribution, p(�jr; e), is graphed in Figure 6 for r = 0, 2, 4, 6, and

8 and n=500. The corresponding likelihood functions, for comparison, were given

in �gures 1 and 2. Note the substantial di¤erences in location. Comparison with

the likelihood functions graphed in Figure 1 and the prior distribution graphed in

Figure 3 reveals that the expert provides much more information to the analysis

than do the data.

Figure 6

Given the distribution p(�jr; e), we might ask for a summary statistic, a suitable

estimator for plugging into the required capital formulas as envisioned by Basel

Committee on Banking Supervision (2004). A natural value to use is the posterior

expectation, � = E(�jr; e):The expectation is an optimal estimator under quadratic

loss and is asymptotically an optimal estimator under a wide variety of loss func-

tions. An alternative, by analogy with the maximum likelihood estimator b�, is
the posterior mode

�
�. As a summary measure of our con�dence we would use the

posterior standard deviation �� =
q
E(� � �)2: By comparison, the usual approx-

imation to the standard deviation of the maximum likelihood estimator is �b� =qb�(1� b�)=n:These quantities are given in Table 1 for r=0-9 and r=20, 50, 100,
200. As noted, the r=0-9 case covers the 262 most likely datasets out of the possible

2500. Together, these comprise analyses of 92% of likely datasets. The r=20 case is

an extremely low probability outcome - less than 0.0001 - and is included to show

the results in this case. There are approximately 2118 datasets corresponding to

r=20. The rows for r=50, 100, and 200 are included as a further "stress test" and

will be discussed below. Their combined prior probability of occurrence is less than

10�14:
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Table 1: Default Probabilities - Location and Precision, n=500

r �
�
� b� �� �b�

0 0.0063 0.0081 0.000 0.0022 0 (!).

1 0.0071 0.0092 0.002 0.0023 0.0020

2 0.0079 0.0103 0.004 0.0025 0.0028

3 0.0086 0.0114 0.006 0.0026 0.0035

4 0.0094 0.0125 0.008 0.0027 0.0040

5 0.0102 0.0136 0.010 0.0028 0.0044

6 0.0109 0.0147 0.012 0.0029 0.0049

7 0.0117 0.0158 0.014 0.0030 0.0053

8 0.0125 0.0169 0.016 0.0031 0.0056

9 0.0132 0.0180 0.018 0.0032 0.0060

20 0.0215 0.0296 0.040 0.0040 0.0088

50 0.0431 0.0425 0.100 0.0053 0.0134

100 0.0753 0.0749 0.200 0.0065 0.0179

200 0.1267 0.1266 0.400 0.0069 0.0219

For values of r below its expected value the posterior mean is greater than the

MLE, for values above the posterior is less than the MLE, as expected. As is well-

known and widely discussed, the MLE is unsatisfactory when there are no observed

defaults (Basel Committee on Banking Supervision (2005), Pluto and Tasche (2005),

BBA, LIBA, and ISDA (2005), Kiefer (2006a)) The Bayesian approach provides a

coherent resolution of the inference problem without resort to desperation (sudden

reclassi�cation of defaulted assets, technical gimmicks).

Expert information will have larger weight in smaller sample sizes, and smaller

relative weight for larger sample sizes. For n=1000, for example, r=5-15 re�ects

76% of the most likely datasets; r=0-20 represents 97%. To put this in perspective,
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the cases r=0-20 correspond to approximately 2138 datasets out of a possible 21000:

Thus, 97% of the likely observations are contained in the small fraction 2�862 of

the possible datasets, or 0.0021 of the possible types. A substantial simpli�cation

results from concentrating on the distribution of the su¢ cient statistic and use of

expert judgement to characterize possible samples. Naturally, this simpli�cation

depends critically on the use of expert judgement in speci�cation of the likelihood

function (our choice admits a su¢ cient statistic) and in speci�cation of the prior

distribution. Rather than resorting to extensive tabulation, we report ALD results

for 97% of likely samples in Figure 7. The error bands, dotted for the MLE and

dashed for the prior mean, are plus/minus one standard deviation.

Figure 7

Turning now to an extremely large sample, in which inference is not quite so

problematic, as the likelihood can be expected to dominate the prior, we �nd a

lessened role for the expert. With n=10000, r=45-155 covers 88% of all datasets.

In these cases the likelihood and Bayesian analyses essentially coincide. Estimators

and associated error bands for the 88% ALD analysis are shown in Figure 8.

Figure 8

There is still a clear di¤erence for extremely unlikely values of r; thus for r =

0; E� = 0:00083, while the MLE is zero. For large or very likely datasets, the

posterior mean and MLE will nearly coincide. For example, in a sample of corporate

bonds from KMV (North American Non Financial) over 1993 to 2004 from an

aggregated mid-portfolio segment (roughly BBB+ through B-) we observe 7272

asset-years and 73 defaults. For details on the data see Kiefer and Larson (2006).

Here the data set is completely as expected. The probability using p(rje) that r =73

is 0.015 (out of 7273 possible values); the probability that 65 � r � 80 is 0.234, that

16



55 � r � 90 is 0.502. Thus this data set would be included in any reasonable ALD

analysis. The posterior mean and standard deviation are 0.01006 and 0.00111. The

MLE and its standard error are 0.01004 and 0.00117.

7 Robustness - the cautious Bayesian

Suppose we are rather less sure of our expert than he is of the default probability.

Or, more politely, how can we assess just how important the tightly-held views of

the expert are in determining our estimates? Table 1 gives one answer by compar-

ing the MLE and the posterior location measures. Another answer was proposed

by Kiefer (2006b) , who considered a less-certain expert with a prior with the same

location but substantially higher variance than the actual expert. An alternative

approach, more formal and based on the literature on Bayesian robustness (Berger

and Berliner (1986)) is to mix the actual expert�s prior with an alternative prior,

and see exactly how seriously the inferences are a¤ected by changes in the mixing

parameter. Berger and Berliner (1986) in fact suggested mixing in a class of distri-

butions, corresponding to di¤erent amounts or directions of uncertainty in the prior

elicitation. In this spirt, we will mix the expert�s 4-parameter beta distribution

with a uniform distribution. Here, there are two clear possibilities. One is to mix

with the uniform on [a,b], accepting the expert�s bounds but examining robustness

to alpha and beta. The second is to mix with the uniform on [0,1], allowing all

theoretically feasible values of �. We choose the latter approach. This is not a com-

pletely comfortable approach. Although the uniform is commonly interpreted as an

uninformative prior, it in fact has a mean of 1/2, not a likely value for our default

probability by any reasonable prior. An alternative might be to mix with a prior

with the same mean as our expert�s distribution, but maximum variance. We do
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not pursue this here. Our results suggest that it would not make much di¤erence;

the key is to mix in a distribution with full support, so that likelihood surprises can

appear. We choose to mix the expert�s prior with a uniform on all of [0,1]. This

allows input from the likelihood if the likelihood happens to be concentrated above

b (or below a). The mixture distribution is

p(�je; �) = (1� �)p(�j�; �; a; b)I(� 2 [a; b]) + � (7.1)

for � 2 [0; 1]. The approach can be used whatever prior is speci�ed, not just

the 4-parameter beta. Our robust prior is in the 9-parameter mixture family 3.3,

consisting of our expert�s 4-parameter beta mixed with the 4-parameter beta with

parameters f�; �; a; bg = f1; 1; 0; 1gand mixing parameter �: Table 2 shows the

posterior means for the mixture priors for � = f0:01; 0:1; 0:2; 0:3; 0:4g.
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Table 2: Robustness - Posterior means for mixture priors, n=500

r �; � = :01 �; � = :1 �; � = :2 �; � = :3 �; � = :4

0 0.0063 0.0063 0.0062 0.0061 0.0061

1 0.0071 0.0071 0.0071 0.0071 0.0070

2 0.0079 0.079 0.0079 0.0079 0.0078

3 0.0086 0.0086 0.0086 0.0086 0.0086

4 0.0094 0.0094 0.0094 0.0094 0.0094

5 0.0102 0.0102 0.0102 0.0102 0.0102

6 0.0109 0.0109 0.0110 0.0110 0.0110

7 0.0117 0.0117 0.0117 0.0118 0.0118

8 0.0125 0.0125 0.0125 0.0125 0.0126

9 0.0132 0.0133 0.0133 0.0134 0.0134

20 0.0358 0.0358 0.0386 0.0398 0.0405

50 0.1016 0.1016 0.1016 0.1016 0.1016

100 0.2012 0.2012 0.2012 0.2012 0.2012

200 0.4004 0.4004 0.4004 0.4004 0.4004

Mixing the expert�s prior with the uniform prior makes essentially no di¤erence

to the posterior mean for data in the likely part of the set of potential samples.

For r=20, unlikely but not outrageous, using the robust prior makes a substan-

tial di¤erence. For the extremely unlikely values, 50, 100, 200, the di¤erences are

dramatic. The actual value of � makes almost no di¤erence. The numbers for

� = 0:001; not shown in the table, give virtually the same mean for all r. For com-

parison, we recall the values of � for r={20,50,100,200} from Table 1. These are

{0.0215,0.0431,0.0753,0.1267}. Figure 9 shows the posterior distributions for our

expert�s prior, p(�jr; e) for r=50, 100, and 200. It is clear that the prior plays a

huge role here, as the likelihood mass is concentrated near .1, .2 and .4, while the
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prior gives only trivial weight to values greater than about .03, see Figures 1 and

3. On the other hand, Figure 10 shows the posterior corresponding to 7.1 with 1%

mixing (� = 0:01): Here, the likelihood dominates, as the likelihood value near the

expert�s prior is vanishingly small relative to the likelihood in the tail area of the

mixing prior.

Figure 9

Figure 10

Thus, the robust analysis with even a very small nonzero mixing fraction can

reveal disagreements between the data and the expert opinion which are perhaps

masked by the formal analysis. This robust analysis may have a role to play in the

validation phase.

I what sense is the robust analysis useful? We are really bringing something

outside the model, namely the uniform distribution representing no one�s beliefs,

into the analysis as a formal tool for diagnostic analysis. The spirit is the same as

usual procedures associated with good statistical practice - residual analysis, out

of sample �ts, forecast monitoring, or comparison with alternative models. All of

these procedures involve stepping away from the speci�ed model and its analysis,

and asking, post estimation, does the speci�cation make sense? Post-estimation

model evaluation techniques are often informal, sometimes problem speci�c, and

require sound statistical judgement OCC (2006). The analysis of robustness via an

arti�cial prior is an attempt to merge the formal analysis with the informal post-

estimation model checking. A related method, checking for irrelevant data using

a mixture distribution, is proposed by Ritov (1985) and this might have a role as

well.
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8 Heterogeneity

It is clearly contemplated in the Basel II guidance that heterogeneity is mitigated by

the classi�cation of assets into homogeneous groups before estimation of the group-

speci�c default probability. However, there may be remaining heterogeneity, due to

asset characteristics or to changing macroeconomic conditions. In fact, the Basel II

prescription is for a default probability that is averaged over a cycle. This seems to

indicate that the default probability varies over the cycle, and perhaps a model that

takes this possibility into account would be appropriate. The variation is unlikely

to a¤ect inference about the marginal probability in an important way (though

con�dence may be overstated), but if there is a cycle e¤ect, it would be valuable to

know its magnitude. Clearly, if there is not much variation in these cyclical variables,

the current analysis would apply over rather short sample periods. A natural �rst

step therefore would be to group assets according to upturn years, downturn years,

and stable years and run separate analyses. For low-default portfolios there is

unlikely to be enough data to sort out di¤erences between these years. However,

there is evidence from other markets that default probabilities vary over the cycle

Nickell, Perraudin, and Varotto (2000). The abstract problem is to specify a model

in which the default probability varies with market conditions, indicated by the

variable xt: A speci�cation which has proved useful is �t=(1� �t) = expf� + �xtg.

The prior is then taken on the parameter set {�; �g:With this speci�cation � and �

are unrestricted and a normal prior distribution may be suitable. Assessment of the

combination �+�x can follow the procedure above. Additional thought is required

to sort out the likely e¤ect of x, that is, appropriate values for �: Both assessment

and validation are crucial here since data evidence is inherently sparse. Estimation

of this model is now straightforward, building on the early work of Albert and

Chib (1993) using Monte Carlo Markov Chain (MCMC) and related procedures
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(see Robert and Casella (2004) and Geweke (2005)).

9 Conclusion

I have considered inference about the default probability for a midrange portfolio

segment on the basis of data information and expert judgement. Examples focus

on the sample size of 500; results are also presented for the large sample sizes of

1000 and 10000 observations, not unreasonable for large banks in this risk range.

These analyses are relevant to hypothetical portfolios of middle-risk commercial

loans. These are predominantly to unrated companies; if rated these would be ap-

proximately S&P Baa or Moody�s BBB. I have also represented the judgement of

an expert in the form of a probability distribution, for combination with the like-

lihood function. The expert is a practitioner experienced in risk management in

well-run banks. The 4-parameter Beta distribution seems to re�ect expert opinion

fairly well. Errors, which would be corrected through additional feedback and re-

speci�cation in practice, are likely to introduce more certainty into the distribution

rather than less. Using the ALD approach, it is possible to study the posterior dis-

tributions for all of the most likely con�gurations of defaults in the samples. Using

ALD, we consider the possible realizations of the su¢ cient statistic for the speci�ed

statistical model. In the default case, the number of realizations is linear in the

sample size (while the number of potential distinct samples is exponential). Using

the expert information, it is possible to isolate the most likely realizations. In the

sample of 500, �ve defaults are expected. In this case, our analysis of 0 through

9 defaults covers 92% of expected datasets. Our analyses of samples of 1000 and

10000 covered 97% and 88% of the likely realizations respectively.

At the validation stage, modelers can be expected to have to justify the like-
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lihood speci�cation and the representation of expert information. Analysis of the

sensitivity of the results to the prior should be a part of this validation procedure.

We propose using a mixture of the expert�s prior and an alternative, less informa-

tive prior. In our case, we mix the prior with a uniform distribution on the unit

interval. While it is not likely that the uniform describes any expert�s opinion on

the default probability, mixing in the uniform allows unexpected disagreement be-

tween the prior and the data to appear vividly. An example shows that even a

trivially small weight on the alternative will do. Of course, within the context of

the model, the decision based on the expert�s posterior is correct. A broader view

might suggest something wrong with the speci�cation - of either the likelihood or

the prior. Perhaps these do not refer to the same risk class, or perhaps the default

de�nitions are inconsistent. The situation is not unlike that arising in ordinary

validation exercises in which the model is evaluated in terms of residual analysis or

out-of-sample �ts. These involve considerations which are relevant but which are

outside the formal model. As a result there are a number of di¤erent methods in

use, corresponding to di¤erent ways in which models can fail, and expert judgement

remains crucial in this less formal context as well as in the formal speci�cation of

the likelihood and the prior. For further discussion, see OCC (2006).
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