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Abstract

The effect of changes in commodity prices on factor rewards is
studied in the multi-commodity, multi-factor case. It is shown that
the inverse of the distributive share matrix must satisfy the follow-
ing restriction: it cannot be anti-symmetric in its sign pattern. This
means that one cannot partition the commodities into two groups (I
and II) and factors into two groups (A and B), such that all factors
in group A benefit (nominally) from all commodity price increases
in group I, and simultaneously all factors in group B suffer from all
commodity price increases in group II. It turns out that this is also
the only sign-pattern restriction imposed by the general nature of the
relationship of commodity prices and factor rewards.
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1 Introduction

The relation between commodity prices and factor rewards is an enduring
theme in the contributions of Ron Jones to the pure theory of interna-
tional trade. From his famous 1965 paper, “On the Structure of Simple
General Equilibrium Models” to his 2006 expository piece,“‘Protection and
Real Wages’:The History of an Idea”, we see in his research on this topic a
sustained interest that is truly remarkable. Inspired by the original Stolper-
Samuelson (1941) paper, this topic came to represent for him the essence of
the applicability of international trade theory to policy issues, as well as a
leading test case of the importance of general equilibrium analysis.

If one follows the development of his ideas on this topic over this forty year
period, one can discern at least two distinct themes.1 The first is concerned
primarily with the Stolper-Samuelson result, and its generalizations to the
case of many commodities and many factors. This line of his research has
identified particular production structures, in the many commodity, many
factor case, for which the Stolper-Samuelson result continues to hold; they
include the “produced mobile factor structure” discussed in Jones (1975)
and Jones and Marjit (1985), and the “neighborhood production structure”
analyzed in Jones and Kierzkowski (1986).2 It has also identified sufficient
conditions on the share matrix for general production structures which ensure
the Stolper-Samuelson result in either its strong form (see Jones, Marjit and
Mitra (1993)) or its weak form (see Mitra and Jones (1999)).3

The second theme is concerned with the Stolper-Samuelson idea that the
impact of changes in commodity prices on factor rewards can be studied by
systematic use of general equilibrium analysis. In this theme, the emphasis is
less on the original Stolper-Samuelson result, and more on identifying useful
predictions that can be made about changes in the distribution of income,

1To be sure, this statement is a gross oversimplification. But, since it helps me to a
certain extent in fitting my own contribution in his scheme of ideas, I will maintain it.

2The analysis of the shape of “share ribs” in Jones and Mitra (1995) was used to unify
these results in a common (but still special) production structure.

3These conditions, though strong, can be directly verified using only the information
about the share matrix, and are to be distinguished in this respect from more general
conditions, which have been proposed in the literature, but which are not verifiable in the
same way; see, especially, the well-known papers by Uekawa (1971) and Inada (1971).
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following changes in commodity prices. Pioneered by Ethier (1974), this line
of research has been pursued by, among others, Kemp andWan (1976), Jones
and Scheinkman (1977), Chang (1979) and Jones (1985).4 While appropriate
conditions on factor intensities figure prominently in the first theme (follow-
ing, notably, the contributions of Chipman (1969) and Kemp and Wegge
(1969)), they play no role in the second.

The results I will be discussing in this paper belong to the second theme.
We consider the setting which involves the active production in competitive
markets of n commodities, each produced non-jointly by the use of n distinct
factors of production (known as the “even case”) in processes that are linearly
independent of each other at prevailing factor prices. The distributive share
of factor i in industry j, denoted by αij, is assumed to be strictly positive for
all i, j.5

The inverse of the column stochastic matrix (αij), denoted by (βij), where

βij =
[
∂wj(p)

∂pi

] [
pi
wj

]
, is a column-stochastic matrix which provides the full

information of the effects of commodity prices (pi) on factor rewards (wj). It
can be seen easily that the matrix (βij) must satisfy the restriction (referred
to as (R) in Section 3) that every row and every column of it must have both
positive and negative elements. The implications that have been drawn from
this information can be summarized as follows:

(i)For each factor, there is some commodity, such that (ceteris paribus)
an increase in price of that commodity leads to a decrease in the factor’s
reward.

(ii) For every commodity, there is some factor, such that (ceteris paribus)
an increase in price of the commodity leads to a decrease in that factor’s
reward.

(iii) For every commodity, there is some factor, such that (ceteris paribus)
an increase in price of the commodity leads to an increase in that factor’s
real reward.

(iv) For each factor, there is some commodity, such that (ceteris paribus)
an increase in price of that commodity leads to a nominal increase in the

4For useful surveys of the relevant literature, we refer the reader to Ethier (1984) and
Jones and Neary (1984).

5The equality of the number of factors and the number of commodities, as well as the
positivity of all αij , are strong assumptions of this framework. More general frameworks,
in which the number of commodities need not be equal to the number of factors, and
some of the αij can be zeroes, have been studied by, among others, Jones and Scheinkman
(1977) and Chang (1979).

3



factor’s reward.
(v) For each factor, there is some set of commodities such that an equi-

proportionate increase in the prices of all commodities in that set, other
prices being constant, will increase the real reward of the factor.

We now ask whether these implications characterize the qualitative infor-
mation that can be derived regarding the relationship of commodity prices
to factor rewards in this framework. Apparently not, because the matrix:

T =

⎡
⎢⎢⎣

1.5 −1 −1 −1
−1 1.5 −1 −1
0.25 0.25 4 −1
0.25 0.25 −1 4

⎤
⎥⎥⎦

is a column stochastic matrix, which satisfies restriction (R) and all the
properties listed in (i)-(v), but T cannot be generated as the inverse of any
distributive share matrix (in our framework). In other words, the dependence
of factor rewards on commodity prices exhibiting the behavior displayed in
T cannot be rationalized in terms of our framework.

It is possible to reach this conclusion without performing extensive cal-
culations, but by simply observing the sign pattern of the matrix T, and
applying Theorem 1, stated in Section 3 of this paper. But, the reader is
asked to refrain from skipping ahead to Section 3, and encouraged to try to
figure out this conclusion based on the information provided above.6

Theorem 1 in this paper develops a condition (referred to as Condition
C in Section 3) on the sign pattern of T which must be violated if T is to be
the inverse of a distributive share matrix. Further, given the restriction (R),
the violation of Condition C captures all the qualitative restrictions imposed
by our framework on the relationship between commodity prices and factor
rewards. This is reported in Theorem 2.

The principal use of Theorem 1 is to rule out some kinds of behavior
of factor rewards following commodity price changes, as illustrated in the
above example of T, which are not already ruled out by the restriction (R).
The principal use of Theorem 2 is that it gives us an easy way to rationalize
a variety of behavior of factor reward changes following commodity price
changes.

6I must confess that, to me, the conclusion is not immediately obvious, and not obvious
even after a great deal of thought.
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2 Preliminaries

2.1 Notation

For vectors x, y ∈ R
n, x ≥ y means xi ≥ yi for i = 1, ..., n; x > y means x ≥ y

and x �= y; x >> y means xi > yi for i = 1, ..., n. The set {x ∈ R
n : x ≥ 0}

is denoted by R
n
+; the set {x ∈ R

n : x >> 0} is denoted by Ω.
The n unit vectors in R

n are denoted by e1, ..., en; the vector (1, 1, ..., 1) ∈
R

n is denoted by u.
Let A = (aij) be an n×n real matrix. Then A is called a positive matrix

if aij > 0 for all i, j = 1, ..., n. It is called a positive diagonal matrix if it is a
diagonal matrix, and aii > 0 for all i = 1, ..., n.

2.2 The Framework

Consider an n-commodity, n-factor model of production (with n ≥ 2), in
which yj denotes the output of the j-th commodity and xij the amount of
the i-th factor used in the production of the j-th commodity (where i, j =
1, 2, ..., n).

For each commodity j, the output level yj is determined by input levels
(x1j, ..., xnj) of the n factors, according to a production function fj from R

n
+

to R+ :
yj = fj(x1j, ..., xnj) for j = 1, ..., n (1)

For each j = 1, ..., n, assume7:
(F.1) fj is non-decreasing, continuous and homogeneous of degree one on

R
n
+

(F.2) fj(x) > 0 if and only if x >> 0
(F.3) fj is strictly quasi-concave on Ω
For each commodity j, given an output level y > 0, and a vector of factor

prices w = (w1, ..., wn) >> 0, consider the cost-minimizing problem:

Minimize wx
subject to fj(x) ≥ y
and x ∈ R

n
+

⎫⎬
⎭ (CM)

Problem (CM) has a unique solution, xj(w, y) = (x1j(w, y), ..., xnj(w, y)) in
Ω. These are the conditional input demands in the production of commodity

7The assumptions, in fact, imply that each fj is concave on R
n
+.
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j. The cost function cj(w, y) is then wxj(w, y). Since the production function
fj is homogeneous of degree one, we have for each j,

cj(w, y) = ycj(w, 1);xj(w, y) = yxj(w, 1)

Denote the unit cost functions cj(w, 1) by gj(w), and the unit conditional
demand functions xj(w, 1) by aj(w) = (a1j(w), ..., anj(w)). Thus, for each j,

gj(w) =
n∑

i=1

aij(w)wi (2)

It is known that for i, j = 1, ..., n, the functions aij(w) are continuous
on Ω. Also, for each j = 1, ..., n, the function gj(w) has continuous partial
derivatives on Ω, and we have (“Shephard’s Lemma”)8:

∂gj(w)

∂wi

= aij(w) for i = 1, ..., n (3)

If the n commodities are traded in a competitive market under a price
system p ∈ Ω, the price of the j-th commodity must equal its unit cost gj(w)
if it is positively produced in equilibrium. Proceeding under the assump-
tion that given the price vector p0 ∈ Ω, the economy is in an incomplete
specialization equilibrium at factor prices w0 ∈ Ω, we then have:

(i) aij(w
0) > 0 for i = 1, ..., n and j = 1, ..., n

(ii) gj(w
0) = p0j for j = 1, ..., n

}
(4)

Assume that the Jacobian of g(w) = (g1(w), ..., gn(w)) is non-zero at
w = w0. Then, by the inverse function theorem, there is a neighborhood U of
w0 and a neighborhood V of p0, and a unique mapping h : U → V satisfying:

h(g(w)) = w for all w ∈ U (5)

Furthermore, h has continuous partial derivatives on V, and:

[Dh(p0)] = [Dg(w0)]−1 (6)

where [Dg(w0)] is the Jacobianmatrix of g atw0, and [Dh(p0)] is the Jacobian
matrix of h at p0. [See, especially, Apostol (1957, p. 144)].

8See, especially, Nikaido (1968, p.357).
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If we denote the positive matrix (aij(w
0)) by A ≡ A(w0), then by (3) and

(6) respectively, we have:
[Dg(w0)]′ = A (7)

and:
[Dh(p0)]′ = A−1 = (bij) (8)

Recalling (5), we can rewrite (8) as:

[
∂wj(p

0)

∂pi

]
= (bij) = A−1 (9)

Define the matrix of distributive shares, S = (αij) by:

αij =
w0

i aij(w
0)

p0j
for i = 1, ..., n and j = 1, ..., n (10)

Then, by using (2) and (4), we have:

(i) αij > 0 for i = 1, ..., n and j = 1, ..., n
(ii)

∑n

i=1 αij = 1 for each j = 1, ..., n

}
(11)

That is, each column sum of S is equal to 1.
Define P to be the diagonal matrix with (p01, ..., p

0
n) on its diagonal; define

W to be the diagonal matrix with (w0
1, ..., w

0
n) on its diagonal. Then, (10)

implies that:
S = WAP−1 (12)

So, S has an inverse, and denoting the inverse of S by T, we have:

T = PA−1W−1 (13)

Denoting by (βij) the matrix T, we observe from (9) and (13),

βij =

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
for i = 1, ..., n and j = 1, ..., n (14)

We are principally interested in making predictions about βij.
Denoting the column vector (1, 1, ..., 1) in R

n by u, we observe that by
(11), we have:

u′S = u′ (15)
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So, post-multiplying both sides of (15) by T, we get:

u′ = u′T (16)

That is, each column sum of T is equal to 1, and consequently,

n∑
i=1

βij =
n∑

i=1

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
= 1 for each j = 1, ..., n (17)

In what follows, we suppress the factor prices w0 and commodity prices
p0 at which our analysis is carried out. Thus, our analysis is explicitly local
in a neighborhood of the equilibrium given by (p0, w0).

3 Effects of Commodity Price Changes on

Factor Rewards

3.1 Review of the Literature

We review what is known about the effect of commodity prices on factor
returns, that is about βij. Since

ST = TS = I (18)

and S is a positive matrix, we have the following restriction:
(R) Every column and every row of T must have positive as well

as negative entries.9

One can elaborate on the implications of the restriction (R) as follows:
(i) For each j, there is some i such that:

βij =

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
< 0;

9If the i-th column of T has only non-positive elements, then SiT
i ≤ 0, since S is a

non-negative matrix. Here Si is the i-th row of S and T i is the i-th column of T. But, by
(18), SiT

i = 1, a contradiction.
Suppose the i-th column of T has only non-negative elements. Using (18), we have

SjT
i = 0 for j �= i, and so the i-th column of T has only zero elements, since S is a

positive matrix. Thus, we must have SiT
i = 0. But, by (18), SiT

i = 1, a contradiction.
Analogous arguments with the rows of T yield the remaining results claimed in (R).
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that is, for each factor j, there is some commodity i such that an increase in
price of commodity i alone leads to a decrease in factor j’s reward.10

(ii) For each i, there is some j such that:

βij =

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
< 0;

that is, for every commodity i, there is some factor j such that an increase
in price of commodity i alone leads to a decrease in factor j’s reward.11

(iii) For each i, there is some j such that:

βij =

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
> 1;

that is, for every commodity i, there is some factor j such that an increase
in price of commodity i alone leads to an increase in factor j’s real reward.12

(iv) For each j, there is some i such that:

βij =

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
> 0;

that is, for each factor j, there is some commodity i such that an increase in
price of commodity i alone leads to a nominal increase in factor j’s reward.
It is important to note that this conclusion is not symmetric to (iii). The
real reward of factor j can go down, since the price of some commodity has
gone up.13

10To use the terminology of Ron Jones, each factor has a commodity enemy.
11Each commodity is an enemy of some factor.
12This important observation is due to Ethier (1974): every commodity is a friend of

some factor.
Given any i, denote by G set of indices j for which βij > 0. This set is non-empty, and

a strict subset of {1, ..., n} by (R). Then, we have, by (11), (18) and (R),

1 =
n∑

j=1

βijαji <
∑

j∈G

βijαji

≤ [max
j∈G

βij ]
∑

j∈G

αji < [max
j∈G

βij ]

13So, in general, every factor need not have a commodity friend.
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If one combines implication (i) with (17), one may, however, note a further
implication (this is due to Jones (1985)).

(v) For each j, there is some set F ⊂ {1, 2, ..., n}, such that:

∑
i∈F

βij =
∑
i∈F

[
∂wj(p

0)

∂pi

] [
p0i
w0

j

]
> 1

The set F can be taken to be the set of indices i (non-empty, by implication
(iv)) for which βij > 0. This means that an equi-proportionate increase in
the prices of all commodities with indices i in the set F, other prices being
constant, will increase the real reward of factor j.14

3.2 A Result on Sign Patterns

Implications (i)-(v), which have been discussed in the literature, follow from
(11), (17) and (18). So, a legitimate question is whether these implications
exhaust all the restrictions contained in (11), (17) and (18).

In this subsection, we establish a result which shows that there is a re-
striction on the sign patterns of T ≡ (βij) that follows from (11), (17) and
(18). We describe the result in words before proceeding with a formal dis-
cussion. The result shows that the inverse of the distributive share matrix
cannot be anti-symmetric in its sign pattern. This means that one cannot
partition the commodities into two groups (I and II) and factors into two
groups (A and B), such that all factors in group A benefit (nominally) from
all commodity price increases in group I, and simultaneously all factors in
group B suffer from all commodity price increases in group II.

14Every factor has a group of good friends. The pun is, of course, intended.
Given any j, denote by F the set of indices i for which βij > 0. The set F is non-empty,

and a strict subset of {1, ..., n} by (R). Then, by (11), (17), (18) and (R), we have:

1 =
n∑

i=1

βijαji <
∑

i∈F

βijαji

≤ [max
i∈F

αji]
∑

i∈F

βij <
∑

i∈F

βij

In this proof, I have deliberately refrained from referring to Samuelson’s duality theorem,
which is usually invoked to establish this result. Instead, I have tried to keep the proof
similar to the proof of implication (iii) above.
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To illustrate the nature of the restriction, one may note that (for n = 4)
the matrix (βij) cannot be of the following form:

⎡
⎢⎢⎣

∗ ∗ − −
∗ ∗ − −
+ + ∗ ∗
+ + ∗ ∗

⎤
⎥⎥⎦ (19)

[Here, and in what follows, a “+” indicates that the entry in the cell is ≥ 0,
and a “−” indicates that the entry in the cell is ≤ 0]. In (19), commodities
have been partitioned into two groups, I and II, with I consisting of com-
modities {3, 4} and II consisting of commodities {1, 2}. Factors have been
partitioned into two groups, A and B, with A consisting of factors {1, 2} and
B consisting of factors {3, 4}. Then the sign pattern in (19) indicates that all
factors in group A benefit nominally from all commodity price increases in
group I, and all factors in group B suffer from all commodity price increases
in group II.

In particular, in the example described in section 1, the sign pattern
described in (19) occurs. Thus, without consulting any other quantitative
details of the matrix in that example, one can conclude that it cannot be the
inverse of a distributive share matrix (in our maintained framework). That
is, the behavior described in the matrix T = (βij) in that example cannot
be rationalized in terms of our maintained framework, even though it clearly
satisfies all the restrictions described in (i)-(v) of the last section.15

Theorem 1 Let T = (βij) denote the inverse of a distributive share matrix
S = (αij). Then T cannot satisfy the following condition.

Condition C:

There exist integers k,m, with 1 ≤ k < n, and 1 ≤ m < n, such that the
following inequalities hold simultaneously:

(i) βij ≤ 0 for all i = 1, ..., k and j = m+ 1, ..., n, and
(ii) βij ≥ 0 for all i = k + 1, ..., n and j = 1, ...,m

Proof. Suppose, on the contrary, that T = (βij) satisfies Condition C.
Then, there exist integers k,m, with 1 ≤ k < n, and 1 ≤ m < n, such

15In fact, the matrix T = (βij) in the example demonstrates (to use the terminology of
Chipman (1969)) strong Stolper-Samuelson properties in response to increase in prices of
commodities 1 and 2, and weak Stolper-Samuelson properties in response to increase in
prices of commodities 3 and 4.
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that the inverse of the distribution matrix, T = (βij) satisfies (i) and (ii)
simultaneously.

Focus on the distributive shares of the first industry; that is, on the first
column of S. For i = 1, we have by (18),

m∑
j=1

βijαj1 +
n∑

j=m+1

βijαj1 = 1 (20)

And, for each i ∈ {2, ..., k} (if any), we have, by (18),

m∑
j=1

βijαj1 +
n∑

j=m+1

βijαj1 = 0 (21)

Using (11) and (i), we know that the second term on the left hand side of
(20) and (21) must be non-positive, and so:

⎡
⎢⎢⎣

∑m

j=1 β1jαj1

· · ·
· · ·∑m

j=1 βkjαj1

⎤
⎥⎥⎦ ≥

⎡
⎢⎢⎣

1
0
· · ·
0

⎤
⎥⎥⎦ (22)

where each vector in (22) has k co-ordinates.
Define γ to be the column vector in R

n, given by γ = [α11, ..., αm1, 0, ..., 0].
That is, it differs from the first column of S in that the last (n−m) entries
are zeroes. Then, denoting the n rows of the (βij) matrix by (β1, ..., βn), we
can use (22) to write:

⎡
⎢⎢⎣

β1γ
· · ·
· · ·
βkγ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∑m

j=1 β1jαj1

· · ·
· · ·∑m

j=1 βkjαj1

⎤
⎥⎥⎦ ≥

⎡
⎢⎢⎣

1
0
· · ·
0

⎤
⎥⎥⎦ (23)

where each entry in the vector on the left is an inner product of two vectors
in R

n.
Using (ii), we also have:

⎡
⎣ βk+1γ

· · ·
βnγ

⎤
⎦ ≥

⎡
⎣ 0

· · ·
0

⎤
⎦ (24)
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where each vector in (24) has (n − k) co-ordinates. Thus, combining (23)
and (24), we obtain: ⎡

⎢⎢⎣
β1γ
· · ·
· · ·
βnγ

⎤
⎥⎥⎦ ≥

⎡
⎢⎢⎣

1
0
· · ·
0

⎤
⎥⎥⎦ (25)

where each vector in (25) has n co-ordinates. Clearly, (25) is the same as
writing:

Tγ ≥ e1 > 0 (26)

Since S is a positive matrix (see (11)), we obtain from (26),

S(Tγ) ≥ Se1 >> 0 (27)

But, since S(Tγ) = (ST )γ = γ (by using (18)), (27) implies that γ >> 0.
This is clearly a contradiction, since the last (n − m) ≥ 1 entries of γ are
zeroes.

Remarks:
(i) The theorem can be derived by using the mathematical result obtained

by Johnson, Leighton and Robinson (1979, Theorem, p.76) and Fiedler and
Grone (1981, Theorem, p.240). Those results relate to the general problem
of characterizing matrices whose inverses are positive marices, known as the
“inverse-positive matrix problem”. They are not explicitly concerned with
column stochastic matrices (as we are), but the translation of the results can
clearly be made to that sub-class. Johnson, Leighton and Robinson (1979)
use stronger hypotheses, in which (i) and (ii) of Condition C are required
to hold with strict inequalities, although their approach indicates that the
weaker hypotheses made here suffice. Our proof is slightly different and a bit
simpler, and is presented primarily to keep our exposition self-contained.

(ii) Since the numbering of factors and commodities has played no role in
our analysis, the (βij) matrix, after any independent renumbering of factors
and commodities, cannot exhibit an anti-symmetric sign pattern in the sense
described in Condition C of the theorem.

(iii) The theorem would, of course, be valid under any strengthening of
Condition C. In particular, inequalities (ii) can be strengthened to:

(ii′) βij ≥ 1 for all i = k + 1, ..., n and j = 1, ...,m

which can be interpreted in terms of the effects of changes in commodity
prices on real factor rewards.
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(iv) From the perspective of the result contained in Theorem 1, the orig-
inal Stolper-Samuelson result in the 2 × 2 case can be viewed as one which

rules out the patterns of behavior of (βij), where βij =
[
∂wj(p)

∂pi

] [
pi
wj

]
, given

by:

(βij) =

[
∗ −
+ ∗

]

and its variations, described in remark (ii) above. We elaborate further on
the low-dimensional cases (that is, n = 2 and n = 3) in the next subsection.

3.3 Discussion of Low Dimensional Cases

The sign pattern restriction (obtained in Theorem 1) on the inverse of the
distributive share matrix is clearly an additional restriction that goes beyond
the implications (i)-(v) in the case n = 4, as our example shows.

We now note that for n = 2 and for n = 3, it is not an additional
restriction; that is, for n = 2 and n = 3, we show that the restriction (R)
implies that Condition C cannot hold.

Consider a 2× 2 matrix T = (βij), which satisfies Condition C. Then, it
must be of the form:

T = (βij) =

[
∗ −
+ ∗

]
(28)

If β11 ≤ 0, then row 1 violates (R). On the other hand, if β11 > 0, then
column 1 violates (R). Thus, in either case, (R) would be violated if Condition
C holds.

Consider a 3× 3 matrix T = (βij), which satisfies Condition C. Then, it
can be of several forms. But, it is easy to check that the analysis in all cases
can be reduced to the cases depicted in the following two forms:

(i)T = (βij) =

⎡
⎣ ∗ ∗ −

+ + ∗
+ + ∗

⎤
⎦ , or (ii)T = (βij) =

⎡
⎣ ∗ ∗ −

∗ ∗ −
+ + ∗

⎤
⎦ (29)

Consider (29)(i) first. For (R) to hold, we must clearly have β11 < 0 and
β12 < 0. But, then the first row of T would violate (R).

Next, consider (29)(ii). If β33 ≤ 0, then the third column of T violates
(R). On the other hand, if β33 > 0, then the third row of T violates (R).
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3.4 A Converse Result on Sign Patterns

We now investigate whether the sign pattern restriction described in Theorem
1, together with (R), exhaust all the restrictions imposed by our framework on
the relationship between commodity prices and factor rewards. Qualitatively,
it does, as the following result notes.

Theorem 2 Let T = (βij) be an n × n non-singular matrix, whose column
sums are equal to 1. Suppose T satisfies (R), and does not satisfy Condition
C of Theorem 1, even after all possible independent renumberings of its rows
and columns. Then, there is an n×n positive non-singular matrix S = (αij),
whose column sums are equal to 1, such that the inverse of S has the same
sign pattern as T.

Proof. We can apply the Theorem of Fiedler and Grone (1981, p. 240)16

to obtain an n × n positive non-singular matrix A = (aij), such that the
inverse of A (denoted by B = (bij)) has the same sign pattern as T.

Define, for each j ∈ {1, ..., n}:

σj =
n∑

i=1

aij (30)

and denote by Z the diagonal matrix, with (1/σ1, ..., 1/σn) on its diagonal.
Then, AZ is an n× n positive non-singular matrix, whose column sums are
equal to 1, by (30). Define S = AZ. Then,

S−1 = Z−1A−1 = Z−1B (31)

Since Z−1 is a diagonal matrix with (σ1, ..., σn) on its diagonal, the sign
pattern of S−1 is the same as the sign pattern of B, which is the same as the
sign pattern of T.

Remark:
The matrix S obtained in Theorem 2 can be interpreted as a distributive

share matrix, arising from the framework described in Section 2, whose in-
verse exhibits the sign pattern of T. That is, this distributive share matrix,
S, would yield precisely the same qualitative features regarding the effect of
commodity prices on factor rewards as indicated by the sign pattern of T. In
this sense, the sign pattern of T can be rationalized by the distributive share
matrix S.

16Use the equivalence of statements (i) and (ii) in their Theorem.
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