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Abstract

The paper examines the nature of competitive paths in an exhaustible resource model,
which allows for growing population. For competitive paths which are equitable in the sense
that the per capita consumption level is constant over time, the implicit investment rule is
derived. This is seen to be a generalization of Hartwick’s rule, obtained in the case of a
stationary population. It is also shown that the existence of a competitive equitable path
implies that population can experience at most quasi-arithmetic growth.
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1. Introduction

The purpose of this paper is to examine the nature of competitive equitable paths, when
exhaustible resources are essential factors of production, allowing for population growth.

The literature has almost exclusively focused on the case of zero population growth.
However, there has been considerable interest recently, from the view point of sustainable
development, in examining whether population growth is consistent with the objective of
attaining equitable paths (with constant positive per-capita consumption).3

In an early precursor to this literature, Mitra (1983) had examined this issue in a discrete-
time exhaustible resource model. The current paper can be considered to be a continuous-
time counterpart of the earlier one, which can be used to provide sharper results on two
aspects of the framework with population growth, which have come to the forefront of recent
discussion.

The first aspect involves the precise nature of the investment rule implicit in competitive
equitable paths. In the absence of population growth, it is known that if a path is competitive
and equitable, then the value of net investment, in both the produced capital good, and the
non-produced capital good (the exhaustible resource), must equal zero at each date (see
Buchholz, Dasgupta and Mitra (2005)). This investment rule is known as Hartwick’s rule.
However, in the presence of exogenous population growth (that is not restricted in any ad
hoc manner) the appropriate investment rule implied by competitive equity is not known.
In Theorem 1 of Section 4, we derive this invetment rule, which is seen to be an appropriate
generalization of Hartwick’s rule.4

The second aspect involves the parametric restrictions necessary for the existence of a
competitive equitable path. In the framework of our model, but without population growth,
Solow (1974) obtained the parametric restriction for competitive equity that the capital
coefficient must exceed the resource coefficient in the (assumed Cobb-Douglas) production
function. In the current framework, which allows for growing (as well as stationary) popula-
tion, the additional parameters are precisely the exogenously specified population path. In
Theorem 2 of Section 5, we show that the existence of a competitive equitable path implies
that population be restricted to at most quasi-arithmetic growth.5

2. Preliminaries

2.1. An Exhaustible Resource Model

This is a model with one produced good, which serves as both the capital as well as the
consumption good. This good is produced with capital (K), an exhaustible resource (R),
and labor (N). The production function F is of the Cobb-Douglas form:

F (K,R,N) = KαRβN (1−α−β) for (K,R,N) ≥ 0 (1)

3See Asheim, Buchholz, Hartwick, Mitra andWithagen (2006) for some recent results, as well as references
to some of the literature that has developed.

4Section 4 contains a more thorough discussion relating our theorem to the earlier literature, and conse-
quently our exposition here is deliberately brief.

5A discussion of some of the background literature, dealing with the interest in quasi-arithmetic (rather
than geometric) population growth in the context of the exhaustible resource model, can be found in Section
5.
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where α > 0, β > 0 and (α+ β) < 1.
Labor is taken to be equal to the population (N), and is assumed to be exogenously

given, and non-decreasing over time:

Ṅ(t) = g(t)N(t) for t ≥ 0;N(0) > 0 (2)

where g(t) ≥ 0 for t ≥ 0 represents the growth rate of population, and is assumed to be a
continuous function of t. We normalize N(0) to 1, and we also assume that there is some
g > 0, such that g(t) ≤ g for all t ≥ 0.

2.2. Equitable and Competitive Paths

A path from initial stock (K,S) in R
2
+ is described by the functions (K(t), R(t), C(t)), where

K(·) : [0,∞) → R+, R(·) : [0,∞) → R+, and C(·) : [0,∞) → R+, such that K(t), R(t), C(t)
are continuously differentiable functions of t, and satisfy:

(a) C(t) = F (K(t), R(t), N(t))− K̇(t) for t ≥ 0
(b)

∫∞

0
R(t)dt ≤ S and

(c)K(0) = K

⎫⎬
⎭ (3)

We associate with a path (K(t), R(t), C(t)) from (K,S) in R
2
+ a function (E(t)) given by:

E(t) =

∫ ∞

t

R(s)ds

Apath (K(t), R(t), C(t)) from (K,S) inR
2
+ is called interior ifK(t) > 0, R(t) > 0 and C(t) >

0 for t ≥ 0.6

A path (K(t), R(t), C(t)) from (K,S) is called equitable if (C(t)/N(t)) is constant over
time. It is called inefficient if there is another path (K ′(t), R′(t), C ′(t)) from (K,S), such
that C ′(t) ≥ C(t) for t ≥ 0, and:

C ′(τ) > C(τ) for some τ ≥ 0 (4)

Note that since C(t) is continuous in t, the requirement (4) in fact implies that there is an
interval [τ , τ + ε], with ε > 0, such that:

C ′(t) > C(t) for t ∈ [τ , τ + ε]

A path (K(t), R(t), C(t)) from (K,S) is called efficient if it is not inefficient.
An interior path (K(t), R(t), C(t)) from (K,S) in R

2
+ is called competitive if it satisfies

Hotelling’s Rule equating the returns on the capital good and the exhaustible resource7:

Ḟ2(K(t), R(t), N(t))/F2(K(t), R(t), N(t)) = F1(K(t), R(t), N(t)) (5)

6Note that along an interior path (K(t), R(t), C(t)), using (3)(a), K̇(t) is itself a continuously differentiable
function of t .

7It is well-known (see, for example, Dasgupta and Heal (1979)) that this rule incorporates short-run or
myopic efficiency. Note that for an interior path (K(t), R(t), C(t)), F2(K(t), R(t), N(t)) is a continuously
differentiable function of t; this allows us to write Hotelling’s rule as in (5).
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2.3. Hotelling’s Rule and Profit Maximization

If (K(t), R(t), C(t)) is an interior path from (K,S) in R
2
+, we can associate with it a path

of shadow prices (p(t), w(t)) as follows:

p(t) = 1/F2(K(t), R(t), N(t))
w(t) = p(t)F3(K(t), R(t), N(t))

(6)

Then, given the concavity of F, one can verify that Hotelling’s Rule (5) implies profit maxi-
mization; that is, for all t ≥ 0, and all (K,R,N) ∈ R

3
+, we have:

p(t)F (K(t), R(t), N(t))− (−ṗ(t))K(t)−R(t)− w(t)N(t)

≥ p(t)F (K,R,N)− (−ṗ(t))K −R− w(t)N (7)

Here, p(t) is the price of the capital cum consumption good, measured in units of the resource
stock at time 0,which is the numeraire, and (−ṗ(t)) is to be interpreted as the rental rate on
capital. Since the resource stock does not directly affect output at any t (it is only the flow
of the resource which affects the output) the present value price of the resource is constant;
this constant is positive, given that the production function is specified by (1). Thus, the
present value price of the resource at time t, measured in units of the resource stock at time
0, is unity.8 Since F exhibits constant returns to scale, profit maximization implies that we
also have for all t ≥ 0,

0 = p(t)F (K(t), R(t), N(t))− (−ṗ(t))K(t)−R(t)− w(t)N(t) (8)

3. Properties of Competitive Paths

We start our analysis by examining the properties of (interior) competitive paths, whether
they are equitable or not. These properties will be used in the next two sections to study
the nature of competitive equitable paths.

Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive path, with

associated shadow prices (p(t), w(t)), given by (6). We show in the first subsection (Propo-
sition 1) that such a path must satisfy the capital value transversality condition (CVTC):

lim
t→∞

p(t)K(t) = 0 (9)

Using this property, we establish in the second subsection (Proposition 2) a value-maximizing
property of the competitive path.

In the third subsection, we use the necessity of the CVTC for competitive paths to pro-
vide a characterization of competitive efficiency (Proposition 3) in terms of the CVTC and
a resource exhaustion condition (REC). Using this characterization, we also provide in the
fourth subsection (Proposition 4) a characterization of efficient paths in terms of the compet-
itive condition (5), the CVTC and the REC, by noting that an efficient path is necessarily
competitive. The results of the third and fourth subsections are not directly relevant for the
material in the rest of the paper, since (long-run) efficiency does not a play a crucial role in
the results we develop there. However, they provide the connection between competition and
efficiency, which was established in Mitra (1978b) for a discrete-time exhaustible resource
model, and appears to be missing for the continuous-time counterpart.

8See Mitra (1978b) for a formal proof.
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3.1. The Capital Value Transversality Condition

Proposition 1 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competi-

tive path, with associated shadow prices (p(t), w(t)), given by (6). Then, the capital value
transversality condition:

lim
t→∞

p(t)K(t) = 0

must hold.

Proof. Using 3(a) and (8), we have for all t ≥ 0 :

p(t)C(t) = p(t)F (K(t), R(t), N(t))− p(t)K̇(t)

= R(t) + w(t)N(t)− [ṗ(t))K(t) + p(t)K̇(t)] (10)

Denoting p(t)K(t) by V (t) for t ≥ 0, we get:

p(t)C(t) = R(t) + w(t)N(t)− V̇ (t) (11)

So, integrating from 0 to T > 0, we obtain:∫ T

0

p(t)C(t)dt =

∫ T

0

R(t)dt+

∫ T

0

w(t)N(t)dt− (V (T )− V (0)) (12)

Note that for all T > 0, we have:

P (T ) ≡

∫ T

0

R(t)dt ≤ S

Since P (T ) is monotonically non-decreasing in T , and bounded above by S, it must converge.
Using (6), we have for t ≥ 0 :

w(t)N(t) = p(t)F3(K(t), R(t), N(t))N(t)

= p(t)(1− α− β)F (K(t), R(t), N(t))

=
(1− α− β)

β
p(t)F2(K(t), R(t), N(t))R(t)

=
(1− α− β)

β
R(t) (13)

Using (13), we obtain:

W (T ) ≡

∫ T

0

w(t)N(t)dt ≤ [(1− α− β)/β]S (14)

Since W (T ) is monotonically non-decreasing in T, and bounded above (by (14)), it must
converge.

Using (13) in (12), we get:

U(T ) ≡

∫ T

0

p(t)C(t)dt

≤

∫ T

0

R(t)dt+

∫ T

0

w(t)N(t)dt+ p(0)K(0)

≤ [(1− α)/β]

∫ T

0

R(t)dt+ p(0)K(0)

≤ [(1− α)/β]S + p(0)K (15)
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Since U(T ) is monotonically non-decreasing in T, and bounded above (by (15)), it must
converge.

Returning now to (12), we note that since P (T ),W (T ) and U(T ) converge as T → ∞,
we must also have V (T ) converging as T → ∞. Denote the limit of V (T ), as T → ∞, by ν.
We claim that ν = 0. Suppose, on the contrary, that ν > 0.

Using the definition of p(t), we see that:

V (t) = p(t)K(t) =
R(t)K(t)

R(t)F2(K(t), R(t), N(t))

=
R(t)K(t)

βF (K(t), R(t), N(t))

=
αR(t)K(t)

βK(t)F1(K(t), R(t), N(t))

=
(α/β)R(t)

F1(K(t), R(t), N(t))
(16)

Since limt→∞ V (t) = ν, there is T ′ > 0, such that for all t ≥ T ′, V (t) ≥ (ν/2), and using this
in (16), we obtain:

F1(K(t), R(t), N(t)) ≤ (2/ν)(α/β)R(t) for all t ≥ T ′ (17)

Thus, we have, for all T > T ′,∫ T

0

F1(K(t), R(t), N(t))dt =

∫ T ′

0

F1(K(t), R(t), N(t))dt

+

∫ T

T ′

F1(K(t), R(t), N(t))dt

≤ MT ′ + (2/ν)(α/β)S ≡ θ (18)

where M is the maximum value of the continuous function F1(K(t), R(t), N(t)) on the in-
terval [0, T ′].

Using (5) and (6), we have for all t ≥ 0,

ṗ(t)/p(t) = −F1(K(t), R(t), N(t)) (19)

Thus, for all T > 0, by integrating (19), we obtain

ln p(0)− ln p(T ) =

∫ T

0

F1(K(t), R(t), N(t))dt (20)

Using (18) and (20), we obtain for all T > 0 :

ln p(T ) ≥ ln p(0)− θ

so that p(t) is bounded away from zero. Since p(t) decreases with t, it must converge to
a positive number, say π, as t → ∞. Since p(t)K(t) converges to ν, we must have K(t)
converging to (ν/π) as t → ∞. Using (6) again, we have :

(1/p(t)) =
K(t)αN(t)(1−α−β)

R(t)1−β
for t ≥ 0
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and so we obtain, for t ≥ 0:

R(t)1−β = p(t)K(t)αN(t)(1−α−β) ≥ p(t)K(t)αN(0)(1−α−β) (21)

Since p(t) converges to π, and K(t) converges to (ν/π) as t → ∞, there is some T ′′, such
that for all t ≥ T ′′, we have:

R(t)1−β ≥ p(t)K(t)αN(0)(1−α−β) ≥ (
1

2
)π(ν/π)αN(0)(1−α−β)

But this violates the resource constraint, (3)(b). This contradiction establishes our claim
that ν = 0, and the capital value transversality condition is proved.

3.2. The Value Maximizing Property

Proposition 2 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

path, with associated shadow prices (p(t), w(t)), given by (6). Then, it satisfies the following
value-maximizing property:

0 =

∫ ∞

T

p(t)C(t)dt−

∫ ∞

T

w(t)N(t)dt− p(T )K(T )−E(T ) ≥∫ ∞

T

p(t)C(t+ τ)dt−

∫ ∞

T

w(t)N(t+ τ)dt

−p(T )K(T + τ))−E(T + τ)

holds for all T > 0, and all τ , satisfying 0 < |τ | < T.

Proof. Using (12) and the capital value transversality condition, and noting that the three
integrals in (12) converge as T → ∞, we get:∫ ∞

0

p(t)C(t)dt =

∫ ∞

0

R(t)dt+

∫ ∞

0

w(t)N(t)dt+ p(0)K(0) (22)

The relationship noted in (22) can be generalized as follows. Pick any T ≥ 0. Using (11),
and integrating from T to T ′ > T, we obtain:

∫ T ′

T

p(t)C(t)dt =

∫ T ′

T

R(t)dt+

∫ T ′

T

w(t)N(t)dt− (V (T ′)− V (T )) (23)

Letting T ′ → ∞, using the transversality condition, and noting that the three integrals in
(23) converge as T ′ → ∞, we obtain:∫ ∞

T

p(t)C(t)dt =

∫ ∞

T

R(t)dt+

∫ ∞

T

w(t)N(t)dt+ p(T )K(T ) for all T ≥ 0 (24)

Denote
∫∞

0
R(t)dt by E, and for each T ≥ 0, define:

E(T ) = E −

∫ T

0

R(t)dt
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Clearly, E(0) = E,E(T ) ≥ 0 for T ≥ 0, and E(T ) → 0 as T → ∞. Further, we have, for
T ≥ 0,

E(T ) =

∫ ∞

T

R(t)dt (25)

Using (25) in (24), we obtain, for each T ≥ 0,∫ ∞

T

p(t)C(t)dt−

∫ ∞

T

w(t)N(t)dt− p(T )K(T )−E(T ) = 0 for all T ≥ 0 (26)

Let T > 0 and |τ | ∈ (0, T ) be given. Note that for each t ≥ T, using (7) and (8), we
have, for all (K,R,N) ∈ R

3
+ :

p(t)F (K,R,N)− (−ṗ(t))K −R− w(t)N ≤ 0 (27)

Then, using (27) on the triple (K(t+ τ), R(t+ τ), N(t+ τ)), we have:

p(t)F (K(t+ τ), R(t+ τ), N(t+ τ))− (−ṗ(t))K(t+ τ)

−R(t+ τ)− w(t)N(t+ τ) ≤ 0 (28)

and using the fact that F (K(t + τ), R(t + τ), N(t + τ)) = C(t + τ) + K̇(t + τ) in (28), we
obtain:

p(t)C(t+ τ) = p(t)F (K(t+ τ), R(t+ τ), N(t+ τ))− p(t)K̇(t+ τ)

≤ R(t+ τ) + w(t)N(t+ τ)− d[p(t))K(t+ τ)]/dt (29)

Integrating (29) from T to T ′ > T, we get:∫ T ′

T

p(t)C(t+ τ)dt ≤

∫ T ′

T

R(t+ τ)dt+

∫ T ′

T

w(t)N(t+ τ)dt

−[p(T ′)K(T ′ + τ)− p(T )K(T + τ)]

≤

∫ T ′

T

R(t+ τ)dt+

∫ T ′

T

w(t)N(t+ τ)dt

+p(T )K(T + τ)) (30)

Using the fact that g(t) ≤ g for t ≥ T, it is easy to check that:

N(t+ τ)

N(t)
≤ eg|τ | for all t ≥ T

This implies that:
w(t)N(t+ τ) ≤ w(t)N(t)eg|τ | for all t ≥ T (31)

Using (31), (3)(b) and (14), it follows that the three integrals in (30) must converge as
T ′ → ∞, and we get:∫ ∞

T

p(t)C(t+ τ)dt ≤

∫ ∞

T

R(t+ τ)dt+

∫ ∞

T

w(t)N(t+ τ)dt+ p(T )K(T + τ))

=

∫ ∞

T+τ

R(s)ds+

∫ ∞

T

w(t)N(t+ τ)dt+ p(T )K(T + τ))

= E(T + τ) +

∫ ∞

T

w(t)N(t+ τ)dt+ p(T )K(T + τ)) (32)
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Using (26) and (32), we obtain:

0 =

∫ ∞

T

p(t)C(t)dt−

∫ ∞

T

w(t)N(t)dt− p(T )K(T )−E(T ) ≥∫ ∞

T

p(t)C(t+ τ)dt−

∫ ∞

T

w(t)N(t+ τ)dt

−p(T )K(T + τ))−E(T + τ)

as claimed in the proposition.

3.3. Efficiency of Competitive Paths

Proposition 3 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

path, with associated shadow prices (p(t), w(t)), given by (6). Then, (K(t), R(t), C(t)) is
efficient from (K,S) if and only if it satisfies:

(i) limt→∞ p(t)K(t) = 0
(ii)

∫∞

0
R(t)dt = S

Proof. (Necessity) Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior com-

petitive path, with associated shadow prices (p(t), w(t)), given by (6). Then (i) follows from
Proposition 1. If (K(t), R(t), C(t)) is efficient from (K,S), we establish (ii) by supposing
that it is violated. Then, by (3)(b), we have:

e ≡ S −

∫ ∞

0

R(t)dt > 0

Define a function (e(t)) as follows:

e(t) =

{
3e(1− t)2 for t ∈ [0, 1]
0 for t > 1

Then, e(t) is a continuously differentiable function of t on [0,∞), and:∫ ∞

0

e(t)dt = e

Define (K ′(t), R′(t), C ′(t)) as follows:

K ′(t) = K(t) for t ≥ 0
R′(t) = R(t) + e(t) for t ≥ 0

C ′(t) = F (K ′(t), R′(t), N(t))− K̇ ′(t) for t ≥ 0

⎫⎬
⎭

Then, it is easy to check that (K ′(t), R′(t), C ′(t)) is a path from (K,S). Since R′(t) ≥ R(t)
for all t, and K ′(t) = K(t) for all t, we must have C ′(t) ≥ C(t) for all t. Further, since
K > 0, there is τ ∈ (0, 1), such that for t ∈ [0, τ ], K(t) > 0. Since we have R′(t) > R(t) for
all t ∈ [0, τ ], we must have C ′(t) > C(t) for all t ∈ [0, τ ]. This means that (K(t), R(t), C(t))
must be inefficient, a contradiction which establishes (ii).

(Sufficiency) This is standard, and can be established by following the proof of Lemma
6 in Asheim, Buchholz, Hartwick, Mitra and Withagen (2006).
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3.4. A Characterization of Efficiency

Proposition 4 Let (K(t), R(t), C(t)) from (Ko, So) in R
2
+ be an arbitrary interior path.

Then, (K(t), R(t), C(t)) is efficient from (Ko, So) if and only if it satisfies Hotelling’s rule
(given by (5)), and the following two conditions:

(i) limt→∞[1/F2(K(t), R(t), N(t))]K(t) = 0
(ii)

∫∞

0
R(t)dt = So

Proof. (Sufficiency) Since (K(t), R(t), C(t)) from (Ko, So) in R
2
+ is an interior competitive

path, we can associate with it shadow prices (p(t), w(t)), given by (6). Since (i) holds we
have limt→∞ p(t)K(t) = 0. And, since (ii) also holds, the path (K(t), R(t), C(t)) is efficient
by Proposition 3.

(Necessity)We establish that if (K(t), R(t), C(t)) from (Ko, So) is efficient, then it satisfies
(5). Using the necessity proof of Proposition 4, it is easy to check that (K(t), S(t)) solves
the problem:

Max
∫∞

0
Ṡ′(t)dt

subject to F (K ′(t),−Ṡ′(t), N(t))− K̇(t) ≥ C(t) for t ≥ 0

−Ṡ′(t) ≥ 0 for t ≥ 0
S′(t),K ′(t) ≥ 0 for t ≥ 0
S′(0),K ′(0) = (So,Ko)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(P )

Notice that (P ) is in the standard format of an infinite-horizon optimal control prob-
lem (with time-dependent feasibility sets). We will invoke the maximum principle for this
problem.

Define Y (t) = {(K,S), (Z,W ) : F (K,−W,N(t))− Z ≥ C(t), (K,S) ≥ 0,−W ≥ 0}, and
u : Y (t)×R+ → R by u((K,S), (Z,W ), t) = W. Then, Y (t) and u satisfy assumptions (A.1)-
(A.3) of Takekuma (1982). And, since (K(t), R(t), C(t)) is interior, (A.4) is also satisfied.
We can therefore apply his “Main Theorem” (p.431) and Remark 4.2 (p.432).

To this end, define:

H((π, η), (K,S), t) = sup{u((K,S), (Z,W ), t) + πZ + ηW :

((K,S), (Z,W )) ∈ Y (t)}

Then, we have absolutely continuous functions {π(t), η(t)} with π(t) > 0 for t ≥ 0, such
that:

(i)d(K(t), S(t))/dt ∈ ∂1H((π(t), η(t)), (K(t), S(t)), t)
(ii)− (π̇(t), η̇(t)) ∈ ∂2H((π(t), η(t)), (K(t), S(t)), t)
(iii)H((π(t), η(t)), (K(t), S(t)), t) = dS(t)/dt+ π(t)dK(t)/dt+ η(t)dS(t)/dt

⎫⎬
⎭

It follows from (ii) that:

−π̇(t) = π(t)F1(K(t), R(t), N(t))
−η̇(t) = 0

}
(33)

Furthermore, it follows from (iii) that:

1− π(t)F2(K(t), R(t), N(t)) = η(t)

10



Differentiating this equation with respect to t, and using η̇(t) = 0, we get:

π(t)Ḟ2(K(t), R(t), N(t)) + π̇(t)F2(K(t), R(t), N(t)) = 0

Using (33) now yields:

π(t)[Ḟ2(K(t), R(t), N(t))− F2(K(t), R(t), N(t))F1(K(t), R(t), N(t))] = 0

Since π(t) > 0 for t ≥ 0, (5) must hold for all t ≥ 0.
Conditions (i) and (ii) now follow directly from Proposition 3.

4. Competitive Equity and a Generalized Hartwick Rule

In the context of our model (but for a more general class of production functions than (1)),
in which population is stationary, Hartwick (1977) made the interesting observation that a
competitive path, which follows the rule of investing the rents from the exhaustible resource
used at each date, in the net accumulation of the produced capital good, is equitable. We
shall refer to this investment rule as Hartwick’s rule. As Solow (1986) has observed, this is
an intuitively appealing investment rule of maintaining the consumption potential of society,
in a generalized sense, by replacing exhaustible resource stocks, which are used up, with
produced capital goods of equal value.

It turns out that Hartwick’s Rule has significance in a wider class of models than the
special context in which it arose initially. In particular, Dixit, Hammond and Hoel (1980)
recognized that Hartwick’s Rule is really a statement that the valuation of net investment
(including the dis-investment in the exhaustible resource) is zero at each date. They then
proceeded to show in a general model of accumulation involving heterogenous capital goods
(which could include various non-renewable resource stocks) that if the valuation of net in-
vestment is constant over time (the constant is not required to be zero) then this would en-
sure intertemporal equity (in the sense described above, but with “consumption” interpreted
now as the utility based on a vector of consumption goods). Furthermore, this investment
rule, which might legitimately be called the Dixit-Hammond-Hoel rule was also a necessary
condition for intertemporal equity along competitive paths.

This characterization of competitive equitable paths naturally leads one to re-examine
the special significance of Hartwick’s rule for intertemporal equity. This issue was first
examined by Dasgupta and Mitra (1983); however, their investgation was in the context
of a discrete-time model, where Hartwick’s rule does not hold in the original form but
rather in a modified form, for efficient equitable paths. In the corresponding continuous
time framework, Hartwick’s rule does hold in its original form as a necessary condition along
efficient equitable paths; see, for example, Withagen and Asheim (1998) and Mitra (2002)for
versions of this result in general models of accumulation involving heterogenous capital goods
(which could include various non-renewable resource stocks)9.

Buchholz, Dasgupta and Mitra (2005) showed that, in the context of the exhaustible
resource model in which Hartwick first proposed his rule, Hartwick’s rule is necessary for

9Our review of this literature is deliberately brief, since there is a comprehensive appraisal of this line of
research in Asheim, Buchholz and Withagen (2003). In particular, their paper explores the relation between
Hartwick’s rule and the theory of sustainability.
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intertemporal equity of competitive paths, provided the exhaustible resource is “important”
in production. In particular, this result holds when the production function is specified
by (1). That is, in the context of our model, but without population growth, if a path
(K(t), R(t), C(t)) from (K,S) in R

2
+ is interior, competitive and equitable, then the value

of net investment, in both the produced capital good, and the non-produced capital good
(the exhaustible resource), I(t) ≡ p(t)K̇(t)+ Ṡ(t), must equal zero at each date. In contrast
to the literature mentioned in the previous paragraph, the rather demanding assumption
of efficiency of these paths is irrelevant in this particular context. This result implies the
rather intriguing fact that in the context of this model, competitive paths which satisfy the
Dixit-Hammond-Hoel rule (that the value of net investment be constant) must also satisfy
Hartwick’s rule (that the value of net investment be zero).

In the case of our framework of Section 2, which allows for a growing population (as well
as a stationary population), we establish in this section the following generalization of the
result indicated in the previous paragraph. If a path (K(t), R(t), C(t)) from (K,S) in R

2
+ is

interior, competitive and equitable, then the value of net investment must change according
to the formula:

İ(t) = [w(t)N(t)− p(t)C(t)]g(t) for all t ≥ 0

This formula reduces to Hartwick’s rule in the stationary population case (that is, when
g(t) = 0 for t ≥ 0), and therefore represents an appropriate generalization of Hartwick’s
rule.

Theorem 1 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

equitable path, with associated shadow prices (p(t), w(t)), given by (6), and with constant
per-capita consumption (C(t)/N(t)) = c > 0 for t ≥ 0. Then, it must satisfy:

p(T )K̇(T )−R(T )

=

∫ ∞

T

p(t)cṄ(t)dt−

∫ ∞

T

w(t)Ṅ(t)dt

for all T ≥ 0, and:

İ(t) = [w(t)N(t)− p(t)C(t)]g(t) for all t ≥ 0

Proof. The idea of the proof (of the first formula) is to use the value maximizing property
established in Proposition 2, and to write down the necessary first-order condition. Note
that since the value-maximization property involves time-shifted primal variables, but not
the dual variables, time derivatives of only the primal variables will appear. However, in
order to do this, one has to show that the interchange of the integral operation and the limit
operation is justified. Thus, a “dominated convergence theorem” for Riemann integrals has
to be used. The bulk of the proof below is in making sure of this important step. The second
formula follows directly from the first.

Fix an arbitrary T > 0, and let 0 < τ < T. Then, using the value-maximizing property
established in Proposition 2, we get:

p(T )(K(T + τ)−K(T )) + E(T + τ)− E(T )

≥

∫ ∞

T

p(t)(C(t+ τ)− C(t))dt−

∫ ∞

T

w(t)(N(t+ τ)−N(t))dt

12



Further, by dividing through by τ > 0, we obtain:

p(T )
(K(T + τ)−K(T ))

τ
+

E(T + τ)− E(T )

τ

≥

∫ ∞

T

p(t)
(C(t+ τ)− C(t))

τ
dt−

∫ ∞

T

w(t)
(N(t+ τ)−N(t))

τ
dt (34)

We claim that:

p(T )K̇(T ) + Ė(T )

≥

∫ ∞

T

p(t)cṄ(t)dt−

∫ ∞

T

w(t)Ṅ(t)dt (35)

Pick N ∈ N such that (1/N) < T. then, for each n ∈ M = {n ∈ N, with n ≥ N} we have
(1/n) ∈ (0, T ). Thus, for each n ∈ M, we can write, using (34),

p(T )
(K(T + (1/n))−K(T ))

(1/n)
+

E(T + (1/n))− E(T )

(1/n)

≥

∫ ∞

T

p(t)
(C(t+ (1/n))− C(t))

(1/n)
dt

−

∫ ∞

T

w(t)
(N(t+ (1/n))−N(t))

(1/n)
dt (36)

Letting n → ∞, we see that the left-hand side of (36) clearly converges to the left hand side
of (35), since the derivatives K̇(T ) and Ė(T ) exist. For the right hand side expressions in
(36) and (35), one needs some more work to validate the claim.

We analyze, first, the second integral appearing in the right hand side of (36). Let ε > 0
be given. Note that:

w(t)Ṅ(t) ≤ gw(t)N(t) for all t ≥ 0

and so for B > T :∫ B

T

w(t)Ṅ(t)dt ≤ g

∫ B

T

w(t)N(t)dt ≤ g[(1− α− β)/β]S

Since
∫ B

T
w(t)Ṅ(t)dt is monotonically non-decreasing in B > T, it converges as B → ∞.

This limit is denoted by
∫∞

T
w(t)Ṅ(t)dt , an improper Riemann integral. Clearly, one can

pick T ′ > T, such that: ∫ ∞

T

w(t)Ṅ(t)dt−

∫ T ′

T

w(t)Ṅ(t)dt < ε/3 (37)

Similarly, for all n ∈ M, we have:

w(t)
(N(t+ (1/n))−N(t))

(1/n)
≤ gegTw(t)N(t) for all t ≥ 0

For B > T : ∫ B

T

gegTw(t)N(t)dt ≤ gegT [(1− α− β)/β]S

13



Since
∫ B

T
gegTw(t)N(t)dt is monotonically non-decreasing in B > T, it converges as B → ∞.

This limit is denoted by
∫∞

T
gegTw(t)N(t)dt , an improper Riemann integral. Clearly, one

can pick T ′′ > T, such that
∫∞

T ′′
gegTw(t)N(t)dt < ε/3. Then, for every n ∈ M, the improper

Riemann integral
∫∞

T
w(t)[ (N(t+(1/n))−N(t))

(1/n)
]dt exists, and one can pick T ′′ > T ′, such that

∫ ∞

T

w(t)
(N(t+ (1/n))−N(t))

(1/n)
dt−

∫ T ′′

T

w(t)
(N(t+ (1/n))−N(t))

(1/n)
dt < ε/3 (38)

Define:
fn(t) = w(t) (N(t+(1/n))−N(t))

(1/n)
for t ∈ [T, T ′′], n ∈ M

f(t) = w(t)Ṅ(t) for t ∈ [T, T ′′]

}
(39)

and note that, for each t ∈ [T, T ′′],

lim
n→∞

fn(t) = f(t) (40)

by definition of a derivative. Further, for each n ∈ M, fn is a continuous function on [T, T ′′];
and f(t) = w(t)N(t)g(t) is also a continuous function on [T, T ′′]. Thus, each fn (for n ∈ M)
is Riemann integrable on [T, T ′′], and so is f. Finally, each fn (for n ∈ M) is non-negative,
and bounded above by the function:

h(t) = w(t)N(t)gegT for all t ∈ [T, T ′′]

and h, being clearly continuous on [T, T ′′], is also Riemann integrable on [T, T ′′]. Thus, we
can conclude that:

lim
n→∞

∫ T ′′

T

fn(t)dt =

∫ T ′′

T

f(t)dt (41)

See Cunningham (1967, Theorem 2, p. 184) for the precise result that is being used.
Using (41), we can choose µ ∈ M, such that:

|

∫ T ′′

T

fn(t)dt−

∫ T ′′

T

f(t)dt| < ε/3 for all n ≥ µ (42)

Then, using (37), (38) and (42), we get for all n ≥ µ,

|

∫ ∞

T

fn(t)dt−

∫ ∞

T

f(t)dt| < ε

This establishes that:

lim
n→∞

∫ ∞

T

fn(t)dt =

∫ ∞

T

f(t)dt (43)

The analysis of the first inegral appearing in the right hand side of (36) is similar, by
noting that C(t) = cN(t) for t ≥ 0. And, it leads to the result that:

lim
n→∞

∫ ∞

T

p(t)
(C(t+ (1/n))− C(t))

(1/n)
dt =

∫ ∞

T

p(t)cṄ(t)dt (44)

Using (43) and (44), one establishes the claim (35).
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If one uses the value maximizing property with τ < 0, but |τ | < T, one can denote (−τ)
by τ ′, and obtain:

p(T )
(K(T )−K(T − τ ′))

τ ′
+

E(T )−E(T − τ ′)

τ ′

≤

∫ ∞

T

p(t)
(C(t)− C(t− τ ′))

τ ′
dt−

∫ ∞

T

w(t)
(N(t)−N(t− τ ′))

τ ′
dt

The preceding analysis will then establish the following claim:

p(T )K̇(T ) + Ė(T )

≤

∫ ∞

T

p(t)cṄ(t)dt−

∫ ∞

T

w(t)Ṅ(t)dt (45)

Combining (35) and (45), we get:

p(T )K̇(T )−R(T )

=

∫ ∞

T

p(t)cṄ(t)dt−

∫ ∞

T

w(t)Ṅ(t)dt (46)

As noted earlier, K̇(t) is itself a differentiable function of time (by 3(a)). So, we can
denote the value of net investment, p(T )K̇(T )−R(T ), by I(T ), and use (46) to obtain:

İ(T ) = w(T )Ṅ(T )− p(T )cṄ(T )

= [w(T )N(T )− p(T )C(T )]g(T ) (47)

5. Parametric Restrictions for Competitive Equity

We now establish certain restrictions on the framework that must be satisfied for the existence
of a competitive equitable path. More generally, these parametric restrictions follow from
the existence of a competitive path, for which per capita consumption is bounded away from
zero.

In the framework of our model, but without population growth, Solow (1974) obtained
the parametric restriction for competitive equity that the capital coefficient (α) exceed the
resource coefficient (β) in the production function, given by (1).10

In the current framework, which allows for growing (as well as stationary) population, the
restrictions on population growth for the existence of competitive equitable path is a question
of considerable interest. In a discrete-time version of the current framework, Mitra (1983)
provided a restriction on the population sequence, which was necessary for the existence
of an efficient equitable path; together with Solow’s technological parametric restriction, a

10This result was extended to a more general class of production functions than (1), by focusing on a
condition on the behavior of the “area under the isoquant”, as the output level goes to zero. This class
of results was independently obtained by Mitra (1978a), Buchholz (1982), and Shimomura (1983). For an
account of this line of enquiry, see Kemp, Long and Shimomura (1984). The most general result along this
line is contained in the paper by Cass and Mitra (1991).
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slightly stronger restriction was also shown to be sufficient for the existence of such a path. It
can be checked that these results can also be phrased in terms of restrictions for the existence
of a competitive equitable path, efficiency being not crucial to deriving these restrictions.

The general restriction on the population sequence, obtained by Mitra (1983), is some-
what hard to interpret. As an aid to understanding the restriction, it was pointed out in his
paper that if the population sequence experienced quasi-arithmetic growth, with exponent
µ ≥ 0 (and parameters a, b > 0),

N(t) = a+ btµ for all t ≥ 0

then the restriction on the population sequence amounted to the simple condition:

µ < (α/β)− 1

For the case of stationary population (µ = 0), this was precisely Solow’s technological re-
striction.

In re-examining Mitra’s 1983 results recently, in a continuous-time setting, Asheim, Buch-
holz, Hartwick, Mitra and Withagen (2006) established that if there exists a competitive
equitable path with a constant savings rate, then population must follow precisely quasi-
arithmetic growth.

Since a constant savings rate is a somewhat ad hoc condition, the question arises whether,
without that condition, quasi-arithmetic growth is, in some sense, the right restriction on
population growth imposed by the existence of a competitive equitable path.

Global population change since 1990 appears to have the following stylized features: (i)
Population continues to grow, and the growth is significant; (ii) the growth rate of population
is steadily decreasing; (iii) the absolute increase in population is also decreasing. Feature (i)
challenges the zero population growth idealization, while feature (ii) suggests that exponen-
tial growth formulation is unrealistic. Consistent with features (i) and (ii) is the abstraction,
postulated in quasi-arithmetic growth. Feature (iii) suggests that population is experiencing
sub-arithmetic growth.

The principal result of this section is that if there exists a competitive equitable path,
then population can experience at most quasi-arithmetic growth. Further, the exponent µ
(in this upper bound) can be precisely specified in terms of the technological coefficients, α
and β.

This result is accomplished by combining several implications of competitive equity, each
of which is of independent interest. The first implication is that there must be ongoing
capital accumulation all along the path. Thus, even though investment is not restricted
to be irreversible, it is so along competitive equitable paths. The second implication is
that exhaustible resource constraints impose upper bounds on the rate at which capital
accumulation can proceed. The third implication is that these upper bounds on capital
accumulation, when combined with intertemporal equity, impose the Solow restrictions on
the technological parameters of the model.

5.1. The Necessity of Ongoing Capital Accumulation

Lemma 1 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

equitable path, with associated shadow prices (p(t), w(t)), given by (6), and with constant

16



per-capita consumption (C(t)/N(t)) = c > 0 for t ≥ 0. Then, it must satisfy:

K̇(t) ≥ 0 for all t ≥ 0 (48)

Proof. Suppose, contrary to (48), there is some T, for which C(T ) > Q(T ). Denoting
Q(T )− C(T ) by ε, we have ε > 0, and:

K̇(T ) = −ε (49)

Then, by continuity of K̇(t), we have δ > 0, such that:

K̇(t) < 0 for all t ∈ [T, T + δ] (50)

Thus, K(t) < K(T ) for all t ∈ (T, T + δ].
We claim that K(t) < K(T ) for all t > T. For, if there is some t′ > T, such that

K(t′) ≥ K(T ), then t′ > T + δ, and by continuity of K(t), we have τ = min{t′ > T + δ :
K(t′) ≥ K(T )} well-defined, and τ > T + δ. Then,

K(τ) = K(T ), and K(t) < K(T ) for all t ∈ (T, τ) (51)

We focus now on t ∈ (T, τ). For all such t, we have F2(K(t), R(t), N(t)) increasing in t;
that is, Q(t)/R(t) is increasing in t. This means that [Q(t)/N(t)]/[R(t)/N(t)] is increasing
in t, so that [k(t)αr(t)β/r(t)] must be increasing in t, where k(t) = K(t)/N(t) and r(t) =
R(t)/N(t) for all t. Using (51) and the fact that N(t) is non-decreasing in t, we must have
k(t) < k(T ) for all t ∈ (T, τ). But, then r(t) < r(T ) for all t ∈ (T, τ). Thus, for all t ∈ (T, τ),
we get:

K̇(t)/N(t) = k(t)αr(t)β − c

< k(T )αr(T )β − c

= K̇(T )/N(T )

That is, using (49) and the fact that N(t) is non-decreasing in t, we have:

K̇(t) < −ε for all t ∈ (T, τ)

This clearly implies that K(τ) < K(T ) − ε(τ − T ) < K(T ), a contradiction to (51). Thus,
K(t) < K(T ) for all t > T must hold. Repeating the above argument (but this time for
all t > T ), we have K̇(t) < −ε for all t > T. But, this means that K(t) < 0 for large t, a
contradiction, which establishes (48).

5.2. An Upper Bound on Capital Accumulation

The upper bound on capital accumulation is obtained by applying methods used in Solow
(1974) and Mitra (1983). In the latter, the objective was to obtain restrictions on the path
of N(t) for competitive equitable paths to exist, which would be “almost” sufficient as well.
Thus, there was an explicit attempt to obtain the upper bound on capital accumulation
solely in terms of the path of N(t). Here we use a variation, in which an upper bound is
obtained in terms of the path of N(t), and t itself. This type of restriction is useful in
obtaining the quasi-arithmetic growth restriction on population growth, as we will see later
in this section. Needless to say, these methods rely heavily on the technique introduced in
Solow (1974, p. 43, Appendix B), and also on the fact that the production function is of the
Cobb-Douglas form.
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Lemma 2 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior path. Then,

there is a positive constant, A, such that:

K(t) ≤ At(1−β)/(1−α)N(t) for all t ≥ 0 (52)

Proof. Clearly, for each t ≥ 0, we have:

K̇(t) = K(t)αR(t)βN(t)η − C(t) ≤ K(t)αR(t)βN(t)η

where η = (1− α− β). So, we get:

K̇(t)

N(t)
≤ k(t)αr(t)β ≤ k(t)αR(t)β for all t ≥ 0

And, since:
K̇(t)

N(t)
= k̇(t) + g(t)k(t) for all t ≥ 0

we obtain:
k̇(t) ≤ k(t)αR(t)β − g(t)k(t) ≤ k(t)αR(t)β (53)

This leads to:
k̇(t)/k(t)α ≤ R(t)β for all t ≥ 0

so that we obtain, after defining z(t) ≡ k(t)1−α/(1− α),

ż(t) ≤ R(t)β for all t ≥ 0 (54)

Integrating (54) from 0 to T > 0, we obtain:

z(T )− z(0) ≤

∫ T

0

R(t)βdt =

∫ T

0

[R(t)β][11−β]dt

≤ [

∫ T

0

R(t)dt]β[

∫ T

0

dt]1−β

≤ SβT 1−β (55)

the second line in (55) following from Holder’s inequality. Thus, there is a constant A1 > 0,
such that:

k(T )1−α/(1− α) = z(T ) ≤ A1T
1−β

and defining (1− α)A1 by A2, we get:

k(T )1−α ≤ A2T
1−β

Finally, defining A ≡ (A2)
1/(1−α), we obtain:

k(T ) ≤ AT (1−β)/(1−α) for all T > 0 (56)

Clearly, (56) yields the desired bound in (52).
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5.3. A Restriction on the Technological Parameters

Proposition 5 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

equitable path. Then, the following technological restriction must hold:

α > β

Proof. Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior equitable path. We

claim first the following (weaker) technological restriction must hold:

α ≥ β (57)

To see this, note that we have for all t ≥ 0,

k̇(t) ≤ k(t)αr(t)β − g(t)k(t)− c

≤ k(t)αR(t)β − c

so that, using (56) yields:

k̇(t) ≤ Aαtα[(1−β)/(1−α)]R(t)β − c

= Aα[tα/(1−α)]1−βR(t)β − c (58)

Then, integrating (58) from 0 to T > 0 yields:

k(T )− k(0) ≤ Aα[

∫ T

0

[tα/(1−α)]dt]1−β[

∫ T

0

R(t)dt]β − cT

≤ Aα(1− α)1−βSβT (1−β)/(1−α) − cT

Thus, to keep k(T ) ≥ 0 for all t ≥ 0, we must have (57) holding.
Now, we claim that the (stronger) technological restriction:

α > β (59)

must hold. To see this, note that (57) clearly holds. So, if (59) does not hold, we must have
α = β. Since (K(t), R(t), C(t)) is an interior, competitive and equitable path, (48) must
hold. Thus, we have for t ≥ 0,

k(t)αr(t)α = k(t)αr(t)β ≥ c

Now, by using (56) and α = β, we obtain:

R(t) ≥ r(t) ≥
c1/α

k(t)
≥

c1/α

At
(60)

But, (60) violates the resource constraint (3)(b). Thus, (59) must hold.
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5.4. A Quasi-Arithmetic Bound on Population Growth

Theorem 2 Let (K(t), R(t), C(t)) from (K,S) in R
2
+ be an arbitrary interior competitive

equitable path, with associated shadow prices (p(t), w(t)), given by (6), and with constant
per-capita consumption (C(t)/N(t)) = c > 0 for t ≥ 0. Then, there exist constants a, b > 0,
such that:

N(t) ≤ a+ btµ for all t ≥ 0

where:

µ =
(α− β)(1− β)

(1− α)β

Proof. Since the path (K(t), R(t), C(t)) must satisfy the capital value transversality condi-
tion (by Proposition 1), we can find T > 0, such that for all t ≥ T,

β(p(t)K(t)) =
K(t)R(t)

K(t)αR(t)βN(t)η
≤ 1

Thus, for t ≥ T, we get:

R(t) ≤
N(t)η/(1−β)

K(t)(1−α)/(1−β)
(61)

Since (48) must hold (by Lemma 1), we have for t ≥ 0 :

K(t)αR(t)βN(t)η ≥ cN(t)

so that for t ≥ T, using (61),

cN(t)1−η ≤ K(t)αR(t)β

≤ K(t)α−[(1−α)/(1−β)]βN(t)βη/(1−β)

This can be simplified to obtain for t ≥ T,

cN(t)α/(1−β) = cN(t)(1−η)−[βη/(1−β)] ≤ K(t)α−[(1−α)/(1−β)]β = K(t)(α−β)/(1−β) (62)

Now, using (52) in (62), we obtain for t ≥ T,

cN(t)α/(1−β) ≤ A(α−β)/(1−β)t(α−β)/(1−α)N(t)(α−β)/(1−β) (63)

This yields for t ≥ T :

cN(t)β)/(1−β) ≤ A(α−β)/(1−β)t(α−β)/(1−α) (64)

which can be simplified to:
N(t) ≤ btµ for all t ≥ T (65)

where:

b = [
A(α−β)/α

c(1−β)/α
] and µ =

(α− β)(1− β)

(1− α)β
(66)

Finally, denoting N(T ) by a, we have:

N(t) ≤ a+ btµ for all t ≥ 0
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