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Abstract

This paper formulates two alternative equilibrium concepts in the
large household model: one which allows individual household agents
to make choices in their separate meetings, and the other which com-
mits individual household agents to contingent actions prior to their
meetings. In the first formulation, large converts a model with non-
linear preferences for the household into one with quasi-linear prefer-
ences for the individual household’s agents, which is critical to make
degeneracy–all households experience the same distribution of meet-
ing outcomes–as an equilibrium; in the second formulation, commit-
ment instead of large is the critical factor.
JEL Classification: D51, E40, E50
Keywords: Search; Large household; Equilibrium concept; Degen-

eracy; Commitment

1 Introduction

Search models now play a dominant role in labor economics and a promi-
nent role in monetary economics. In such models, meeting-specific shocks
are obvious sources of heterogeneity. For example, in a money model with
complete specialization in consumption and production and random pairwise
meetings (e.g. Kyotaki and Wright [1]), two people who start with the same
wealth end up with different wealth if one becomes a buyer and the other
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becomes a seller in the relevant meetings; or, in a labor model with random
job destruction (e.g. Pissarides [7, Ch 1, 2]), two workers who start with the
same wealth end up with different wealth if the relevant worker-firm pairs
experience different separation or productivity shocks. Because heterogene-
ity precludes closed-form solutions, efforts have been made to create models
in which equilibria have degenerate distributions of wealth.
One such model is the so-called large household model, initiated by Merz

[3] in labor economics and by Shi [5] in monetary economics. In this model,
each household is large–it consists of a non atomic measure of agents, and
each agent from a household meets someone from outside the household, a
firm in [3], or an agent from another household in [5]. If all households start
with the same wealth, then it is feasible that all households experience the
same distribution of meeting outcomes, and, by a law of large numbers ar-
gument, end up with the same wealth. Of course, whether such degeneracy
in wealth happens depends not only on feasibility, but on whether the same
distribution of meeting outcomes is an equilibrium. Whether it is is un-
clear because the literature contains neither clear definitions of equilibrium
or existence proofs. Rauch [4] points out a defect in the formulation of [5]
(also a defect of [3]), but Rauch’s suggested alternative is itself not correct.
More recent literature, initiated by Shi [6], avoids the problem pointed out
by Rauch, but suffers from other deficiencies.
Here, in the context of a money model, I formulate two alternative con-

cepts of search equilibrium. One completes and corrects Rauch’s formulation.
That formulation allows individual household agents to make choices in their
separate meetings and, therefore, is called the no-commitment approach. The
other completes the more recent approach of Shi [6]. It commits individual
household agents to contingent actions prior to their meetings and, therefore,
is called the commitment approach. In order to study the role of large in
determining whether degeneracy is an equilibrium, I use a model in which
degeneracy is feasible whether or not the household is large. In particular, I
study a model in which each meeting is a single-coincidence meeting, and I
study a finite household version–a household that consists of n buyers and
n sellers, and a large household version–a household that consists of equal
non atomic measures of buyers and sellers.
In the no commitment approach, large converts a model with nonlinear

preferences for the household into one with quasi-linear preferences for the
individual household agents. The quasi-linearity is critical for degeneracy
as an equilibrium. In the commitment approach, the surplus split in each
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pairwise meeting is essentially conducted by a Nash demand game, which
permits a variety of linear pricing, and, consequently, a continuum of degen-
erate equilibria. That is, commitment itself is critical for degeneracy as an
equilibrium, while it results in a weak equilibrium concept. Seemingly, the
no-commitment approach is a better approach, and the present formulation
of this approach and the analysis provide a basis for applications of the large
household model.

2 The environment

Time is discrete. There is a non atomic measure of each of K ≥ 3 types
of infinitely lived households. Each household consists of a set of buyers
indexed by I, and a set of sellers indexed by I. The set I is either a finite set
{1, ..., n}, or a non atomic measure space with mass n. I refer the model as
the finite household model when I is finite, and as the large household model
when I is infinite. (In the large household model, the mass n can always be
normalized as unity. This general notation helps simplify exposition below.)
There are K ≥ 3 types of produced and perishable goods. For a type-

k household, its buyers only consume type-k good; its sellers only produce
type-k + 1 good; and the household period utility isR

i∈I u(qib)di−
R
i∈I c(qis)di,

where qib is the consumption of its buyer i, and qis is the production of its
seller i.1 The household maximizes expected discounted utility with discount
factor β ∈ (0, 1). As is standard, u is bounded, u0 > 0, u00 < 0, u(0) = 0, and
u0(0) =∞; and it is without loss of generality to set c(q) = q.
There is another durable and intrinsically useless object called money.

The per household money holding is fixed at unity. Each household evenly
distributes money among its sellers.2

1An alternative assumption is that buyers pool goods together after search, and the
household’s utility from consuming q is u(q). It is straightforward to adapt the formu-
lations given below for this assumption. Also, results in Propositions 1-3 below hold for
adapted formulations.

2An alternative assumption is that the household can distribute money arbitrarily
among its agents. As long as the household’s choice of money distribution is common
knowledge in meetings, it is straightforward to adapt the formulations given below for this
assumption. Also, results in Propositions 1-3 below hold for adapted formulations.
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At each date, agents from households are randomly matched in pairs, but
in a way that makes each meeting a meeting between a seller who produces
type-k good and a buyer who consumes type-k good. That is, each meeting
is a single-coincidence meeting.
In each meeting, each agent’s money holding and his household’s start-

of-date money holding are common knowledge. These common knowledge
assumptions permit me to avoid dealing with asymmetric information.
Throughout, any candidate equilibrium is symmetric: symmetry is across

specialization types, and across buyers of a given household and sellers of a
given household. By symmetry and by the initial distribution of money, all
households hold one unit of money at the start of each date, so the equilibrium
is degenerate. However, in order to analyze the consequences for a household
of a deviation, it is necessary to describe the value to a household of starting
with an arbitrary money holding. I do that using recursive techniques. In
what follows, I refer to a household with 1 as a regular household, an agent
from a regular household as a regular agent, and a meeting between two reg-
ular agents as a regular meeting. Furthermore, any candidate equilibrium is
stationary, monetary, and binding, and with a continuous, weakly increasing,
and weakly concave value function v. Stationary is self explanatory; mon-
etary means the regular-meeting output is positive; and binding means the
regular-meeting transfer of money equals the buyer’s money holding.

3 The no-commitment approach

In this section, I assume that households are not committed to pre-search
plans; instead, each agent makes his own decision in a meeting. Following
Shi [5] and Rauch [4], I assume generalized Nash bargaining in meetings.3

3.1 Equilibrium definition

As indicated above, I shall describe the expected lifetime discounted utility of
an arbitrary household with an arbitrary money holding x–v(x). Since each
agent makes his own decision in meeting, he ought to evaluate each feasible
trade. Here, I define the payoff of a trade to an agent as the additional
or marginal contribution of the trade to the household’s lifetime expected

3Although generalized Nash bargaining does not explicitly describe the agent’s deci-
sion making, as is well known, its solution can be interpreted as the limit of equilibrium
outcomes of some game which explicitly describes the agent’s decision making.
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utility, taking as given other trade outcomes obtained by other agents from
the same household when meeting regular agents.
Throughout, I denote a trade by (q, l), where q is the transfer of the

good and l is the transfer of money. In this section, I denote the trade in
a meeting between a buyer from the household with x and a regular seller
by (qb(x), lb(x)), and the trade in a meeting between a seller from the same
household and a regular seller by (qs(x), ls(x)).
In the finite household model, when a buyer from the household with x

acquires l in a meeting, his household ends up with x+nls(x)−(n−1)lb(x)−l
with probability one, for each of other n − 1 buyers from the household
transfers lb(x) and each of n sellers from the household acquires ls(x) in
meeting regular agents; therefore, the payoff of trade (q, l) to the buyer is

Πb(q, l, x) = u(q) + βv[x+ nls(x)− (n− 1)lb(x)− l]. (1)

Similarly, the payoff of trade (q, l) to a seller from the household with x is

Πs(q, l, x) = −q + βv[x+ (n− 1)ls(x)− nlb(x) + l]. (2)

In the large household model, analogously, the payoff of trade (q, l) to a
buyer from the household with x is

Πb(q, l, x) = u(q) + (x− l)βv0[x+ nls(x)− nlb(x)], (3)

and the payoff of trade (q, l) to a seller from the household with x is

Πs(q, l, x) = −q + lβv0[x+ nls(x)− nlb(x)]. (4)

Here, because of large, the marginal payoff of money to an agent is βv0(x+)
when the household’s end-of-match money holding is x+; as a critical impli-
cation, the payoff functions Πb(., ., x) and Πs(., ., x) are quasi linear.
In both models, letting the buyer’s bargaining power be denoted by θ,

then (qb(x), lb(x)) must satisfy

(qb(x), lb(x)) (5)

∈ arg max
q≥0,0≤l≤x/n

[Πb(q, l, x)−Πb(0, 0, x)]
θ[Πs(q, l, 1)−Πs(0, 0, 1)]

1−θ;

this is because when (q, l) is the trade between a buyer from the household
with x and a regular seller, Πb(q, l, x)−Πb(0, 0, x) is the buyer’s surplus, and
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Πs(q, l, 1) − Πs(0, 0, 1) is the seller’s surplus. Similarly, (qs(x), ls(x)) must
satisfy

(qs(x), ls(x)) (6)

∈ arg max
q≥0,0≤l≤1/n

[Πb(q, l, 1)−Πb(0, 0, 1)]
θ[Πs(q, l, x)−Πs(0, 0, x)]

1−θ.

In turn, the value function v must satisfy

v(x) = nu[qb(x)]− nqs(x) + βv[x+ nls(x)− nlb(x)]. (7)

Finally, bindingness requires

nlb(1) = nls(1) = 1. (8)

Therefore, I have the following definitions.

Definition 1 In the finite household model, a no-commitment equilibrium is
a value function v (continuous, weakly increasing, weakly concave) on R+,
and a collection of functions (qb, lb, qs, ls) on R+, that satisfy (1), (2), and
(5)-(8). In the large household model, a no-commitment equilibrium is a
value function v (continuous, weakly increasing, weakly concave) on R+, and
a collection of functions (qb, lb, qs, ls) on R+, that satisfy (3), (4), and (5)-(8).

3.2 Comparison to the literature

Aside from details, Shi [5] and Rauch [4] share all the important assumptions
of the environment, including the common knowledge assumptions. Shi [5],
who initiated the use of the large household model for money applications,
describes the household’s problem in terms of sequences of the household’s
choices. In his formulation, each household takes as given that the regular-
meeting trade is the trade that its buyers and sellers will make–independent
of the household’s start-of-date money holding. However, such trade is not
feasible for a household with x < 1, which leaves v(x) for x < 1 undefined. It
also implies that v(x) = v(1) for x ≥ 1. As Rauch [4] points out in a comment
on [5], neither is satisfactory. He proposes an alternative formulation.
In Rauch’s formulation, each agent’s action is a function of his household’s

end-of-match money holdings. Because of large, this gets around the issue
that the payoff of a trade to one agent depends on the trade outcomes of other
agents from the same household. Such treatment looks awkward, though;
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moreover, it does not work in the finite household model, for the household’s
end-of-match money holding depends on the agent’s action.
There is another problem in Rauch’s formulation. Rauch describes the

household problem in terms of sequences of the household’s choices. But
to define the payoff of an arbitrary sequence, Rauch uses the Lagrangian
multipliers that are associated with an optimal sequence, which makes the
household’s problem ill-defined. This problem can be avoided by using a
recursive approach and introducing a value function.

3.3 Main results

I present two results here: non existence of a no-commitment equilibrium in
the finite household model with n = 1, and existence in the large household
model.
First, I give the non-existence result.

Proposition 1 In the finite household model with n = 1, there does not exist
a no-commitment equilibrium

Proof. Suppose (v, qb, lb, qs, ls) is a no-commitment equilibrium. Let
q̂ ≡ qb(1). Setting x = 1 in (5), and by (8) and q̂ > 0 (the equilibrium is
monetary), we have v(1) > v(0). So v is strictly increasing over [0, x̄], where
x̄ ≡ min{x ≤ 1 : v(x) = v(1)} > 0. Then, by this strict monotonicity,
u0(0) =∞, (5), and lb(1) = 1 (see (8)), we have

(1− θ){u[qb(x)] + βv[x+ ls(x)− lb(x)]− βv[x+ ls(x)]} (9)

= θu0[qb(x)]{−qb(x) + βv[lb(x)]− βv(0)}, ∀x > 0.

Next, we claim ∃ z ∈ (0, x̄] s.t. ∀ x ≤ z, lb(x) = x, ls(x) ∈ [x̄, 1], and

v(x) = u[qb(x)]− q̂ + βv(1). (10)

The proof of the claim is by the standard argument that exploits concavity
and monotonicity of u and v, and it is delegated to the appendix.
Now fix x ∈ (0, z]. By (10), qb(0) = 0 (see (5)), and u(0) = 0, we have

v(x)− v(0) = u[qb(x)]. (11)

By (9), monotonicity of v, lb(x) = x, and (11), we have

(1− θ)u[qb(x)] ≥ θu0[qb(x)]{−qb(x) + βu[qb(x)]}. (12)
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By (5) and continuity of v, as x→ 0, qb(x)→ 0, and therefore, u0[qb(x)]→∞
and qb(x)/u[qb(x)]→ 0. But then (12) cannot hold as x→ 0.

Next, I turn to existence in the large household model. I shall construct
an equilibrium in which lb(x) = x and ls(x) = 1 as x is not too large. Some
components of this equilibrium are in the next lemma.

Lemma 1 If q̃ satisfies u(q̃) > q̃ and

u0(q̃)[θu0(q̃) + (1− θ)][1 + βθ− βθu0(q̃)− β] = (1− θ)θu00(q̃)[u(q̃)− q̃], (13)

then let

ω =
θu0(q̃)q̃ + (1− θ)u(q̃)

θu0(q̃) + (1− θ)
, (14)

and then ∀ x ≥ 0, let

q(x) = argmax
q≥0

[u(q)− ωx]θ[−q(x) + ωx]1−θ. (15)

(i) u0(q̃) > 1. (ii) x 7→ q(x) is strictly increasing. (iii) x 7→ q(x) is differen-
tiable at x > 0. (iv) q(1) = q̃. (v) ω = βu0[q(1)]q0(1).

Proof. Parts (i) and (ii) are obvious. As x > 0, q(x) satisfies

θu0[q(x)]{−q(x) + ωx} = (1− θ){u[q(x)]− ωx}. (16)

Now the implicit function theorem implies part (iii). Setting x = 1 in (16)
and comparing it with (14) gives part (iv). Then differentiating (16) gives

[−θu00(q̃)(−q̃ + ω) + u0(q̃)]q0(1) = ω[θu0(q̃) + (1− θ)].

This, (13), and (14) imply part (v).

For the reason to be clear soon, in my proof, I need a nonbinding upper
bound on the household’s money holdings. The equilibrium with such a
bound in the large household model is a number Z > 1, a value function v
(continuous, weakly increasing, weakly concave) on [0, Z], and a collection of
functions (qb, lb, qs, ls) on [0, Z], that satisfy (3), (4), and (5)-(8).
Also, I need the following assumptions about u,

(A1) ∃ q̃ satisfying u(q̃) > q̃ and (13);

(A2) ∃ X > 1 s.t. u[q(.)] : [0,X]→ R+ is strictly concave.
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As θ = 1, (A1) and (A2) are guaranteed by assumptions about u given
in Section 2. As θ < 1, (A1) and (A2) can be satisfied by some familiar
functions, e.g., u(q) = qδ ∀ q ∈ [0, 1] and with 0 < δ ≤ 0.5; also, (A1) and
(A2) are satisfied if u00u00 > u0u000.4

Now I can show the existence result.

Proposition 2 Suppose (A1) and (A2) hold. In the large household model,
there exists a no-commitment equilibrium with a nonbinding upper bound on
the household’s money holdings .

Proof. Without loss of generality, let the mass n be normalized as 1. Fix
q̃ satisfying u(q̃) > q̃ and (13), and let ω and q(x) be defined as in Lemma
1. By Lemma 1 (i)-(iv), ∃ Z ∈ (1, X] s.t. u0[q(x)] ≥ 1 ∀ x ≤ Z. Fix such Z,
and let (v, qb, lb, qs, ls) on [0, Z] be defined by

v(x) = u[q(x)]− q(1) + βv(1), (17)

(qb(x), lb(x)) = (q(x), x), (18)

(qs(x), ls(x)) = (q(1), 1). (19)

Now we verify Z and functions (v, qb, lb, qs, ls) in (17)-(19) constitute a no-
commitment equilibrium. First, those functions satisfy (7) and (8). Next, by
Lemma 1 (ii) and (iii) and by (A2), v is strictly increasing, strictly concave
and differentiable. Next, by Lemma 1 (v), βv0(1) = ω. Given this and
functions (qb, lb, qs, ls), by (15) and u0[q(x)] ≥ 1, (q(x), x) solves the problem
in (5) with x ≤ Z, and by (15) and u0[q(1)] > 1, (q(1), 1) solves the problem
in (6) with x ≤ Z.

The role of large can be seen from proofs of Propositions 1 and 2. In the
finite household model, (8) implies lb(x) = x and v[g(x)] = v(1) for x in a
closed interval, where g(x) ≡ x + ls(x) − lb(x). This, in turn, implies that
qb(x) depends on v(x)− v(0) (see (10)), and, in particular, the period return
for the household with x depends on v(x), which leads to the contradiction.
In the large household model, the agent’s payoff functions in (3)-(4) are quasi
linear, so qb(x) (also qs(x)) depends on v0[g(x)] but not on any other term
related to v; in particular, when lb(x) = x and g(x) = 1, the period return
for the household with x depends on v0(1) but not on v(x).

4As θ < 1, Lagos and Wright [2] also appeal to u00u00 > u0u000 in their existence proof.
See the last section for the connection between the present model and the Lagos-Wright
model.
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The role of the bound Z should also be clear. In general, g(x) depends
on x, and if it does, then little can be said about the relationship between
qb(x) (also qs(x)) and v0[g(x)]. The bound Z is constructed so that g(x) does
not depend on x; in particular, it is constructed so that g(x) = 1 ∀ x ≤ Z.
Two remarks on Proposition 1 are in order. First, it is straightforward

to show Proposition 1 holds if there is a nonbinding upper bound on the
household’s money holdings; notice that, to be nonbinding, now any such
upper bound should be no less than 2. Second, Proposition 1 resembles a
result in Wallace and Zhu [8, section 2]. They study a model in which each
household consists of one agent, each meeting is a single-coincidence meeting,
and θ = 1. They show that if β is close to unity, then there does not exist any
stationary, degenerate, and monetary equilibrium. Proposition 1 is weaker
than that result for it only rules out any such equilibrium with a continuous
and concave value function (but it is stronger for it deals with general θ and
β); in the proof of Proposition 1, continuity and concavity over [0, 2] are used
to establish the claim, and continuity is used to draw the final contradiction.

4 The commitment approach

In this section, I assume that households are committed to pre-search plans;
that is, each household chooses a binding contingent plan for all its buyers
and sellers prior to meetings. Following Shi [6], I assume that buyers make
take-it-or-leave-it offers in meetings.

4.1 Equilibrium

I start by describing an arbitrary plan made by an arbitrary household with
arbitrary money holding x. Such a plan, denoted px ≡ (σx, λx), is a contin-
gent plan. When a buyer from the household with x meets a seller whose
household money holding is y, the buyer’s contingency is y; by the plan,
the buyer makes an offer σx(y). When a seller from the household with x
meets a buyer whose household money holding is y and the buyer makes an
offer σ, the seller’s contingency is (y, σ); by the plan, the seller makes an
acceptance-rejection action λx(y, σ).
To avoid non convexity, I allow stochastic offers and responses. So an offer

is a probability measure over the set of feasible trades, where feasibility means
the transfer of money does not exceed the buyer’s money holding. Also, an
acceptance-rejection action is a probability to accept a relevant offer, and, in
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particular, λx(y, σ) is the probability to accept the offer σ made by a buyer
whose household’s money holding is y.
Given the plan made by regular households, denoted p∗1 ≡ (σ∗1, λ

∗
1), px

induces a distribution of realizations of (qib, lib, qis, lis)i∈I , where (qib, lib) is
the trade between buyer i from the household with x and a regular seller,
and (qis, lis) is the trade between seller i from the household with x and a
regular buyer. Letting π(px, p∗1) denote this distribution, and letting Eπ(px,p∗1)

stand for the expectation over the distribution π(px, p
∗
1), the payoff of px to

the household with x is

f(px, p
∗
1) = Eπ(px,p∗1)

[
R
u(qib)di−

R
qisdi+ βv(x−

R
libdi+

R
lisdi)]. (20)

It follows that
v(x) = max

px
f(p∗x, p

∗
1). (21)

Bindingness requires

π(p∗1, p
∗
1){(qib, lib, qis, lis)i∈I :

R
libdi =

R
lisdi = 1} = 1. (22)

As is obvious, (21) imposes dependence of p∗x ≡ (σ∗x, λ∗x) on p∗1, ∀ x ≥ 0.
But (21) does not impose any dependence of p∗1 on p∗x ∀ x 6= 1. In fact,
because the payoff of a plan is computed before matching and equilibrium
is degenerate, any p1 is a best response to p∗x ∀ x 6= 1. To strength the
equilibrium concept, I introduce two constraints on p∗1.
In the finite household model, the first constraint is

σ∗1(x) ∈ argmax
σ

λ∗x(1, σ)Eσ[u(q) + βv(1 + 1/n− l)]; (23)

that is, for a regular household, when one of its buyers meets a seller from
a household with x, the buyer’s offer σ∗1(x) is a best response to the seller’s
acceptance-rejection action dictated by λ∗x(1, .), taking as given that other
agents from the regular household are in regular meetings. The second con-
straint is

λ∗1[x, σ
∗
x(1)] ∈ argmax

λ
λEσ∗x(1)[−q + βv(1− 1/n+ l)]; (24)

that is, for the regular household, when one of its sellers meets a buyer from
a household with x, the seller’s acceptance-rejection action λ∗1[x, σ

∗
x(1)] is a

best response to the buyer’s offer σ∗x(1), taking as given that other agents
from the regular household are in regular meetings.
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In the large household model, the analogous constraints are

σ∗1(x) ∈ argmax
σ

λ∗x(1, σ)Eσ[u(q)− lβv0(1)], (25)

and

λ∗1[x, σ
∗
x(1)] ∈ argmax

λ
λEσ∗x(1)[−q + lβv0(1)]. (26)

Therefore, I have the following definitions.

Definition 2 In the finite household model, a commitment equilibrium is
a value function v (continuous, weakly increasing, weakly concave) on R+,
and plans p∗x = (σ∗x, λ

∗
x) ∀ x ≥ 0, that satisfy (20)-(22), (23), and (24).

In the large household model, a commitment equilibrium is a value function
v (continuous, weakly increasing, weakly concave) on R+, and plans p∗x =
(σ∗x, λ

∗
x) ∀ x ≥ 0, that satisfy (20)-(22), (25), and (26).

4.2 Comparison to the literature

Shi [6] initiates the commitment approach. In [6], there is no explicit de-
scription of contingencies and no analogue of (25), but there is a special
version of (26). In that version, in a meeting between a regular seller and a
buyer from a household with x, the seller accepts any offer whose payoff to
the regular household is no worse than no trade, taking as given that other
agents from the regular household are in regular meetings. Therefore, the
regular-meeting output in any equilibrium must be equal to βv0(1) (compare
this with Proposition 4 below).
Aside from details, when the mass n is normalized as 1, the purported

equilibrium in [6] has the value function

v(x) = max
0≤l≤x,0≤ρ≤1

u(lq̄)− ρq̄ + βv(x+ ρ− l), (27)

where βu0(q̄) = 1. It follows that βv0(1) = q̄. Letting (l(x), ρ(x)) be the
optimal solution to the maximization problem in (27), the plans in the pur-
ported equilibrium are: (a) a regular seller accepts an offer (q, l) if and only if
q ≤ lq̄, and a buyer from the household with x offers (l(x)q̄, l(x)) to a regular
seller; and (b) a regular buyer offers (q̄, 1) to a seller from the household with
x, and a seller from the household with x accepts (q̄, 1) from a regular buyer
with probability one.
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This purported equilibrium has a defect, though. Given the offer and
acceptance-rejection action of regular agents in (a) and (b), the household
with x should let each of its sellers accept (q̄, 1) with probability ρ(x). This
is also consistent with the way that the value function is described. It can be
shown that ρ(x) < 1 if x is sufficiently large. Therefore, it is not optimal for
the household with x to choose for its sellers the acceptance-rejection action
in (b).

4.3 Main results

I present two results here: existence of a continuum of commitment equilibria
in the finite household model with n = 1, and existence of a continuum of
commitment equilibria in the large household model.

Proposition 3 Let βu0(q̄) = 1 and let q̂ ∈ (0, q̄]. In the finite household
model with n = 1, there exists a commitment equilibrium in which q̂ is the
regular-meeting output and q̂ < βv(1)− βv(0).

Proof. See the appendix.

Proposition 4 Let βu0(q̄) = 1 and let q̂ ∈ (0, q̄]. In the large household
model, there exists a commitment equilibrium in which q̂ is the regular-
meeting output and q̂ < βv0(1) as q̂ < q̄.

Proof. Without loss of generality, let the mass n be normalized as 1. Fix
q̂ and we first construct a candidate equilibrium. Let v be defined by

v(x) = max
0≤l≤x,0≤ρ≤1

u(lq̂)− ρq̂ + βv(x+ ρ− l). (28)

It is standard to show there exists a unique v satisfying (28) and v is strictly
increasing, strict concave, and differentiable. Also, there is a unique solution,
denoted (l(x), ρ(x)), to the maximization problem in (28). By βu0(q̂) ≥ 1,
we have ρ(1) = l(1) = 1 and

v0(1) = u0(q̂)q̂. (29)

Regarding p∗1, let the offer made by a regular buyer to a seller from a
household with x be

σ∗1(x){(q, l) : q = ρ(x)q̂, l = ρ(x)} = 1 ∀ x; (30)
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that is, the buyer asks ρ(x)q̂ units of good for ρ(x) units of money (or, the
support of σ∗1(x) is the singleton set {(ρ(x)q̂, ρ(x))}). For a feasible offer σ
made by a buyer from a household with x (the support of σ is a subset of
{(q, l) : l ≤ x}), let the action by a regular seller be

λ∗1(x, σ) = 1 if σ{(q, l) : q ≤ lq̂, l = l(x)} = 1, λ∗1(x, σ) = 0 otherwise; (31)

that is, the seller accepts σ if and only if the implied price of money is no
greater than q̂ and the transfer of money is l(x).
Regarding p∗x for general x, we only describe σ

∗
x(1) and λ∗x(1, σ). Let the

offer made by a buyer from a household with x to a regular seller be

σ∗x(1){(q, l) : q = l(x)q̂, l = l(x)} = 1; (32)

that is, the buyer asks l(x)q̂ units of good for l(x) units of money. For a
feasible offer σ made by a regular buyer (the support of σ is a subset of
{(q, l) : l ≤ 1}), let the action by a seller from a household with x be

λ∗x(1, σ) = 1 if σ{(q, l) : q ≤ lq̂, l = ρ(x)} = 1, λ∗x(1, σ) = 0 otherwise;
(33)

that is, the seller accepts σ if and only if the implied price of money is no
greater than q̂ and the transfer of money is ρ(x).
Now we verify that v in (28) and p∗x in (30)-(33) constitute a commitment

equilibrium. First, by ρ(1) = 1, p∗1 satisfies (22). Next, given λ∗x and (29),
σ∗1(x) solves the problem in (25). Next, given σ∗x and (29), by βu0(q̂) ≥ 1,
λ∗1[x, σ

∗
x(1)] solves the problem in (26). Next, as is clear, v(x) = f(p∗x, p

∗
1).

Finally, given p∗1 and v, by the fact that (l(x), ρ(x)) solves the problem in
(28), p∗x solves the problem in (21).

The role of commitment can be seen from proofs of Propositions 3 and 4.
With commitment, the surplus split in each pairwise meeting is essentially
conducted by a Nash demand game (note, in particular, the buyer need not
have all the bargaining power in the meeting, though he makes a take-it-or-
leave-it offer). This permits a variety of linear pricing–see (30)-(33) for the
large household model, and (43)-(46) in the appendix for the finite household
model; any such linear pricing makes degeneracy an equilibrium.
It shall not be surprsing that in models where a household consisits of

one agent, with commitment, degeneracy can be equilibrium as long as it is
feasible; in fact, it is straightforward to establish a version of Proposition 3
in the model studied by Wallace and Zhu [8, section 2].
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5 Concluding remarks

In the no-commitment formulation, the roles of quasi-linearity of the indi-
vidual agent’s payoff functions and the bound Z are similar to their roles in
the Lagos-Wright model [2]. In [2], agents trade in a centralized market after
random matching, and preferences over centralized-trade goods are quasi-
linear. For an internal solution in the centralized market, the agent must
enter the centralized market with money holdings that are not too large. In
that case, the assumed quasi-linear preferences imply that the value func-
tion for the agent’s end-of-match money holdings is affine, and that, in turn,
implies that in a pairwise meeting, the buyer and seller payoff functions are
quasi linear, linear in end-of-match money holdings. Moreover, those func-
tions have the same linear coefficient, provided that the sum of the buyer and
seller money holdings is consistent with an internal solution in the centralized
market.
My description of the household’s problem in the no-commitment ap-

proach can be applied to the labor search model of Merz [3]. It can also
be adapted to describe the large firm’s decision problem in the labor search
literature. The large firm has many job positions, and the wage in each po-
sition is determined by bargaining with a worker. But in the literature (see
Pissarides [7, Ch 3.1]), the firm takes the prevailing wage as given. This
seems problematic. Instead, following the approach used above, it could be
assumed that the wage in each position is determined by bargaining between
a firm’s agent and a worker, while taking as given the bargaining outcome
between other agents of the firm and workers.
Finally, a natural way to refine the commitment equilibrium–a seemingly

weak equilibrium concept–is to require that each household’s plan is optimal
in each contingency (or, each equilibrium strategy is subgame perfect). After
all, this is consistent with the formulation adopted by most search models
in which a household consists of one agent. Of course, doing so leads to the
no-commitment equilibrium.
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Appendix

Completion of the proof of Proposition 1
Proof. Here we prove the claim in the main text. First, by the strict

monotonicity of v over [0, x̄], u0(0) =∞, (6), and ls(1) = 1 (see (8)), we have

(1− θ){u[qs(x)] + βv[2− ls(x)]− βv(2)} (34)

= θu0[qs(x)]{−qs(x) + βv[x+ ls(x)− lb(x)]− βv[x− lb(x)]}.

Because qs(1) = q̂, setting x = 1 in (34) and by (8), we have

(1− θ)[u(q̂) + βv(1)− βv(2)] = θu0(q̂)[−q̂ + βv(1)− βv(0)]. (35)

Comparing (34) and (35), we have

qs(x) ≤ q̂ and strict if ls(x) < x̄. (36)

Next, let the right derivative of v at x ≥ 0 and left derivative of v at
x > 0 be denoted by v0+(x) and v0−(x), respectively. By concavity of v,
those derivatives are well defined; v−(x1) ≥ v+(x1) ≥ v+(x2) if x1 < x2; and
v0+(x) > 0 if x < x̄. Setting x = 1 in (6) and by (8), we have

u0(q̂)v0−(1) ≥ v0+(1). (37)

Now we are ready to prove the claim. By (5) and continuity of v, qb(x)→
0 as x→ 0. So given u0(0) > 1, ∃ z < x̄ s.t. u0[qb(x)] > 1 ∀x ≤ z. Fix such z
and fix x ≤ z. If ls(x) < x̄, then by (6) and ls(1) = 1, we have

u0[qs(x)]v
0
+[x+ ls(x)− lb(x)] ≤ v0−[2− ls(x)]. (38)

Comparing (37) and (38), and using ls(x) < x̄ and (36), we have

x+ ls(x)− lb(x) ≥ x̄, (39)

and hence lb(x) < x. By (5), lb(x) < x implies

u0[qb(x)]v
0
+[lb(x)] ≤ v0−[x+ ls(x)− lb(x)], (40)

but since u0[qb(x)] > 1, lb(x) < x, (39), and (40) are incompatible. So it must
be ls(x) ∈ [x̄, 1]; now if lb(x) < x, again we have (39) and (40), so it must be
lb(x) = x. Then comparing (34) and (35), we have qs(x) = q̂ and (10).
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The proof of Proposition 3
Proof. The proof is similar to the proof of Proposition 4 (some minor

difference is to deal with issues from finiteness of the household). Fix q̂.
First, let v be defined by

v(x) = u(xq̂)− q̂ + βv(1) if x ≤ 1 and v(x) = v(1) if x > 1. (41)

Let x̂ ≡ min{x, 1}, and it follows that

v(x)− v(0) = u(x̂q̂). (42)

Regarding p∗1, let

σ∗1(x){(q, l) : q = q̂, l = 1} = 1 ∀ x, (43)

and ∀ (x, σ) with σ{(q, l) : l ≤ x} = 1, let

λ∗1(x, σ) = 1 if σx{(q, l) : q ≤ x̂q̂, l = x} = 1, λ∗1(x, σ) = 0 otherwise. (44)

Regarding p∗x for general x, we only describe σ
∗
x(1) and λ∗x(1, σ). Let

σ∗x(1){(q, l) : q = x̂q̂, l = x} = 1, (45)

and ∀ (1, σ) with σ{(q, l) : l ≤ 1} = 1, let

λ∗x(1, σ) = 1 if σ{(q, l) : q ≤ lq̂, l = 1} = 1, λ∗x(1, σ) = 0 otherwise. (46)

Now we verify that v in (41) and p∗x in (43)-(46) constitute a commitment
equilibrium. First, p∗1 satisfies (22). Next, given λ

∗
x and (42), σ

∗
1(x) solves the

problem in (23). Next, given σ∗x and (42), by βu(q̂) > q̂ (recall βu0(q̂) ≥ 1),
λ∗1[x, σ

∗
x(1)] solves the problem in (24). Next, as is clear, v(x) = f(p∗x, p

∗
1).

Finally, we show that given p∗1 and v, p
∗
x solves the problem in (21). It suffices

to show f(p∗x, p
∗
1) ≥ f(px, p

∗
1) for px in which µ is the probability that the

buyer offers (x̂q̂, x) to a regular seller, 1−µ is the probability that the buyer
offers (0, 0) to a regular seller, and ρ is the probability that the seller accepts
σ∗1(x) from a regular buyer. So it suffices to show

(1, 1) ∈ arg max
0≤µ≤1,0≤ρ≤1

µρ[u(x̂q̂)− q̂ + βv(1)] + (1− µ)ρ[−q̂ + βv(1 + x)]

+µ(1− ρ)[u(x̂q̂) + βv(0)] + (1− µ)(1− ρ)βv(x).

Notice that µ = 1 is optimal as x = 0, and that by (42), µ = 1 is optimal as
x > 0. Then by v(1 + x) = v(1), (42), and βu(q̂) > q̂, ρ = 1 is optimal.
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