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Abstract
In this paper, we consider a decision-maker who tries to learn the distribution of outcomes from
previously observed cases. For each observed sequence of cases, the decision-maker entertains
a set of priors expressing his hypotheses about the underlying probability distribution. The set
of probability distributions shrinks when new information confirms old data. We impose a ver-
sion of the concatenation axiom introduced in BILLOT, GILBOA, SAMET AND SCHMEIDLER
(2005) which insures that the sets of priors can be represented as a weighted sum of the ob-
served frequencies of cases. The weights are the uniquely determined similarities between the
observed cases and the case under investigation.
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1 Introduction
How will existing information influence probabilistic beliefs? How does data enter the induc-

tive process of determining a prior probability distribution? KEYNES (1920) discusses in great

detail the epistemic foundations of probability theory. In particular, in Part III of his "A Trea-

tise on Probability", he critically reviews most of the then existing inductive arguments for

this probability-generating process. One can view the approach of BILLOT, GILBOA, SAMET

AND SCHMEIDLER (2005) as an attempt to model this inductive process with the concept of a

similarity function, covering both Bayesian and frequentist arguments.

The frequentist approach and the Bayesian belief-based approach to probability theory use

available information differently. Both approaches lead, however, to similar statistical results if

data is derived from statistical experiments, which are explicitly designed to obtain control over

the data-generating process. Classical examples are urn experiments where balls of different

colors are drawn from urns with unknown proportions of balls with different colors.

Statistical experiments represent an ideal method of data collection. In this case, decision mak-

ers can aggregate information directly in a probability distribution over unknown states. In-

deed, in this context, it is of little consequence whether one follows a frequentist or a Bayesian

approach. Both approaches will lead to the same probability distribution as more evidence

becomes available with an increasing database.

In most real-life decision problems, however, decision makers do not have available data derived

from explicitly designed experiments. Usually, they face the problem to predict the outcome

of an action based on sets of data which may be more or less adequate for the decision prob-

lem under consideration. Hence, decision makers must aggregate data which may be more or

less relevant for the unknown variable under consideration. The case-based decision-making

approach of GILBOA & SCHMEIDLER (2001) offers a systematic approach to this information

aggregation problem.

In a recent paper, BILLOT, GILBOA, SAMET AND SCHMEIDLER (2005), henceforth BGSS
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(2005), show that, under few assumptions, a probability distribution over outcomes can be de-

rived as a similarity-weighted average of the frequencies of observed cases. Moreover, GILBOA,

LIEBERMAN & SCHMEIDLER (2004) demonstrate how one can estimate the similarity weights

from a given database.

The case-based approach in BGSS (2005) associates a database with a single probability distri-

bution. This appears reasonable if the database is large and if the cases recorded in the database

are clearly relevant for the decision problem under consideration. Indeed, BGSS (2005) note

also that this approach

"... might be unreasonable when the entire database is very small. Specifically, if there
is only one observation, [....] However, for large databases it may be acceptable to assign
zero probability to a state that has never been observed." (BGSS (2005), p. 1129)

In order to deal with this problem it appears desirable to choose an approach which allows us

to include some notion of ambiguity about the probability distribution associated with a given

database. For small and heterogeneous databases ambiguity may be large, while it may vanish

for large and homogeneous databases. The multiple-prior approach to decision-making offers a

framework which captures ambiguity about the probability distribution to be used for decision

making. One may think of the set of probability distributions as those probability distributions

the decision maker may not want to rule out, even given a most likely probability distribution.

For example, a decision maker may not trust the information that balls are drawn from an urn

with equal numbers of black and white balls. Based on a database consisting of three draws

resulting in one "black" and two "white" draws, the decision maker may be ambiguous about

whether the probability is 0.5 for the two colors or whether there is a higher probability for

a "white" draw. This ambiguity may shrink as the database gets larger and one can be more

confident that the proportions of "black" and "white" draws reflect the actual probabilities.

Here we generalize the approach of BGSS (2005) such that it is possible to consider the weight

of increasing evidence. With a growing number of observations, i.e., with the length of the

database, decision makers may become more confident. Given a database, we will model am-

biguity about the most likely probability distribution by a set of probability distributions rather
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than a single probability distribution. We relax the main axiom of BGSS (2005), Concate-

nation to capture the idea that short data-sets provide ambiguous information about the actual

probability distribution of outcomes. At the same time, our modification maintains the main

property of the representation derived in BGSS (2005), the uniqueness of the similarity func-

tion. In a next step, we further specify the representation. In particular, we assume that the

confidence of the decision-maker increases as data accumulates and that the set of probability

distributions converges to the actual probability distribution when the data-set becomes very

long.

As in BGSS (2005), it remains an open question which decision criterion one should use for

choosing an action based on the available set of probability distributions over outcomes. The lit-

erature provides various decision criteria reflecting different degrees of optimism or pessimism

in the face of ambiguity. Combining a decision rule with the information processing procedure

described in this paper will be an issue of future research.

We view this paper as a first step in a broader research agenda. The topic of this paper is the

relationship of ambiguity and similarity. In a second paper we will investigate the adjustment

of the similarity function in the light of new information. The main issue will be the criterion in

regard to which one wants to judge similarity. A third strand of research concerns the embed-

ding of these ideas in a behavioral model in the spirit of GILBOA, SCHMEIDLER & WAKKER

(2002).

2 The Model
The basic element of a database is a case which consists of an action taken and the outcome

observed together with information about characteristics which the decision maker considers

as relevant for the outcome.

We denote by X a set of characteristics, by A a set of actions, and by R a set of outcomes. All

three sets are assumed to be finite. A case c = (x; a; r) is an element of the finite set of cases

C = X ×A×R.
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A database of length T is a sequence of cases indexed by t = 1...T :

D = ((x1; a1; r1) , ..., (xT ; aT ; rT )) ∈ CT .

The set of all data-sets, denoted by D : = ∪
T≥1
CT , is the set of databases of any length T ∈ Z+.

Consider a decision-maker with a given database of previously observed cases, D, who wants

to evaluate the uncertain outcome of an action a0 ∈ A given relevant information about the

environment described by the characteristics x0 ∈ X. We will assume that the decision-maker

associates a set of probability distributions over outcomes R,

H (D|x0; a0) ⊂ ∆|R|−1,

with the action a0 in the situation characterized by x0 given the data base D ∈ D. Formally,

H : D×X × A→∆|R|−1 is a correspondence which maps D×X × A into compact and convex

subsets of ∆|R|−1.

We interpret H (D|x0; a0) as the set of probability distributions over outcomes which the deci-

sion maker takes into consideration given the databaseD. In applications one may think of this

set of probabilities as a neighborhood of the frequencies of relevant observations in D. With

such applications in mind, it appears reasonable to assume that H (D|x0; a0) is a compact and

convex subset of ∆|R|−1.We will denote elements of this set by h (D|x0; a0) . For the probability

assigned to outcome r by the probability distribution h (D|x0; a0) , we will write hr (D|x0; a0) .
Notice that these probabilities over outcomes depend both on the action a0 and the charac-

teristics x0 of the situation under consideration. In this paper, we will focus on how a deci-

sion maker evaluates data in a given decision situation (x0, a0). Hence, the decision situation

(x0, a0)will mostly remain fixed. For notational convenience, we will therefore often drop these

variables and write simply H(D), h(D) and hr(D) instead of H (D|x0; a0), h (D|x0; a0), and

hr (D|x0; a0), respectively.

2.1 Applications

The following examples illustrate the broad field of applications for this framework. They will

also highlight the important role of the decision situation (x0, a0).
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The first example is borrowed from BGSS (2005).

Example 2.1 Medical treatment

A physician must choose a treatment a0 ∈ A for a patient. The patient is characterized by a set

of characteristics x0 ∈ X, e.g., blood pressure, temperature, age, medical history, etc. Observ-

ing the characteristics x0 the physician chooses a treatment a0 based on the assessment of the

probability distribution over outcomes r ∈ R. A set of casesD observed1 in the past may serve

the physician in this assessment of probabilities over outcomes.

A case is a combinations of a patient t’s characteristics xt, treatment assigned at and outcome

realization rt recorded in the database D. Given the database D, the physician considers a set

of probabilities over outcomes,H (D|x0; a0) ⊂ ∆|R|−1, as possible. These probability distribu-

tions represent beliefs about the distribution of possible outcomes after choosing a treatment a0

for the patient with characteristics x0.

A different field of applications are recommender systems which become increasingly popular

in internet trade. Internet shops often try to profile their customers in order to provide them with

individually tailored recommendations. Our second example shows how an internet provider of

a movie rental system can be modelled with this approach.

Example 2.2 Recommender system of an internet movie rental shop

Consider a consumer who logs into the internet shop of a movie rental business. The customer

is associated with a set of characteristics x0 ∈ X which may be more or less detailed depending

on whether she is a new or a returning customer. The recommender system of the shop has to

choose which category of movies a0 to recommend to this customer. There may be many different

categories in an actual recommender system. In this example, we will distinguish, however, only

the genre of the movie and the most preferred language of the customer, i.e.,

A = {Comedy, Documentary, Romance} × {English, German}.
1 The "observations" of cases are not restricted to personal experience. Published reports in scientific
journals, personal communications with colleagues and other sources of information may also provide
information about cases.
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The outcome of the recommendation could be whether rental agreement will result or not, r ∈
R = {success, no success}.
The recommender system is built on a databaseD containing records of customers with a profile

of characteristics xt who had been successfully offered a movie at ∈ A. Given this database

D the system assesses the likelihood H (D|x0; a0) of the customer x0 renting a movie from the

suggested category a0. The set of probability distributions over R, H (D|x0; a0) , which are

taken into consideration reflects the degree of confidence with respect to this customer. For a

new customer, confidence may be low and the set of probabilities H (D|x0; a0) large. On the

other hand, if there are many observations for a returning customer in the database, the set

H (D|x0; a0) may be small, possibly even a singleton.

As a final case we will consider a classic statistical experiment where the decision maker is

faced with drawings from an urn.

Example 2.3 Lotteries

Consider three urns with black and white balls. There may be different information about the

composition of black and white balls in these urns. For example, it may be known that
• there are 50 black and 50 white balls in urn 1,
• there are 100 black or white balls in urn 2,
• there is an unknown number of black and white balls in urn 3.

We will encode all such information in the number of the urn, x ∈ X = {1; 2; 3}.
In each period a ball is drawn from one of these urns. Agents can bet on the color of the ball

drawn, {B;W}. Assume that players know the urn x0 from which the ball is drawn, when they

place their bet a0. An action is, therefore, a choice of lottery a ∈ A := {1B0, 1W0}, with the

obvious notation 1E0 for a lottery which yields r = 1 if E occurs and r = 0 otherwise.

Suppose players learn after each round of the lottery the result and the urn from which the ball

was drawn. Since there are only two bets possible a = 1B0 or a0 = 1W0 we can identify cases

c = (x, a, r) by the urn x and the color drawn B orW. Hence, there are only six cases

C = {(1, B), (1,W ), (2, B), (2,W ), (3, B), (3,W )}.
Suppose that, after T rounds, players have a databaseD = ((1, B), (3,W ), ..., (2, B)) ∈ CT .
With each databaseD, one can associate a set of probability distributions over the color of the
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ball drawn {B,W} or, equivalently, over the payouts {1, 0} given a bet a. Suppose a decision

maker with the information of database D has placed the bet a0 = 1B0 and learns that a ball

will be drawn from urn 2, then he will evaluate the outcome of this bet based on the set of

probability distributionsH (D|2; a0) .
The set of probability distributions H (D|2; a0) should reflect both the decision maker’s infor-

mation given by the database D and the degree of confidence held in this information. For

example, as in statistical experiments, the decision maker could use the relative frequencies

of B and W drawn from urn 2 in the database D and ignore all other observations in the

database. Depending on the number of observations of draws from urn 2, say T (2), recorded

in the database D of length T , the decision maker may feel more or less confident about the

accuracy of these relative frequencies. Such ambiguity could be expressed by a neighborhood

ε of the frequencies (fD(2, B), fD(2,W )) of black and white balls drawn from urn 2 according

to the records in the databaseD. The neighborhood may will depend on the number of relevant

observations T (2) = fD(2, B) + fD(2,W ), e.g.,

H (D|2; a0) =
½
(pW , pB) ∈ ∆1| fD(2,W )− ε

T (2)
≤ pW ≤ fD(2,W ) + ε

T (2)

¾
.

The set of probabilities over outcomes H (D|2; a0) may shrink with an increasing number of

relevant observations.

The last example illustrates how information in a database may be used and how one can model

ambiguity about the probability distributions over outcomes. In this example, we assumed that

the decision maker ignores all observations which do not relate to urn 2 directly. If there is

little information about draws from urn 2, however, a decision maker may also want to consider

evidence from urn 1 and urn 3, possibly with weights reflecting the fact that these cases as less

relevant for a draw from urn 22.

In the following sections, we will take the decision situation (x0, a0) as given. We will relate

2 Part III of KEYNES (1921) provides an extensive review of the literature on induction from cases
to probabilities.
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the frequencies of cases in a database D,

fD (c) :=
|{ct ∈ D | ct = c}|

|D| ,

to sets of probabilities over outcomes H(D|x0, a0). We will impose axioms on the set of prob-

ability distributions over outcomes H (D|x0; a0) which will imply a representation of the fol-

lowing type,

H (D|x0; a0) =
½P

c∈D s (c|x0, a0) fD (c)hcP
c∈D s (c|x0, a0) fD (c)

| hc ∈ H((c)|D| |x0, a0)
¾

,

where (c)|D| denotes a database of length |D| containing only case c.

The weighting function s (c|x0, a0) represents the perceived similarity between the case c and

the current situation (x0, a0) . It indicates how relevant a case c is with respect to the decision

situation (x0, a0) . The set of probability distributions over outcomesH((c)|D| |x0, a0) is the set

of probability distributions over outcomes entertained by the decision maker in case of a data

set consisting only of observations of the same case c. The axioms suggested below will imply

(up to a normalization) unique similarity weights s (c|x0, a0) and unique sets of probability

distributions H((c)|D| |x0, a0). This result generalizes the main theorem of BGSS (2005) to

the case of multiple priors.

It appears natural to assume that a decision maker with a database consisting only of obser-

vations of the same case c = (x, a, r) will at least consider the possibility that the outcome r

occurs with probability 1 in the decision situation (x, a), i.e., that the r-th unit vector er ∈ R|R|

is contained in the set H((x0, a0, r)|D| |x0, a0).Moreover, confirming evidence should increase

the confidence in this belief,

lim
|D|→∞

H((x0, a0, r)
|D| |x0, a0) = {er}.

We will also provide axioms for these properties of the set of probability distributionsH (D|x0; a0) .

3 Axioms and Representation
In this section, we will take the decision situation (x0, a0) as given and will suppress notational

reference to it. It is important to keep in mind, however, that all statements of axioms and
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conclusions do depend on the relevant reference situation (x0, a0). In particular, the similarity

weights, which will be deduced below, measure similarity of cases relative to this reference

situation.

In order to characterize the mapping H(D) we will impose axioms which specify how beliefs

over outcomes change in response to additional information. In general, it is possible that the

order in which data becomes available conveys important information. We will abstract here

from this possibility and assume that only the data matters for the probability distributions over

outcomes.
Axiom (A1) Invariance Let π be a one-to-one mapping π : {1...T}→ {1...T}, then

H
³
(ct)

T
t=1

´
= H

³¡
cπ(t)

¢T
t=1

´
.

According to Axiom (A1) the order of cases in a database D = (ct)Tt=1 is irrelevant. The set of

probability distributions over outcomes is invariant with respect to the sequence in which data.

Hence, each database D is uniquely characterized by the tuple (fD; |D|), where fD ∈ ∆|C|−1

denotes the vector of frequencies of the cases c ∈ C in the data-set D and |D| the length of the

database.

In line with BGSS (2005), we call the combination of two databases a concatenation.

Definition 3.1 Concatenation
For any two databasesD = (ct)Tt=1 and D0 = (c0t)

T 0
t=1, the database

D ◦D0 =
³
(ct)

T
t=1 , (c

0
t)
T 0
t=1

´
is called the concatenation of D andD0.

The following notational conventions are useful.
Notation By Axiom (A1) a concatenation is a commutative operation on databases. Hence,
we will write Dk = D ◦ ... ◦D| {z }

k-times

for k concatenations of the same database D. In particular, a

database consisting of k-times the same case c can be written as (c)k .

Imposing the following Concatenation Axiom, BGSS (2005) obtain a characterization of a

function h mapping D into a single probability distribution over outcomes.
Axiom (BGSS 2005) Concatenation For every D, D0 ∈ D, h(D ◦ D0) = λh(D) + (1 −
λ)h(D0) for some λ ∈ (0, 1).
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The Concatenation Axiom of BGSS (2005) implies that, for any k, the databases D and Dk

map into the same probability distribution over outcomes, h(D) = h(Dk).Hence, two data-sets

D = (c) andD0 = (c)10000 will be regarded as equivalent. This seems counterintuitive.

Ten thousand observations of the same case c = (x, a, r) are likely to provide stronger evi-

dence for the outcome r in situation (x, a) than a single observation. Arguably, the database

(c)10000 provides strong evidence for a probability distribution concentrated on the outcome r,

h((c)10000) = er. Hence, er should be in the set of probability distributions H
¡
(c)10000

¢
asso-

ciated with the database (c)10000 . Based on a single observation (x, a, r), however, it appears

quite reasonable to consider a set of probability distributions H((c)) which contains also prob-

ability distributions h((c)) with hr0 ((c)) ∈ (0, 1) for all r0. In particular, based on the database

D = (c), a decision maker may not be willing to exclude the case of all outcomes being equally

probable, i.e., h(D) with hr0(D) = 1
|R| for all r0 ∈ R. It appears perfectly reasonable to include

h inH ((c)) but not inH
¡
(c)10000

¢
.

We would like to model decision problems where decision makers may become more confident

about their beliefs as they observe databases with the same frequency distribution of cases

but increasing numbers of cases. Hence, we cannot simply apply the Concatenation Axiom

of BGSS (2005) to all probability distributions in the mapping H. Restricting the axiom to

databases with equal length will provide sufficient flexibility for our purpose.

Denote by DT := CT the set of databases of length T Recall that the convex combination of

two sets H and H 0 is defined by

λH + (1− λ)H 0 = {λh+ (1− λh0) | h ∈ H and h0 ∈ H 0} .

Axiom A2 Concatenation Consider a data set F ∈ DT and, for some n ∈ Z+, let D1...Dn
∈ DT be such that D1 ◦ ... ◦ Dn = F n. Then, there exists a vector (λ1...λn−1) ∈ int (∆n−1)
such that, for every k ∈ Z+,

nX
i=1

λiH
¡
Dk
i

¢
= H

¡
F k
¢

.

To understand the axiom, consider an example. Let T = 3, |C| = 3 and take

F =

µ
f =

µ
1

3
;
2

3
; 0

¶
;T = 3

¶
.
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Note that F 3 can be represented as concatenation ofD1 = (c1)3 and D2 = D3 = (e2)3:

F 3 = D1 ◦D2 ◦D3 = D1 ◦D2
2.

(A2) then asserts the existence of λ1 and λ2 such that:

λ1H (D1) + λ2H (D2) + (1− λ1 − λ2)H (D3) = H (F ) .

It should be clear that each data-set can be represented as a concatenation by choosing n and

the data-sets (Di)ni=1 in an appropriate way (e.g. by choosing the basis of the space DT , with

Di = (ci)
T ) and that the representation is in general non-unique.

In spirit, Axiom (A2) is very similar to the Concatenation Axiom introduced by BGSS (2005).

The main difference is that we restrict the axiom to data sets of equal length. Restricted to the

set DT , (A2) has the following implication: if the evidence of each of the n data-sets of equal

lengthD1...Dn suggests that a given outcome r is possible, i.e. for all i ∈ {1...n},

hr (Di) > 0 for some h ∈ H (Di)

then r must be considered possible under the data-set F , i.e.

hr (F ) > 0 for some h ∈ H (F )

resulting from the concatenation of these data-sets, while controlling for the length of the data-

set.

The restriction to sets of equal length is important for our approach since databases of different

length may give rise to different degrees of confidence. To see this, consider the databases D

and D2 = D ◦ D. Since the database D2 contains twice the number of cases in database D,

it appears reasonable to assume that the decision maker should be more confident to make a

prediction based on the bigger database D2 than on D. In other words, it might be that D does

not contain enough observations to exclude the possibility of a given outcome r, i.e. h (r) > 0

for some h ∈ H (D), whereas the data-set D2 is sufficiently long to imply hr (D2) = 0 for all

h ∈ H (D2). Applying the Concatenation Axiom of BGSS (2005), we would conclude that

for some λ ∈ (0, 1)

H
¡
D2
¢
= H (D ◦D) = λH(D) + (1− λ)H(D) = H (D) ,
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which seems counterintuitive in this context. Thus, imposing BGSS (2005)’s Concatenation

Axiom, the set of probability distributions over outcomes would necessarily be independent

of the number of observations. Our weaker Axiom (A2), however, implies in this case only

λH (D) + (1− λ)H (D) = H (D) .

Remark 3.1 Note that Axiom (A2) requires the weights λ to be constant across different T ’s,
as long as the frequencies of the data-sets entering the concatenation remain unchanged. This
assumption is crucial for our result that the similarity function is uniquely determined. In
particular, we can construct the similarity function for a specific class of data-sets contain-
ing infinitely many observations by using the methods of BGSS (2005) and then, using this
assumption, extend the representation to all finite data-sets.

Similar to BGSS (2005), we have to impose a linear-independence condition on the sets prob-

ability distributions over outcomesH (D).
Axiom (A3) Linear Independence For every T ∈ Z+, the basis of DT , (c1)T , ...,

¡
c|C|
¢T sat-

isfies the following condition:
there are at least three distinct i, j, k ∈ {1... |C|}, such that H

³
(ci)

T
´

, H
³
(cj)

T
´

and

H
³
(ck)

T
´

are:
– either singletons

H
³
(cm)

T
´
=
n
h
³
(cm)

T
´o

form ∈ {i, j, k}

and h
³
(ci)

T
´

, h
³
(cj)

T
´

and h
³
(ck)

T
´

are non-collinear,

– or polyhedra with a non-empty interior such that no three of their extreme points are collinear.

As an example of sets H (D) satisfying Axiom (A4) consider the case of |C| = |R| = 3. In

particular, take c1 = (x, a, r1), c2 = (x, a, r2) and c3 = (x, a, r3). Suppose that each of the

H
³
(ci)

T
´

represents a confidence interval around the actually realized frequency of outcomes,

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Then, these sets will satisfy the requirement of

Axiom (A3), see Figure 1.
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1. Non-collinear sets of priors

The following theorem guarantees a unique similarity function for data sets of arbitrary length.

Theorem 3.1 LetH be a correspondenceH : D→ ∆|R|−1 the images of which are non-empty
convex and compact sets. Then the following two statements are equivalent:

(i) H satisfies the Axioms Invariance, Concatenation, and Linear Independence for every
T .

(ii) There exists a function
s : C → R++

and, for each T ∈ Z+, T ≥ 2, there exists a correspondence, satisfying Linear Independence,
P̂T : C → ∆|R|−1

such that for anyD ∈ DT
H (D) =

½P
c∈C s (c) p̂T (c) fD (c)P

c∈C s (c) fD (c)
| p̂T (c) ∈ P̂T (c)

¾
.

Moreover, for each T , P̂T is unique and s is unique up to a multiplication by a positive number.

Note how the different axioms enter this representation. (A1) insures that the only relevant

characteristics of a data-set D are the generated frequencies (fD (c))c∈C and its length T . We

then use (A2) and (A3) to show that for a class of databases with infinite length, we can rep-

resent H (D) as a union of functions h (D) which satisfy the axioms of BGSS (2005). This

class of data-sets can be characterized by its frequencies, which are dense in the simplex of di-

mension |C|− 1. Hence, we can apply Proposition 3 of BGSS (2005) to every selection h (D)

in order to demonstrate the existence of a unique (up to a multiplication by a positive constant)
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similarity function s and unique probabilities p̂. Axiom (A2) then implies that the same values

of s can be used for every T <∞.

The following example of a correspondence H will illustrate the result.

3.1 Leading example

Consider a doctor who has to choose one of two treatments, a ∈ A = {a1, a2}. In past treat-

ments, one has recorded only two characteristics of patients, high blood pressure, xh, or low

blood pressure, xl. Hence, the set of potentially case-relevant data comprises x ∈ X = {xh, xl}.
Finally, three outcomes of the treatment have been registered, say r1, success, r2, no effect, and

r3, failure, i.e., R = {r1, r2, r3}.
In this case, databases D of any length |D| will be made up of the following twelve cases:

c1 = (x1, a1, r1)
c2 = (x1,a1, r2)
c3 = (x1, a1, r3)
c4 = (x1, a2, r1)
c5 = (x1, a2, r2)
c6 = (x1, a2, r3)

c7 = (x2, a1, r1)
c8 = (x2,a1, r2)
c9 = (x2, a1, r3)
c10 = (x2, a2, r1)
c11 = (x2, a2, r2)
c12 = (x2, a2, r3)

Recall that, without any loss of generality, we can replace any databaseD with (fD, |D|).Hence,

one can write (ei, T ) for a database D = (ci)
T , which contains T -times the case ci. For each

T and each unit vector ei ∈ R|C|−1 = R11, consider the following sets of probabilities over

outcomes,
P̂T (ei) := {p ∈ ∆2| p1 ≥ (1− ε

T
)} for i = 1, 4, 7, 10,

P̂T (ei) := {p ∈ ∆2| p2 ≥ (1− ε
T
)} for i = 2, 5, 8, 11,

P̂T (ei) := {p ∈ ∆2| p3 ≥ (1− ε
T
)} for i = 3, 6, 9, 12

for some ε > 0.

This assignment of probabilities over outcomes can be given the following interpretation. An

intuitive way would be to assign probability distributions to databases would be as follows.

Databases with constant (x, a) provide a controlled experiment about the probabilities over

outcomes, e.g., a database made up only of cases c1, c2 and c3 would generate a frequency

on R which might serve as an estimate for the probabilities on R. If there is some ambiguity

ε about this estimate, which appears natural if there are few observations, one may assume
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that this ambiguity decrease as the number of confirming observations T rises. In particular,

databases containing only a single case (x, a, r) may have the probability distribution yielding

the outcome r with probability 1 as a natural first estimate. Note also that the P̂T (ei) satisfy

Linear independence (Axiom (A3)).

We will assume fixed similarity weights (s1, ..., s12) for the twelve basic cases. For an arbitrary

database D of length T with a frequencies of cases fD one obtains the following set H(fD, T )

of probability distributions:

H(fD, T ) := {p ∈ ∆2| p =
Ã

12X
i=1

sifD(ci)

!−1Ã 12X
i=1

sifD(ci)hi

!
, hi ∈ P̂T (ei), i = 1, ..., 12}.

4 Similarity
The similarity weights s(ci) of Theorem 3.1 have to be seen in relation to the decision situa-

tion (x0; a0) under consideration. The notation s (c|x0, a0) emphasizes this relationship. If a

decision situation (x0, a0) is part of the cases considered in C, then there are cases (x0; a0, r)

in C which are distinguished only by the outcomes. In this case, it appears natural to assign

the highest degree of similarity to these cases. There are decision situations which are com-

pletely specified in the sense that all relevant aspects of the situation are included in the data

x collected, as in Example 2.3. In such cases, one may be willing to assign similarity weights

of zero to all cases with different data. This appears as an extreme case, which may obtain

in experimental situations in statistics and physics. Even in those applications, there may be

insufficient observations. A lack of the desired data may make it sensible to consider data from

similar, but not exactly equal situations. Hence, one may want to include cases with data from

similar situations with lower similarity weights s (c|x0, a0) .
In general, however, decision makers will be uncertain about which data will be important for

the outcome. Such cases are described in the Examples 2.1 and 2.2. In these cases, it may

be reasonable to consider also cases in C which do not exactly match the decision situation

(x0; a0), but may be relevant given the lack of information about the data which determines
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the outcomes. In Example 2.2, there is data about a customer’s choice of movie from a set of

categories and languages. If the decision problem is to make a recommendation to a customer,

it may be reasonable to give some weight to movies from the category and language which the

customer has chosen in the past, but one may also want to consider other cases where customers

maybe from the same language group bought other categories.

The following example will illustrate such a procedure for a variation of Example 2.1.

Example 4.1 Consider a medical doctor who has to choose one of two treatments, a ∈ A =
{a1, a2}. In past treatments one has recorded only three characteristics of patients, high blood
pressure, xh, normal blood pressure, xm, or low blood pressure, xl. Hence, the set of potentially
case-relevant data comprises also x ∈ X = {xh, xm, xl}. Finally, three outcomes of the treat-
ment have been registered, say r1, success, r2, no effect, and r3, failure, i.e., R = {r1, r2, r3}.
In this case, databasesD of any length |D| will be made up of the following eighteen cases:

c1 = (xl, a1, r1)
c2 = (xl, a1, r2)
c3 = (xl, a1, r3)
c4 = (xl, a2, r1)
c5 = (xl, a2, r2)
c6 = (xl, a2, r3)

c7 = (xm, a1, r1)
c8 = (xm, a1, r2)
c9 = (xm, a1, r3)
c10 = (xm, a2, r1)
c11 = (xm, a2, r2)
c12 = (xm, a2, r3)

c13 = (xh, a1, r1)
c14 = (xh, a1, r2)
c15 = (xh, a1, r3)
c16 = (xh, a2, r1)
c17 = (xh, a2, r2)
c18 = (xh, a2, r3)

Analogously to Example 3.1 (and with a similar interpretation in mind), we can construct the
sets of probability distributions P̂T (ei) in the following way.

P̂T (ei) := {p ∈ ∆2| p1 ≥ (1− ε
T
)} for i = 1, 4, 7, 10, 13, 16

P̂T (ei) := {p ∈ ∆2| p2 ≥ (1− ε
T
)} for i = 2, 5, 8, 11, 14, 17

P̂T (ei) := {p ∈ ∆2| p3 ≥ (1− ε
T
)} for i = 3, 6, 9, 12, 15, 18

for some ε > 0.
Assuming fixed similarity weights (s1, ..., s18) for the eighteen basic cases, we arrive at the
representation:

H(fD, T ) := {p ∈ ∆2| p =
Ã

18X
i=1

sifD(ci)

!−1Ã 18X
i=1

sifD(ci)hi

!
, hi ∈ P̂T (ei), i = 1, ..., 18}.

Figure 2 illustrates this procedure. Disregarding ambiguity for the sake of the argument, let us
assume for a moment that P̂T (ei) = {ei} for i = 1, ..., 18.
Similarity weights have to be interpreted in relation to a given situation (x0, a0) of which the
probability over results has to be assessed. If there are cases in C which are characterized by
the same (x0, a0) a similarity relation among the basic cases in C can be established.
E.g., suppose that the problem under consideration is characterized by (xh, a2). Then it appears
natural to assign a similarity weight of one to the cases {c16, c17, c18} which are identical and
differentiated only by the outcome. If one were to adhere strictly to the same type of cases, then
one may want to put all other similarity weights to zero, leaving us with the relative frequencies
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of the outcomes observed for case (xh, a2) in the sample D as the predicted probability over
outcomes: ⎛⎝ p1

p2
p3

⎞⎠ = (fD(c16) + fD(c17) + fD(c18))
−1

⎛⎝ fD(c16)
fD(c17)
fD(c18)

⎞⎠ .
For large data-sets D with many observations of cases c16, c17, c18 this may be a reasonable
procedure. It may well be, however, that D contains few or no observations of cases with
high blood pressure, in which treatment a2 has been prescribed. Then one may reasonably take
into account cases which are not identical test cases but arguably relevant. E.g., one could
presume that a patient with normal blood pressure is more similar to a patient with high blood
pressure than a patient with low blood pressure. Hence, the similarity of cases with normal
blood pressure may be smaller than the similarity of cases with high blood pressure, but higher
than the similarity of cases with low blood pressure, say one half. This would yield⎛⎝ p1

p2
p3

⎞⎠ =

µ
1

2
fD(c10) +

1

2
fD(c11) +

1

2
fD(c12) + fD(c16) + fD(c17) + fD(c18)

¶−1
·

·
⎛⎝ fD(c16) +

1
2
fD(c10)

fD(c17) +
1
2
fD(c11)

fD(c18) +
1
2
fD(c12)

⎞⎠ .

J
J
J
J
J
J
J
J
J
J
J
J













s

ss

s
P̂T (ei), i = 1, 4, 7, 10

P̂T (ei), i = 2, 5, 8, 11P̂T (ei), i = 3, 6, 9, 12

H(fD, T )

p(r1) = 1

p(r2) = 1p(r3) = 1

2. Constructing hypotheses using similarity weights

In this paper we assume that similarity weights for a given reference case are independent of

the amount of data in D. This assumption appears, however, questionable if one views the per-

ception of similarity as an imperfect substitute for knowledge about the relevance of underlying

data. This is an issue we will deal with in a companion paper, EICHBERGER & GUERDJIKOVA

(2007).

The main focus of thes paper is ambiguity in the context of case-based predictions of probabil-
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ities over outcomes. If a decision maker has to consider cases of different degrees of similarity

then it appears natural to assume that a decision maker feels ambiguous about the predicted

probability distribution over outcomes. There are several ways to model ambiguity among them

the multiple prior approach introduced by GILBOA & SCHMEIDLER (1989). In the spirit of

this paper, we model ambiguity by a set of probability distributions over outcomes. The degree

of ambiguity will be measured by set inclusion. The smaller the set of probability distributions

over outcomes, the less ambiguous the prediction.

Notice that the sets P̂T (ei) shrink to a singleton if T tends to infinity, e.g.,

lim
T→∞

P̂T (ei) = {ei}

for all i. Moreover, P̂T (ei) ⊂ P̂T−1(ei) for all i.These assumption seems quite natural in the

context of controlled experiments. The first one says that ambiguity decreases with "more

information" in the sense of "more cases with the same outcome". The second one implies that

as the same outcome is observed over and over again, its perceived probability converges to 1.

In the next section, we provide axioms which capture this intuition and analyse their implication

for the perception of similarity.

5 Learnability and confidence
In this section, we focus on a decision-maker who tries to learn the properties of statistical

experiments as in Example 2.3 in the previous section. Learning a probability distribution is

meaningful only if we assume stationarity and ergodicity of the underlying random process ac-

cording to which the outcome is generated. The learning process of the decision-maker consists

in formulating a set of probability distributions over outcomes, describing the likelihood of out-

come r given a combination of an observed signal x and an action a. In the trivial case of a

repeated experiment, i.e. (x, a) is constant, the set of probability distributions over outcomes is

assumed to contain the actually observed frequencies. The size of the set of probability distri-

butions over outcomes can be taken to reflect the confidence of the decision maker with respect

to the data. Given our assumption of ergodicity, as the data set becomes larger, the confidence
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of the decision-maker increases until (with an infinite number of observations), the set of proba-

bility distributions reduces to a singleton. Moreover, if the assumption of ergodicity is satisfied

and D = ((x, a, rt))∞t=1, then, according to the Ergodic Theorem, DURETT (2005, P. 337), the

frequencies of r a.s. converge to a probability distribution f (r)which exactly corresponds to

the actual probability distribution of r given (x, a):

lim
T→∞

|{t ≤ T |rt = r}|
T

= lim
T→∞

fT (r) = f (r) .

Of course, it is easy to think of examples in which the ergodicity property would not be satis-

fied. E.g. the sequence of observations (x; a; 1) ; (x; a; 2) ... (x; a; 100) ... (x; a; 200) ... does not

have the ergodicity property. Learning from this sequence would have a completely different

character than the one incorporated in our axioms.

This motivates the assumption of Learnability which we make below. We assume that the

following axioms specify the rules by which the decision-maker forms hypotheses.
Axiom (A4) Learnability Consider databases with fixed (x, a),

D =
n
(x; a; rt)

T
t=1

o
.

As T →∞,
H (D)→ {h(D)}

with
hr (D) = fD (r) .

According to Axiom (A4), the decision maker can learn the unknown proportion of the colors

in a urn, as in Example 2.3. If draws from the urn are with replacement, then the decision-maker

will eventually learn the true composition of the urn after observing the outcome of an infinite

number of draws.

Finally, we will assume that a decision maker’s confidence in the observed frequencies of cases

grows with a growing number of observations.
Axiom (A5) Accumulation of knowledge LetD andD0 be two finite data-sets with common
(x, a) such that fD = fD0 and |D0| > |D|, then

H (D0) ⊂ H(D).

Axiom (A5) captures the idea that the ambiguity of the decision-maker about the true proba-

bility distribution of r decreases as the number of observations increases in a controlled experi-
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ment, i.e., for fixed (x, a). Notice that Axiom (A5) applies only to data-sets in which frequen-

cies are identical. If frequencies differ, a smaller set might be more reliable than a larger one. For

example, D ∈ D100 with fD (x; a; r1) = 99
100

and fD (x; a; r2) = 1
100

will in general constitute

stronger support for h (r1|x; a) = 99
100

thanD0 ∈ D200 with fD0 (x; a; r1) = fD0 (x; a; r2) =
1
2
.

Note that (A5) does not tell us in which way the set of probabilities over outcomes shrinks.

Together with the Invariance Axiom (Axiom (A1)), Axioms (A4) and (A5) imply that the

observed frequency of outcomes in a controlled experiment is always contained in the set of

probabilities over outcomes which the decision maker considers.

Lemma 5.1 Assume (A1), (A4) and (A5) hold, then for any databaseD of length T with fixed
(x, a), i.e., D = ((x; a; rt)Tt=1), there is an h ∈ H (D) such that

hr (D) = fD (r)

for all r ∈ R.

Finally, we prove that together with the representation derived in Theorem 3.1, Axioms (A4)

and (A5) imply two intuitive properties of the representation ofH(D). First, the sets P̂T (x; a; r)

shrink with time, always contain the r-th unit vector er and converge to er as T converges to

infinity. Second, for a given tuple (x; a), the similarity function assigns a value of 1 (up to a nor-

malization) to all cases (x; a; r0) with r0 ∈ R. Hence, as long as the conditions under which the

experiment is conducted remain constant, all outcomes of the experiment are equally relevant

for the assessment of probabilities.

Theorem 5.2 Suppose Axioms (A4) and (A5) hold and consider databases D with fixed
(x, a), then the representation H(D) in Theorem 3.1 satisfies the following additional prop-
erties:

1. P̂T satisfies for all r ∈ R and every T ,
(i) P̂T ((x, a, r)) ⊂ P̂T−1 ((x, a, r)),
(ii) er ∈ P̂T ((x, a; r)) , and
(iii) lim

T→∞
P̂T ((x; a; r)) = {er}.

2. s ((x, a; r)) = 1 for every r ∈ R.
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6 Concluding remarks
We have generalized the approach of BGSS (2005) to understand the influence of ambiguity

on a decision maker’s prediction about the probability distribution of outcomes. We relax the

Concatenation Axiom of BGSS (2005) by restricting it to data-bases of equal length. We

show that the main result of BGSS (2005), namely that the similarity function is unique, holds

as long as we impose some consistency on the weights λ across different values of T . This

consistency is essential for the uniqueness result. Relaxing this assumption would require the

similarity function to be determined separately for each value of T , i.e. for each set DT . As a

result, for T <∞, different similarity functions would be used to evaluate different data-setsD.

Along the sequence DTm with Tm = m!, the set of similarity functions will shrink, approaching

a single point in the limit asm→∞.

As a special case of our approach we consider predictions associated with homogenous data-

sets. Homogenous data-sets can be interpreted as controlled statistical experiments, hence the

idea that ambiguity decreases as new data confirms past evidence appears very natural. Com-

bined with the assumption that in the limit, the decision-maker learns the probability distribution

generating the process, we arrive at the conclusion that the notion of similarity in such situations

is trivial. In particular, all observations are considered equally important for the prediction to

be made.

Although statistical experiments can serve as an illustration of our approach, we do not consider

them to be the ideal field for the application of the concept of similarity. Rather, we think that

our three examples (2.1, 2.2, 2.3) provide an illustration of the type of situations, in which

similarity is useful in the process of reasoning about probabilities. In our current framework, it

might be natural to use the structure of the sets X and A to construct more specific similarity

functions. However, such a construction is reasonable only if the structure imposed on the sets

reflects the structure of payoffs, in other words, (x; a) pairs which are considered similar lead to
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"similar" probability distributions over outcomes. It is easy to imagine situations, in which the

decision-maker first has to find out which of the characteristics of (x; a) are payoff-relevant (e.g.

for a child, drawing on a piece of paper and drawing on the wall might appear quite similar, until

it learns that it earns compliments for the former, but reproach for the latter). Hence, the data-set

will provide not only information about the distribution of payoffs of a specific alternative, but

also about similarity between alternatives. The more observations it contains, the more precise

the perception of similarity will become. We plan to model this adaptive process in a subsequent

paper.

Similarly to BGSS (2005), our approach relies on concepts which are not directly observable,

such as probability or similarity perceptions. Using the axiomatizations of the case-based de-

cision rule, as well as of decision-making rules under ambiguity present in the literature, it is

possible to extend the results of this paper so as to accommodate actual choices. We plan to

address this issue in our future research.

Appendix A. Proofs

Proof of Theorem 3.1 :

It is obvious that the representation satisfies the axioms, hence we prove only the sufficiency of

the axioms for the representation.

Denote by Q|C|+ ∩∆|C|−1 the set of rational probability vectors of dimension |C|. We make use

of the following Proposition 3 from BGSS (2005, P. 1132), which we state in terms of our

notation:

Proposition 6.1 BGSS (2005)
Assume that h : Q|C|+ ∩∆|C|−1 → ∆|R|−1 satisfies the conditions:

(i) for every f , f 0 ∈ Q|C|+ ∩∆|C|−1 and every rational α ∈ (0; 1),
h (αf + (1− α) f 0) = λh (f) + (1− λ)h (f 0) ,

for some λ ∈ (0; 1) and

(ii) not all {h (f)}
f∈Q|C|+ ∩∆|C|−1 are collinear.

Then there are probability vectors (p̂ (c))c∈C ∈ ∆|R|−1 not all of which are collinear and posi-
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tive numbers (s (c))c∈C such that for every f ∈ Q|C|+ ∩∆|C|−1,

h (f) =

P
c∈C s (c) f (c) p̂ (c)P
c∈C s (c) f (c)

.

The idea of the proof is as follows. First, we construct a sequence of sets consisting of finite

data-bases in such a way that the limit of this sequence is a set of infinite data-bases D∞.

Moreover, we show that, for each vector f in the set Q|C|+ ∩ ∆|C|−1, D∞ contains a data-set,

which has f as its frequency, see Lemma 6.2. Hence, we can think of H as a mapping from

Q|C|+ ∩∆|C|−1 to ∆|R|−1. In a second step (Lemmas 6.3, 6.4 and Corollary 6.5), using Axioms

(A2) and (A3), we show that H can be represented as a union of functions h, all of which

satisfy properties (i) and (ii) of Proposition 6.1 when restricted to D∞. Next, in Lemma 6.6,

we apply the construction used in the proof of Proposition 3 in BGSS (2005) to determine the

similarity function s for the restriction of each h to D∞. It is straightforward to show that the

similarity weights do not depend on h. The last step, Lemma 6.7, consists in using Axiom (A2)

to show that the same similarity weights can be used for data-sets of any length T ≥ 2.
We denote the possible frequency vectors which can be generated by a data-set of length T by:

QT =

½
f ∈ ∆|C|−1 | f (c) = k

T
for some k ∈ {0; 1...T} and for all c ∈ C

¾
.

Obviously, for each T , QT ⊂ Q|C|+ ∩∆|C|−1. Our first Lemma shows that we can approximate

Q|C|+ ∩ ∆|C|−1 by QT by choosing a specific sequence of T ’s. We denote by lim (lim), the

inferior (superior) limit of a sequence of sets, (see BERGE (1963, P. 118) for definitions and

properties).

Lemma 6.2 Consider the infinite sequence T1;T2...Tm... with Tm = m!.
lim
m→∞

QTm = Q
|C|
+ ∩∆|C|−1.

We will denote by D∞ the set of data-bases which give rise to the set Q|C|+ ∩∆|C|−1.

Proof of Lemma 6.2:

First, we show

limm→∞QTm = Q
|C|
+ ∩∆|C|−1
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Hence, we check that for each q ∈ Q|C|+ ∩ ∆|C|−1, there exists an M ∈ Z+ such that for all

m ≥M , q ∈ QTm . To see this, write q as a vector of ratios

q =

µ
ai
bi

¶|C|
i=1

,

with ai and bi ∈ Z+, and take the largest of the numbers bi, b (q) = maxi∈{1...|C|} bi. Now set

M = b (q) and observe that for allm ≥M , each ratio ai
bi

can be written as:

ai
bi
=

aiki
b (q)! (b (q) + 1) (b (q) + 2) ...m

=
aiki

bi (bi − 1)! (bi + 1) (bi + 2) ...m =
aiki
Tm

with

ki = (bi − 1)! (bi + 1) (bi + 2) ...m.

Since ai ≤ bi, it follows that

0 ≤ aiki ≤ Tm
and obviously aiki ∈ Z+. which proves the claim.

Second, we show that:

limm→∞QTm = Q
|C|
+ ∩∆|C|−1.

This follows immediately from the fact that QTm ⊂ Q|C|+ ∩∆|C|−1 for allm ∈ Z+. Hence,

limm→∞QTm = limm→∞QTm = lim
m→∞

QTm = Q
|C|
+ ∩∆|C|−1.

The next lemma 6.3 allows us to relate the Concatenation Axiom, (A2) (which is formulated in

terms of data-sets) to property (i) in Proposition 6.1 (stated in terms of frequencies).

Lemma 6.3 Let T ∈ Z+, f 0, f 00, f ∈ QT and suppose that there is an α ∈ (0; 1) such that:
αf 0 + (1− α) f 00 = f .

Denote byD = (f ;T ),D0 = (f 0;T ),D00 = (f 00;T ) the data-sets with length T and frequencies
f , f 0 and f 00. Then, there exists a λ ∈ (0; 1) such that:

λH (D0) + (1− λ)H (D00) = H (D) .

Proof of Lemma 6.3:

Construct the following set of data-bases D1 = ... = Dm−1 = Dm = D0;Dm+1 = ... = Dn =

D00 with
m

n
= α.
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Note that such integers m and n can be found as long as α is rational, which is satisfied since

f , f 0 and f 00 ∈ QT . Now note that:

D1 ◦ ... ◦Dm = (D0)m

Dm+1 ◦ ... ◦Dn = (D00)n−m

D1 ◦ ... ◦Dn = (D)n ,

and, hence, by (A2), there exists a vector µ ∈ int (∆n−1) such that:
nX
i=1

µiH (Di) = H (D) .

Hence,

H (D0)
mX
i=1

µi +H (D
00)

nX
i=m+1

µi = H (D) .

Setting λ =
Pm

i=1 µi ∈ (0; 1) concludes the proof.

For any T ≥ 2, let HT denote the restriction of H to DT . We now state a lemma which shows

that for every such T , we can express

HT : DT → ∆|R|−1

as a collection of single hypotheses (functions)

hT : DT → ∆|R|−1,

hT ∈ HT

which satisfy properties (i) and (ii) of Proposition 6.1.

Lemma 6.4 Suppose that HT satisfies (A2) and (A3). Then, for each T ≥ 2, there is a set of
functions

HT=
©
hT : DT → ∆|R|−1ª

such that for each T ≥ 2,
∪hT∈HT

hT (D) = HT (D)
and the following properties are satisfied:

(i0) whenever
λHT (D) + (1− λ)HT (D

0) = HT
³
D̃
´

,
for each hT ∈ HT ,

λhT (D) + (1− λ)hT (D
0) = hT

³
D̃
´

and

26



(ii0) not all vectors
{hT (D)}D∈DT

are collinear.

Before stating the proof of Lemma 6.4, we illustrate its implications by the following corollary:

Corollary 6.5 Each hT ∈ HT as constructed in Lemma 6.4 satisfies properties (i) and (ii)
stated in Proposition 6.1, where the set Q|C|+ ∩∆|C|−1 is replaced by QT for T <∞.

Proof of Corollary 6.5:

For a given T , each set D ∈ DT is uniquely identified by its frequency. Hence, property (ii0)

corresponds exactly to property (ii) from Proposition 6.1. To see the relation between (i0) and

(i) recall that Lemma 6.3 demonstrates that for every T ≥ 2, every D, D0, D̃ ∈ DT with

frequencies f , f 0, f̃ ∈ QT (with Q∞ = Q|C|+ ∩∆|C|−1) and every rational α ∈ (0; 1), such that

αf + (1− α) f 0 = f̃ ,

HT
³
D̃
´
= λHT (D) + (1− λ)HT (D

0) ,

for some λ ∈ (0; 1), whereas condition (i0) assures that for each hT ∈ HT ,

hT
³
D̃
´
= λhT (D) + (1− λ)hT (D

0) .

We can now write hT in terms of frequencies, thus obtaining the expression stated in (i):

hT
³
f̃
´
= hT (αf + (1− α) f) = λhT (f) + (1− λ)hT (f

0) .

Especially, for D∞, this expression is valid for any two f and f 0 ∈ Q|C|+ ∩ ∆|C|−1 and every

rational α ∈ (0; 1).
Proof of Lemma 6.4:

First, we show that hT satisfying property (i0) exist. By the Caratheodory Theorem, see GREEN

AND HELLER (1981, P. 40), we know that for a convex set HT (D) in a finite dimensional

space (such as R|R|−1), each point of the set can be represented as a convex combination of at

most |R| points inR|R|−1. Since we have assumed thatHT
³
(ci)

T
´

are convex sets (polyhedra),
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we can represent each such set as:

HT
³
(ci)

T
´
=

⎧⎨⎩
|R|X
j=1

αjµij |
|R|X
j=1

αj = 1 and αj ≥ 0
⎫⎬⎭ ,

where
¡
µij
¢|R|
j=1

is the above mentioned collection of points inR|R|−1. Note that since
³
(ci)

T
´|C|
i=1

is a basis of DT , it follows that any linear combination of data-sets (written as (fD; |D| = T ))
can be expressed as a linear combination of (c1)T ...

¡
c|C|
¢T . By Lemma 6.3, for everyD ∈ DT ,

HT (D) =

|C|X
i=1

λiHT
³
(ci)

T
´

with λi ∈ (0; 1), whenever ci occurs inD at least once. The Caratheodory Theorem now allows

us to write any such convex combination as:

HT (D) =

|C|X
i=1

λi

⎧⎨⎩
|R|X
j=1

αijµij |
|R|X
j=1

αij = 1 and αij ≥ 0
⎫⎬⎭ =

=

⎧⎨⎩
|C|X
i=1

λi

|R|X
j=1

αijµij |
|R|X
j=1

αij = 1 and αij ≥ 0
⎫⎬⎭

Hence, we can identify each selection hT with a vector of coefficients (αij)|C| |R|i=1j=1. Property (i0)

will be satisfied if we take the maximal set of such selections, i.e.

∆|C|×(|R|−1).

We will now consider only functions hT satisfying property (i0) and show that it is possible

to construct the set HT without violating property (ii0). In terms of the representation above,

property (ii0) can be reformulated as follows. Suppose that for some hT ∈ HT (as characterized

by (αij)|C| |R|i=1j=1), the vectors:

(hT (D))D∈DT =

⎛⎝ |R|X
j=1

αijµij

⎞⎠|C|

i=1

are collinear. The claim is that in the set of selections as given by ∆|C|×(|R|−1), we can find

a set of different selections,
¡
hDT
¢
D∈DT , such that for each D̂ ∈ DT , hD̂T assumes the same

values as hT for D̂, but is obtained by a set of vectors
³
hD̂T (D)

´
D∈DT

at last three of which are

non-collinear.

Suppose first that HT satisfies the condition of (A3) for some (ci)T , (cj)T and (ck)T , all of
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which are single points:

H (Dm) =
n
h
³
(cm)

T
´o

form ∈ {i; j; k}. Then, for each ĥT (x̄; ā) ∈ HT (x̄; ā),

ĥT
³
(ci)

T
´
= h

³
(ci)

T
´

ĥT
³
(cj)

T
´
= h

³
(cj)

T
´

ĥT
³
(ck)

T
´
= h

³
(ck)

T
´

must hold. Since these three vectors are not collinear by assumption, the result of the lemma

obtains for this case.

Suppose, therefore that HT satisfies the condition of (A3) for some i, j and k, such that all of

HT
³
(cm)

T
´

form ∈ {i; j; k} have a non-empty interior. Take some set

D̂ ∈ DT\
n
(c1)

T ...
¡
c|C|
¢To .

For each hypothesis hT
³
D̂
´
∈ HT

³
D̂
´

, we have:

hT
³
D̂
´
=

|C|X
m=1

λmhT
³
(cm)

T
´

for some hT
³
(cm)

T
´
∈ HT

³
(cm)

T
´

. Whenever hT
³
(ci)

T
´

, hT
³
(cj)

T
´

and hT
³
(ck)

T
´

entering this representation are non-collinear for any such hT
³
D̂
´

, the result of the lemma

obtains. Suppose, however that hT
³
(ci)

T
´

, hT
³
(cj)

T
´

and hT
³
(ck)

T
´

entering the represen-

tation are all collinear. If for eachm ∈ {i, j, k},

hT
³
(cm)

T
´
∈ int

³
HT

³
(cm)

T
´´

then it is always possible to find i and j ∈ ∆|R| which are not-collinear to hT
³
(cm)

T
´

for

m ∈ {i, j, k} such that

hT

³
D̂
´
= λi

³
hT

³
(ci)

T
´
+ i

´
+ λj

³
hT

³
(cj)

T
´
+ j

´
+

|C|X
m=1
m6=i;j

λmhT

³
(cm)

T
´

, (A-1)

and

λi i + λj j = 0.

Now suppose that hT
³
(cm)

T
´

is an extreme point of
³
HT

³
(cm)

T
´´

for every m ∈ {i, j, k}.
Then, Axiom (A3) insures that not all of these points are collinear and, hence, the result of the
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lemma obtains.

The last case to consider is the one in which hT
³
(cm)

T
´
∈ bd

³
HT

³
(cm)

T
´´

, but are not

extreme points for all m ∈ {i, j, k}. Suppose first that the hyperplanes containing the sides

of the polyhedra on which hT
³
(ci)

T
´

and hT
³
(cj)

T
´

lie are not parallel. In that case, it is

obvious that there exist i such that

hT
³
(ci)

T
´
+ i ∈ int

³
HT

³
(ci)

T
´´

and j such that

hT
³
(cj)

T
´
+ j ∈ bd

³
HT

³
(cj)

T
´´

so that:

λi i + λj j = 0

and, hence, the equality in A-1 obtains. (This can be done, e.g. by choosing j to lie in the

same hyperplane as hT
³
(cj)

T
´

and choosing
³
i;hT

³
(ci)

T
´´

to be parallel to the hyperplane

on which hT
³
(cj)

T
´

lies. An i in the interior ofHT
³
(cj)

T
´

exists by the assumption that the

two hyperplanes are not parallel).

Suppose now that all three of the hyperplanes containing the sides of the polyhedra on which

hT
³
(cm)

T
´

lie are parallel, but at least two of them are distinct. Then choose vectors i and j

such that

λi i + λj j = 0

and both i and j are parallel to the hyperplanes containing the sides of the polyhedra on which

hT
³
(cm)

T
´

lie. It is obvious that i and j can always be chosen in such a way that

hT
³
(ci)

T
´
+ i, hT

³
(cj)

T
´
+ j and hT

³
(ck)

T
´

are not collinear.

If the three hyperplanes coincide, there are two possibilities: either at least one of the points

belongs to the interior of a face on this hyperplane or all of the points lie on edges of the poly-

hedra. Let hT
³
(ci)

T
´

belong to the interior of a face. If the edge containing, say hT
³
(cj)

T
´

is

not collinear to the edge containing hT
³
(ck)

T
´

, then, it is obviously possible to find i and j

satisfying the necessary condition A-1. The idea is to move hT
³
(cj)

T
´

by j along the edge to

30



which it belongs, while moving the interior point hT
³
(ci)

T
´

in the opposite direction by the use

of i. If both edges are collinear, then j can be chosen in such a way so as to move hT
³
(cj)

T
´

into the interior of HT
³
(cj)

T
´

, whereas again it is always possible to move the interior point

hT
³
(ci)

T
´

into the exactly opposite direction by means of j .

If at least two of the edges are not parallel, then the existence of i and j is obvious, as in the

case of non-parallel hyperplanes. If the edges are parallel but distinct lines in this hyperplane,

proceed as in the case of three parallel but distinct hyperplanes. If all of the lines containing the

edges coincide, then all vertices contained in these edges must be collinear, which is excluded

by (A3).

Lemma 6.6 Let D ∈ D∞. Then,

H∞ (D) =
½P

c∈C s (c) p̂∞ (c) fD (c)P
c∈C s (c) fD (c)

| p̂∞ (c) ∈ P̂∞ (c)
¾

,

where
P̂∞ (c) = H ((c)

∞) ,
(and hence, satisfy Linear Independence) and s (c) are given by the unique (up to a multipli-
cation by a positive number) solution of the equation:P|C|

i=1
1
|C|s (ci) p̂∞ (ci)P|C|
i=1

1
|C|s (ci)

=

|C|X
i=1

λih ((ci)
∞) .

Proof of Lemma 6.6:

Obviously, the construction in Lemma 6.4 does not depend on T . Hence, for the sequence Tm

as defined in Lemma 6.2, letting m → ∞, we can represent H∞ as a selection of functions

h∞ which satisfy all of the conditions of Proposition 6.1. We can, therefore, apply directly the

result of the proposition and state, for each h∞, the existence of unique vectors

p̂∞ (c1) ...p̂∞
¡
c|C|
¢

such that

h∞ ((ci)
∞) =

P
c∈C s (c) p̂∞ (c) f(ci)∞ (c)P

c∈C s (c) f(ci)∞ (c)
= p̂∞ (ci) ,

or

p̂∞ (c1) = h ((c1)
∞) ...p̂∞

¡
c|C|
¢
= h

¡
c|C|
¢∞ .
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Taking the union of all such vectors p̂, we thus obtain the sets

P̂∞ (ci) = ∪h∞∈H∞ = H∞ ((ci)∞) for i ∈ {1... |C|} .

These sets trivially satisfy the conditions of Axiom (A3). We can now determine the similarity

function for each of the vectors

p̂1∞ (c1) ...p̂∞
¡
c|C|
¢

separately by solving: P|C|
i=1

1
|C|s (ci) p̂∞ (ci)P|C|
i=1

1
|C|s (ci)

=

|C|X
i=1

λih∞ ((ci)
∞) . (A-2)

For the case |C| = 3, the condition that h ((c1)∞), h ((c2)∞) ; and h ((c3)∞) are non-collinear

implies that this system has a unique solution, {s∞ ((ci))}3i=1. For the case of |C| > 3, we

can apply Step 2 of the proof of BGSS (2005), which implies that no matter which three

non-collinear vectors are chosen, the resulting similarity functions differ only with respect to

a multiplication by a positive number. Lemma 6.4 insures that (λi)|C|i=1 remain the same for all

functions h. Since p̂∞ (ci) = h∞ ((ci)∞) it follows that the unique (up to a multiplication by a

positive number) solution to this equation is does not depend of the chosen vector and is given

by:

s (ci) = λi.

Lemma 6.7 For every T ≥ 2 andD ∈ DT ,

HT (D) =

½P
c∈C s (c) p̂T (c) fD (c)P

c∈C s (c) fD (c)
| p̂T (c) ∈ P̂T (c)

¾
,

where
P̂T (c) = H

³
(c)T

´
,

and s (c) are the unique (up to a multiplication by a positive number) solution of equation A-2.

Proof of Lemma 6.7:

First note that using the argument in the proof of Proposition 3 in BGSS (2005, P. 1134) we
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can show that the solution of the system:
T−1
T
s (c1) p̂∞ (c1) + 1

T
s (c2) p̂∞ (c2)

T−1
T
s (c1) +

1
T
s (c2)

(A-3)

= λ1h∞ ((c1)
∞) +

¡
1− λ1

¢
h∞ ((c2)

∞) (A-4)

...
T−1
T
s
¡
c|C|−1

¢
p̂∞
¡
c|C|−1

¢
+ 1

T
s
¡
c|C|
¢
p̂∞
¡
c|C|
¢

T−1
T
s
¡
c|C|−1

¢
+ 1

T
s
¡
c|C|
¢

= λ|C|−1h∞
¡¡
c|C|−1

¢∞¢
+
³
1− λ

|C|−1
1

´
h∞
¡¡
c|C|
¢∞¢ (A-5)

is identical (up to a multiplication by a positive number) to the solution of equation A-2. Note

that this argument uses only properties (i) and (ii), but does not make use of the fact that h is

defined on the set Q|C|+ ∩∆|C|−1.

Let T < ∞. Corollary 6.5 shows that properties (i) and (ii) stated in Proposition 6.1 are

satisfied for all finite data-sets with equal length T as long as the set of possible values of f and

f 0 is restricted to QT .

Observe that for each selection hT , we have:

hT
³
(ci)

T
´
=

P
c∈C s (c) p̂T (c) f(ci)T (c)P

c∈C s (c) f(ci)T (c)
= p̂T (ci)

and define

P̂T (ci) = HT
³
(ci)

T
´

Note that, for i and j ∈ {1... |C|}we can write:⎛⎝ ci...ci| {z }
T−1-times

; cj

⎞⎠T

=
³
(ci)

T
´T−1

◦ (cj)T

and conclude, by (A2) and Lemma 6.3 that

HT

⎛⎝ ci...ci| {z }
(T−1)-times

; cj

⎞⎠ = λHT
³
(ci)

T
´
+ (1− λ)HT

³
(cj)

T
´

.

for some λ ∈ (0; 1). Lemma 6.4 shows that the same values of λ can be used for each selection

hT of HT . And (A2) guarantees that for any k ∈ Z+,⎛⎝ ci...ci| {z }
T−1-times

; cj

⎞⎠kT

=
³
(ci)

T
´k(T−1)

◦ (cj)kT
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implies

HkT

⎛⎝ ci...ci| {z }
k(T−1)-times

; cj...cj| {z }
k-times

⎞⎠ = λHT
³
(ci)

T
´
+ (1− λ)HT

³
(cj)

T
´

.

Letting k = Tm = m!andm→∞, we get:

lim
Tm→∞

H

⎛⎝ ci...ci| {z }
Tm(T−1)-times

; cj...cj| {z }
Tm-times

⎞⎠ = λH∞ ((ci)
∞) + (1− λ)H∞ ((cj)

∞)

and from Lemma 6.6, we know that:

λh∞ ((ci)
∞) + (1− λ)h∞ ((cj)

∞) =
T−1
T
s (ci) p∞ (ci) + 1

T
s (cj) p̂∞ (cj)

T−1
T
s (ci) +

1
T
s (cj)

for each selection h∞ ∈ H∞.

Hence, we can determine the similarity function for data-sets of length T by solving the system

of equations:

T−1
T
s (c1) p̂T (c1) +

1
T
s (c2) p̂T (c2)

T−1
T
s (c1) +

1
T
s (c2)

(A-6)

= λ1h
³
(c1)

T
´
+
¡
1− λ1

¢
h
³
(c2)

T
´

(A-7)

...
T−1
T
s
¡
c|C|−1

¢
p̂T
¡
c|C|−1

¢
+ 1

T
s
¡
c|C|
¢
p̂T
¡
c|C|
¢

T−1
T
s
¡
c|C|−1

¢
+ 1

T
s
¡
c|C|
¢

= λ|C|−1h
³¡
c|C|−1

¢T´
+
³
1− λ|C|−1

´³
h (c|C|)

T
´

(A-8)

in which the λ-values are identical to those in equation A-3 above. Since the selections hT

satisfy properties (i) and (ii) of Proposition 6.1 restricted to QT and since the argument from

the proof of Proposition 3 in BGSS (2005) used above does not depend on the set QT , we can

use it again to claim that the unique solution to this system coincides with the solution of A-3

and is also independent of the values of p̂T (c) as long as

p̂T (ci) = h
³
(ci)

T
´

holds. Hence, we can use the similarity function determined forD∞, for anyDT with T <∞.

Proof of Lemma 5.1:

Suppose that the frequency of r in a data-set D =
n
(x; a; rt)

T
t=1

o
is given by fD (r). Consider
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the sequence of data-setsDk as k →∞ and note that by (A1), as k →∞,

H (D∞)→ {h (D∞)} = {fDk (r)} = {fD∞ (r)} .

By (A5), for each k,

H
¡
Dk
¢ ⊂ H ¡Dk−1¢ .

Hence, for each k, there is an h ∈ H ¡Dk
¢

such that

hr (D) = fDk (r) .

Especially, for k = 1, there is an h ∈ H (D) such that

hr (D) = fD (r) .

Proof of Theorem 5.2:

To see that the proposition holds note that we construct the elements of P̂T ((x̄; ā) ; ci) by using

only the data-set
³
(ci)

T
´

and setting for each selection h,

p̂T ((x̄; ā) ; ci) =: h
³³
(ci)

T
´´
(x̄; ā) .

Hence,

P̂T ((x̄; ā) ; ci) = H
³
(ci)

T
´
(x̄; ā) .

(A5), Accumulation of knowledge ascertains that

HT+1
³
(ci)

T+1
´
(x̄; ā) ⊂ HT

³
(ci)

T
´
(x̄; ā) .

Now note that, if Axiom (A4), Learnability, holds, we know that for ci = (xi; ai; ri)

H
¡
Di
∞
¢ ¡
xi; ai

¢
= fDi∞ =

⎛⎝0; 0...0; 1|{z}
rith-position

; 0...0

⎞⎠ = P̂ i∞
¡
xi; ai

¢
.

The inclusion property shown above ascertains that⎛⎝0; 0...0; 1|{z}
rith-position

; 0...0

⎞⎠ ∈ P̂T ¡¡xi; ai¢ ; ci¢
for every T . Now consider all cases (xi; ai; r)r∈R and the data sets (xi; ai; r)∞ which assign a
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frequency one to (xi; ai; r). For any two such sets, we know that

H
¡¡
xi; ai; r

¢∞ ◦ ¡xi; ai; r0¢∞¢ ¡xi; ai¢ = f(xi;ai;r)∞◦(xi;ai;r0)∞ =

=
1

2
H
¡¡
xi; ai; r

¢∞¢ ¡
xi; ai

¢
+

+
1

2
H
¡¡
xi; ai; r0

¢∞¢ ¡
xi; ai

¢
=

=
1

2
f(xi;ai;r)∞ +

1

2
f(xi;ai;r0)∞ =

=

⎛⎜⎜⎝0; 0... 1

2|{z}
rth position

; 0...
1

2|{z}
r0th position

; 0...0

⎞⎟⎟⎠
Now, expressing

H
¡¡
xi; ai; r

¢∞ ◦ ¡xi; ai; r0¢∞¢ ¡xi; ai¢
in terms of similarity gives:⎛⎜⎜⎝0; 0... 1

2|{z}
rth position

; 0...
1

2|{z}
r0th position

; 0...0

⎞⎟⎟⎠
=

1
2
s ((xi; ai) ; (xi; ai; r

0)) er + 1
2
s ((xi; ai) ; (xi; ai; r)) er

1
2
s ((xi; ai) ; (xi; ai; r0)) + 1

2
s ((xi; ai) ; (xi; ai; r))

,

which implies

s ((xi; ai) ; (xi; ai; r)) = s ((xi; ai) ; (xi; ai; r
0)) ,

for all r, r0 ∈ R, which after normalization can be written as:

s ((xi; ai) ; (xi; ai; r)) = 1

for all r ∈ R.
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