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Abstract
The problem in default probability estimation for low-default portfolios

is that there is little relevant historical data information. No amount of

data processing can �x this problem. More information is required.

Incorporating expert opinion formally is an attractive option.
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1 Introduction

The Basel II framework (Basel Committee on Banking Supervision (2004)) for

capital standards provides for (some) banks to use models to assess risks and
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determine minimum capital requirements. All aspects of the models �

speci�cation, estimation, validation �will have to meet the scrutiny of national

supervisors. The presumption is that these models will be the same ones that

sophisticated institutions use to manage their loan portfolios. Banks using internal

ratings-based (IRB) methods to calculate credit risks must calculate default

probabilities (PD), loss given default (LGD), exposure at default (EAD) and

e¤ective maturity (M) for groups of homogeneous assets. For very safe assets,

calculations based on historical data may "not be su¢ ciently reliable" Basel

Committee on Banking Supervision (2005) to form a probability of default

estimate, since so few defaults are observed. This issue has attracted attention in

the literature, for example Balthazar (2004), and methods which advocate

departing from the usual unbiased estimator have been proposed by Pluto and

Tasche (2005). In this paper I argue that uncertainty about the default

probability should be modeled the same way as uncertainty about defaults �

namely, represented in a probability distribution. A future default either occurs

or doesn�t (given the de�nition). Since we do not know whether it occurs or not,

we model this uncertain event with a probability distribution. This model re�ects

our partial knowledge of the default mechanism. Similarly, the default probability

is unknown. But experts do know something about the latter, and we can

represent this knowledge in a probability distribution. Inference should be based

on a probability distribution for the default probability. The �nal distribution

should re�ect both data and expert information. This combining of information is

easy to do, using Bayes rule, given that information is represented in probability

distribution. The result is an estimator which is di¤erent from the unbiased

estimator, but which moves the unbiased estimator toward an expert opinion

rather than simply bounding it away from zero.

For convenience and ease of exposition I focus here on estimating the default

probability � for a portfolio of safe assets. Section 2 treats the speci�cation of the

likelihood function and indicates what might be expected from the likelihood

function. General comments on the modeling of uncertainty through

probabilities, the standard approach to default modeling, are made in Section 3.

Section 4 considers the role of expert information about the unknown default

probability and how that might be represented. Speci�cally, it is represented in a

probability distribution, for exactly the same reasons that uncertainty about

defaults is represented in a probability distribution. Combination of expert and
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data information is taken up in Section 5, following, for example, DeGroot (1970).

Section 6 considers elicitation of an expert�s information and its representation in

a probability distribution. Section 7 treats the inferences that could be made on

the basis of the expert information and likely data information. Although no data

are at hand, it is possible in the low-default case to consider all likely data

realizations in particular samples. Section 8 compares the information in the

expert information with the information in the data. The data information will

dominate for large sample sizes, the usual result, but large here is hopelessly

unrealistic. Section 9 considers additional inference issues and supervisory issues.

Section 10 concludes.

2 The likelihood function

Expert judgement is crucial at every step of a statistical analysis. To emphasize

this fact, I will use the notation e to indicate information provided by expert

judgement. It is not really necessary to distinguish objective from subjective

judgement at this stage. That is, the expert knowledge could be the result of

accumulated experience with similar problems and data, or simply the result of

knowledgeable consideration. Typical data consist of a number of asset/years for a

group of similar assets. In each year, there is either a default or not. This is a

clear simpli�cation of the actual problem, in which asset quality can improve or

deteriorate and assets are not completely homogeneous. Nevertheless, it is useful

to model the problem as one of independent Bernoulli sampling with unknown

parameter �: Let di indicate whether the ith observation was a default (di = 1) or

not (di = 0). A convenient and widely chosen (as a result of judgement) model for

the distribution of diis p(dij�; e) = �di(1� �)1�di. Let D = fdi; i = 1; :::; ng denote
the whole data set and r = r(D) =

P
i di the count of defaults. Then the joint

distribution of the data is

p(Dj�; e) =
Q
�di(1� �)1�di (2.1)

= �r(1� �)n�r

As a function of � for given data D, this is the likelihood function L(�jD; e): Since
this distribution depends on the data D only through r (n is regarded as �xed),

the su¢ ciency principle implies that we can concentrate attention on the
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distribution of r

p(rj�; e) =
�
n
r

�
�r(1� �)n�r (2.2)

The role of expert judgement is not usually explicitly indicated at this stage, so it

is worthwhile to point to its contribution. First, what should be the statistical

model? The independent Bernoulli model is not the only possibility. Certainly

independence is a strong assumption and would have to be considered carefully.

Note that independence here is conditional independence. The marginal (with

respect to �; see below) distribution of D certainly exhibits dependence. It is

through this dependence that the data are informative on the default probability.

Second, are the observations identically distributed? Perhaps the default

probabilities di¤er across assets, and the most risky generally default �rst. Third,

what exactly constitutes a default? Fourth, what assets can reasonably be

modelled as belonging to the homogeneous group? Risk modelers are acutely

aware of these issues and modelers can expect to have to justify their

speci�cations to validators. The whole process is subject to supervisory review.

See OCC (2006).

Regarded as a function of � for given data, 2.2 is the likelihood function L(�jr; e):
Since r(D) is a su¢ cient statistic, no other function of the data is informative

about � given r(D). All of the relevant data information on � comes through the

distribution p(rj�; e). Formally, the observed information (the negative second
derivative of the logarithm of the joint data density with respect to the

parameter) is

�d2 ln p(Dj�; e)=d�2 = �d2 ln p(rj�; e)=d�2 (2.3)

= (r=�2 + (n� r)=(1� �)2): (2.4)

The strict implication is that no amount of data-massaging or data-processing can

improve the data evidence on �. Figures 1 and 2 graph the normed likelihood

functions L(�jr; e) = L(�jr; e)=max� L(�jr; e) for r = 0; 1; 2; 5; and n =100 and 500.
These �gures illustrate the sorts of observed likelihood functions one might see in

practice.
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Figure 1: Likelihood Functions, n=100. Functions move to the right with

increasing r.

Figure 2: Likelihood Functions, n=500. Functions move to the right with

increasing r.

Figures 1 and 2 illustrate that small changes in the realized number of defaults

can have a substantial e¤ect on the maximum likelihood estimator (MLE). Thus,

for n=100, an increase by 1 in the number of defaults increases the MLE by .01.

If the probability being estimated is large (e.g., 0.3), then a di¤erence in the

estimate of 0.01 is not, perhaps, as dramatic as when the realistic values are 0.01
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or 0.02. Further, these small estimates are sharply determined, according to the

shape of the likelihood functions.

A di¤erent point of view can be illustrated by the expected likelihood function for

a given hypothetical value of �: Figures 3 and 4 plot
P

j L(�jrj; e)p(rjj�0; e) for
�0 =0.005, 0.01, 0.02, and 0.05 and n=100,500. This function is rather more

spread than the likelihood on given data (note that L(�jr; e) is concave in r for
values near the most likely value n�). Perhaps these �gures are better than the

previous for considering what the data might be able to tell us, though that is still

problematic since these are plots for given hypothetical values of �. A better plot

for considering what the data might say would take into account not only that r is

uncertain but also that � is uncertain.

Figure 3: Expected Likelihood, n=100. Functions move to the right with

increasing �0:
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Figure 4: Expected Likelihood, n=500. Functions move to the right with

increasing �0:

3 Uncertainty and probability

The statistical model above is a framework for organizing and quantifying

uncertainty about defaults. That is, in a group of n asset/years, we can identify

particular events, such as A ="observation 1, and only observation 1, defaults,"

B = "observation 2, and only observation 2, defaults," C = "observation 1

defaults," D ="observation 2 defaults," etc. These events are uncertain events

and we need a system by which to measure the uncertainty and to combine the

uncertainties consistently. It is standard in the application to defaults to use a

probabilistic model. We choose a standard by which to measure the uncertainty;

for example we might reason that the chance that observation one defaults is about

the same as the chance of drawing a red ball at random from an urn containing n�

red balls and n total red and black balls. The associated probabilities given a

value of � are P (Aj�; e) = �(1� �)n�1; P (Bj�; e) = �(1� �)n�1; P (Cj�; e) = �;and
P (Dj�; e) = �: The probabilities are useful for thinking about uncertainty because
of the way they combine. Aggregating uncertainties by combining probabilities is

the key to moving from uncertainty about whether an asset will default, to default

rates in a segment of homogeneous assets, to defaults in the whole diversi�ed

portfolio, and to the probability that the bank itself will default. Thus the

probability that one or the other of the mutually exclusive events A and B occurs

is P (A or Bj�; e) = P (Aj�; e) + P (Bj�; e): This formula is the key to the
�
n
r

�
factor
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in p(rj�; e); we are summing over all the ways r defaults can occur in n
observations. It is called the addition rule for probabilities. The probability that

two events occur is P (C and Dj�; e) = P (CjD; �; e)P (Dj�; e): This formula holds
whether or not C and D are independent. It is the multiplication rule. These two

rules, together with a third, convexity; which is 0� P (AjB; �; e) � 1 and
P (AjA; �; e) = 1, are sometimes stated as axioms underlying a system of

probabilities. It seems compelling that beliefs about uncertain events, here

con�gurations of defaults, should combine in accordance with these axioms, and

hence the proper description of uncertainty is through probabilities. This

description comes to hand naturally when we model physical phenomena. Indeed,

this method of describing uncertainty is enforced by the choice of a probability

model for defaults.

There is much literature on this topic. See Jaynes (2003) and for a classic

reference Lindley (1953). The next logical step is to extend the reasoning about

uncertain defaults to reasoning about uncertain default probabilities.

4 Expert opinion

It is absolutely clear that there is some information available about � in addition

to the data information. For example, we expect that the portfolio in question is

a low-default portfolio. Where does this expectation come from? We would be

surprised if � for such a portfolio turned out to be, say, 0.2. Further, there is a

presumption that no portfolio has default probability 0. Can this information be

organized and incorporated in the analysis in a sensible way? Yes. This involves

quanti�cation of the information or, alternatively, quanti�cation of the uncertainty

about �.

Quanti�cation of uncertainty requires comparison with a standard, just as

quanti�cation of a physical property such as length or weight involves comparison

with a standard such as a meter or a kilogram. One standard for measuring

uncertainty is comparison with a simple experiment, such as drawing balls from an

urn at random as above, or sequences of coin �ips. We might begin by de�ning

events for consideration. Examples of events are A = "� � 0:005";
"B = "� � 0:01"; C = "� � 0:015; "etc. Assign probabilities by comparison; for
example, A is about as likely as seeing three heads in 50 throws of a fair coin.

Sometimes it is easier to assign probabilities by considering the relative likelihoods
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of events and their complements. Thus, either A or "not A" must occur.

Suppose A is considered twice as likely as "not A:" Then the probability of A is

2=3, since we have �xed the ratio and the probabilities must add up to one. Some

prefer to recast this assessment in terms of betting. Thus, the payout x is received

if A occurs, (1-x) if not. Again, the events are exhaustive and mutually exclusive.

Adjust x until you are indi¤erent between betting on A and "not A." Then, it is

reasonable to assume for small bets that xP (A) = (1� x)(1� P (A)) or
P (A) = (1� x). These possibilities and others are discussed in Berger (1980). It
is clear that assessing probabilities requires some thought and some practice, but

also that it can be done. It can be shown that beliefs that satisfy certain

consistency requirements, for example that the believer is unwilling to make

sure-loss bets, lead to measures of uncertainty that combine according to the laws

of probability: convexity, additivity and multiplication. See for example DeGroot

(1970).1

The essence of the discussion is that there is only one satisfactory way of

representing uncertainty about �, just as there is one compelling way to model

uncertainty about defaults �namely, through a probability distribution, p(�je): As
a practical matter, it is unlikely that p(�je); especially if a parametric form is

chosen, will be an exact and accurate description of beliefs. Indeed, it is not clear

that beliefs can be assessed in this level of detail, i.e., for each of the in�nite set of

possible events. This should not dissuade us from pursuing the analysis, however.

After all, essentially the same set of objections can be raised at the level of the

likelihood �is it an accurate description of the data-generating process, given �?

Are the events truly independent? Are the observations truly trials of the same

experiment? No, but we use judgement to conclude that our statistical model

captures the essential features of the problem, and that the remaining inaccuracies

are minor. There is often, in scienti�c research, vigorous argument about the

validity of the model, but there is also widespread use of statistical models that

are obviously wrong but still accurate enough to be useful. The same care should

be used in the assessment of the distribution p(�je). Features that really matter
should be assessed more carefully than features that do not. As in application of

1There is a technical issue that arises in reasoning about � that did not arise in reasoning about
the defaults, and that is due to the continuity of �. Essentially, there are an in�nity of possible
events and an assumption is needed to avoid paradoxes of in�nity. The necessary assumption is
some variation of the sure thing principle: if fDkg is a set of mutually exclusive subsets of B, andS
k

Dk = B and if P (AjDk) = p, for all k, then P (AjB) = p:
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the likelihood, judgement is required.

We next turn away from theory to the practical matter of specifying a functional

form for the prior distribution p(�je): The conditioning argument e will be
temporarily dropped as we consider properties of potential functional forms for

representing uncertainty. A particularly easy speci�cation is the uniform p(�) = 1

for � 2 [0; 1]. This prior would sometimes be regarded as "uninformative," (with
the implied additional property "unobjectionable") since it assigns equal

probability to equal length subsets of [0,1]. The mean of this distribution is 1/2;

other moments also exist, and in that sense it is indeed informative (a prior

expectation of default probability 1/2 might easily not be considered suitable for

low-default portfolios). A distribution in common use for a parameter that is

constrained to lie in [0,1] is the beta distribution. The beta distribution for the

random variable � 2 [0; 1] with parameters (�; �) is

p(�j�; �) = �(�+ �)

�(�)�(�)
���1(1� �)��1 (4.1)

A couple of examples of this distribution are graphed in �gure 5 ({�; �g = f2; 50g
and f3:2g, along with the uniform distribution.{�; �g = f1; 1g).

Figure 5: Examples of two-parameter Beta Distributions. The highest has

f�; �g = f2; 50g; the uniform is f1; 1g:

The �rst speci�cation, which has essentially all of its mass below 0.15, a mean of

0.038, and a mode at 0.021, might have the shape most suitable as a prior for the
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default probability on a low-default portfolio. At present, the purpose here is

simply to indicate the sorts of distributions available in this parametric family.

A particularly easy generalization is to specify the support � 2 [a; b] � [0; 1]: It is
possible that some applications would require the support of �. to consist of the

union of disjoint subsets of [0; 1]; but this seems fanciful in the current application.

A simple starting point is the uniform p(�je) = 1=(b� a). This prior would again
sometimes be regarded as "uninformative," since it assigns equal probability to

equal length subsets of [a; b]. The mean of this distribution is (a+ b)=2. We may

think that this speci�cation is too restrictive, in that consideration might require

that intervals near the most likely value should be more probable than intervals

near the endpoints. A somewhat richer speci�cation is the beta distribution 4.1

modi�ed to have support [a; b]. Let t have the beta distribution and upon change

variables to �(t) = a+ (b� a)t with inverse function t(�) = (� � a)=(b� a) and
Jacobian dt(�)=d� = 1=(b� a). Then

p(�j�; �; a; b) = �(�+ �)

(b� a)�(�)�(�)((a� �)=(a� b))
��1((� � b)=(a� b))��1 (4.2)

over the range � 2 [a; b]: This distribution has mean E� = (b� + a�)=(�+ �);
allowing substantially more �exibility than the uniform. A couple of examples of

this distribution on the range [.003,0.2] are graphed in �gure 6 (for f�; �g = f2; 5g
and f3:2g, along with the uniform distribution f�; �g = f1; 1g).

Figure 6: Examples of 4-parameter Beta Distributions. The leftmost peak has

f�; �g = f2; 5g; the uniform is f1; 1g:
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The four-parameter Beta distribution allows �exibility within the range [a,b], but

in some situations it may be too restrictive. For example, it is unimodal. This is

unlikely to be a problem for representing the prior uncertainty of an individual

expert, but it may not be �exible enough to allow combination of information

from many experts. A simple generalization is the seven-parameter mixture of

two four-parameter Betas with common support. The additional parameters are

the two new {�; �g parameters and the mixing parameter �.

p(�j�1; �1; �2; �2; a; b) =
��(�1 + �1)

(b� a)�(�1)�(�1)
((a� �)=(a� b))�1�1((� � b)=(a� b))�1�1

+
(1� �)�(�2 + �2)
(b� a)�(�2)�(�2)

((a� �)=(a� b))�2�1((� � b)=(a� b))�2�1

Computations with this mixture distribution are not substantially more

complicated than computations with the four-parameter Beta alone. If necessary,

more mixture components with new parameters can be added, although it seems

unlikely that expert information would be detailed and speci�c enough to require

this complicated a representation. There is theory on the approximation of

general prior distributions by mixtures of conjugate distributions. By choosing

enough Beta-mixture terms the approximation of an arbitrary continuous prior

p(�je) for a Bernoulli parameter can be made arbitrarily accurate. See Diaconis
and Ylvisaker (1985). Useful references on the choice of prior distribution are Box

and Tiao (1992) and Jaynes (2003).

5 Updating (learning)

With p(�je) describing expert opinion and the statistical model for the data
information p(rj�; e) at hand, we are in a position to combine the expert
information with the data information to calculate p(�jr; e), the posterior
distribution describing the uncertainty about � after observation of r defaults in n

trials. The rules for combining probabilities imply

P (AjB)P (B) = P (A and B) = P (BjA)P (A), or more usefully
P (BjA) = P (AjB)P (B)=P (A), assuming P (A) > 0. Applying this rule gives
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Bayes�rule for updating beliefs

p(�jr; e) = p(rj�; e)p(�je)=p(rje) (5.1)

The potentially mysterious part of this formula is p(rje), the unconditional
distribution of the number of defaults, which is

p(rje) =
Z
p(rj�; e)p(�je)d�: (5.2)

p(rje) is also called the predictive distribution of the statistic r. For our
two-parameter Beta family 4.1, an exact functional form can be calculated. It is

p(rje) = (�(r + �)�(n� r + �)�(�+ �)�(n+ 1)
�(r + 1)�(n� r + 1)�(�)�(�)�(n+ �+ �) (5.3)

For the special case of the uniform prior with � = � = 1; this takes the simple

form p(rje) = 1=(n+ 1): For the four-parameter Beta family 4.2 and the Beta
mixture family, the predictive distributions are not so simple but it are easily

calculated. Figure 7 shows the predictive distribution corresponding to the

Beta[2,50] prior shown in Figure 5 and for a sample size of 100.

Figure 7: Predictive Distribution p(rje) for Beta[2,50] Prior

For the purpose of predicting the number of defaults in a portfolio of a given size,

the predictive distribution 5.3 is relevant. For inference about the default

probability �, for example for input into the Basel capital formula, the posterior

distribution 5.1 is relevant.
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Further discussion of the beta-binomial analysis sketched here and of applications

to other models is given by Rai¤a and Schlaifer (1961). On the Bayesian approach

to econometrics see Zellner (1996), a reprint of the in�uential 1971 edition.

6 Prior Distribution

I have asked an expert to specify a portfolio and give me some aspects of his

beliefs about the unknown default probability. The portfolio consists of loans to

highly-rated, large, internationally active and complex banks. The method

included a speci�cation of the problem and some speci�c questions over E-mail

followed by a discussion. Elicitation of prior distributions is an area that has

attracted attention. General discussions of the elicitation of prior distributions

are given by Kadane, Dickey, Winkler, Smith, and Peters (1980) and Kadane and

Wolfson (1998). An example assessing a prior for a Bernoulli parameter is

Chaloner and Duncan (1983). Chaloner and Duncan follow Kadane et al in

suggesting that assessments be done not directly on the probabilities concerning

the parameters, but on the predictive distribution. That is, questions should be

asked about observables, to bring the expert�s thoughts closer to familiar ground.

Thus, in the case of defaults, a lack of prior knowledge might indicate that the

predictive probability of the number of defaults in a sample of size n would be

1/(n+1). Departures from this predictive distribution indicate prior knowledge.

In the case of a Bernoulli parameter and a two-parameter beta prior, Chaloner

and Duncan suggest �rst eliciting the mode of the predictive distribution for a

given n (an integer), then assessing the relative probability of the adjacent values.

Graphical feedback is provided for re�nement of the speci�cation. Examples

consider n=20; perhaps the method would be less attractive for the large sample

sizes and low probabilities we anticipate. The suggestion to interrogate experts on

what they would expect to see in data, rather than what they would expect of

parameter values, is appealing and I have to some extent pursued this with our

expert.

It is necessary to specify a period over which to de�ne the default probability.

The "true" default probability has probably changed over time. Recent

experience may be thought to be more relevant than the distant past, although

the sample period should be representative of experience through a cycle. It could

be argued that a recent period including the 2001-2002 period of mild downturn
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covers a modern cycle. A period that included the 1980�s would yield higher

default probabilities, but these are probably not currently relevant. The default

probability of interest is the current and immediate future value, not a guess at

what past estimates might be. There are probably 50 or fewer banks in this

highly rated category, and a sample period over the last seven years or so might

include 300 observations as a high value. We did the elicitation and the

calculations to follow assuming a sample of 300 asset/years. For our application,

we also considered a "small" sample of 100 observations and a "large" sample of

500 observations, replicating the examples considered above. Considering �rst the

predictive distribution on 300 observations, the modal value was zero defaults.

Upon being asked to consider the relative probabilities of zero or one default,

conditional on one or fewer defaults occurring, the expert expressed some

trepidation as it is di¢ cult to think about such rare events. The expert was quite

happy in thinking about probabilities over probabilities, however. This may not

be so uncommon in this technical area, as practitioners are accustomed to working

with probabilities. The minimum value for the default probability was 0.0001

(one basis point). The expert reported that a value above 0.035 would occur with

probability less than 10%, and an absolute upper bound was 0.05. The median

value was 0.0033. The expert remarked that the mean at 0.005 was larger than

the median. Quartiles were assessed by asking the expert to consider the value at

which larger or smaller values would be equiprobable given that the value was less

than the median, then given that the value was more than the median. The

former seemed easier to think about and was 0.00225 ("between 20 and 25 basis

points"). The latter, the .75 quartile, was assessed at .025

This set of answers is more than enough information to determine a

four-parameter Beta distribution. I used a method of moments to �t parametric

probability statements to the expert assessments. The moments I used were

squared di¤erences relative to the target values, for example

((a� 0:0001)=0:0001)2. The support points were quite well-determined for a
range of f�; �gpairs at the assessed values fa; bg = [0:0001; 0:05]: These were
allowed to vary but the optimization routine did not change them beyond the 7th

decimal place. The rather high (?) value of b re�ects the long tail apparently

desired by the expert. The f�; �g parameters were rather less well-determined
(the sum of squares function was fairly �at) and I settled on the values (1.9, 21.0)

as best describing the expert�s information. The resulting prior distribution p(�je)
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is graphed in Figure 8.

Figure 8: Distribution Re�ecting Expert Information

The median of this distribution is 0.0036, the mean is 0.0042. In practice, after the

information is aggregated into an estimated probability distribution, then

additional properties of the distribution would be calculated and the expert would

be consulted again to see if any changes were in order before proceeding to data

analysis Lindley (1982). This process would be repeated as necessary. In the

present application there was one round of feedback, valuable since the expert had

time to consider the probabilities involved. The characteristics reported are from

the second round of elicitation. Further rounds were omitted for two reasons.

First, we are doing a hypothetical example here, to illustrate the feasibility of all

steps of the analysis. Thus the prior should be realistic and should genuinely

re�ect expert information, but it need not be as painstakingly assessed and re�ned

as in an application. Second, I did not want to annoy the expert beyond the

threshold of participation.

The predictive distribution 5.3 corresponding to this prior is given in Figure 9.

16



Figure 9: Predictive Distribution p(rj�; e)

With our speci�cation, the expected value of r; E(rje) =
nP
k=0

kp(kje) is 0.424 for
n=100, 1.27 for n=300 and 2.12 for n=500. Defaults are expected to be rare

events.

It is interesting to compute the unconditional expected likelihood

EL(�je) =
X
j

L(�jrjje)p(rjje)

for comparison with �gures 3 and 4. This is given in �gure 10 for n = {100, 300,

500}.
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Figure 10: Expected Likelihoods. The highest function is for n=100, the lowest for

n=500.

7 Posterior Analysis

The posterior distribution, p(�jr; e), is graphed in �gure 11 for r = 0, 1, 2 and 5
and n=100; in �gure 12 for r = 0, 1, 3 and 10 and n=300, and in �gure 13 for r =

0, 2, 10 and 20 and n=500. The corresponding likelihood functions, for

comparison, were given in �gures 1 and 2. Note the substantial di¤erences in

location, even in the n=500, "large-sample" case. Comparison with the prior

distribution graphed in Figure 8 reveals that the expert provides much more

information to the analysis than do the data.

Figure 11: Posterior Distributions p(�jr; e) for n=100. Functions move to the
right as r increases.
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Figure 12: Posterior Distributions p(�jr; e) for n=300. Functions move to the
right as r increases.

Figure 13: Posterior Distributions p(�jr; e) for n=500. Functions move to the
right as r increases.

Given the distribution p(�jr; e), we might ask for a summary statistic, a suitable
estimator for plugging into the required capital formulas as envisioned by the

Basel Committee on Banking Supervision (2004). A natural value to use is the

posterior expectation, � = E(�jr; e): The expectation is an optimal estimator
under quadratic loss and is asymptotically an optimal estimator under a wide

variety of loss functions. An alternative, by analogy with the maximum likelihood
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estimator b�, is the posterior mode �
�. As a summary measure of our con�dence we

would use the posterior standard deviation �� =
q
E(� � �)2: By comparison, the

usual approximation to the standard deviation of the maximum likelihood

estimator is �b� =
qb�(1� b�)=n: These quantities are given in Table 1 for a variety

of combinations of n and r.

n r �
�
� b� �� �b�

100 0 0.0036 0.0018 0.000 0.0024 0 (!).

100 1 0.0052 0.0036 0.010 0.0028 0.0100

100 2 0.0067 0.0053 0.020 0.0031 0.0140

100 5 0.0109 0.0099 0.050 0.0037 0.0218

300 0 0.0027 0.0014 0.000 0.0018 0(!)

300 1 0.0039 0.0027 0.003 0.0022 0.0033

300 3 0.0064 0.0053 0.010 0.0027 0.0057

300 10 0.0137 0.0131 0.033 0.0035 0.0103

500 0 0.0021 0.0011 0.000 0.0015 0 (!)

500 2 0.0041 0.0032 0.004 0.0020 0.0028

500 10 0.0115 0.0108 0.020 0.0031 0.0063

500 20 0.0190 0.0185 0.040 0.0034 0.0088
Table 1: Default Probabilities: Location and Precision

Note: � is the posterior mean,
�
� the mode, b� the MLE, �� the posterior s.d. and

�b� the s.d. of the MLE
Which procedure gives the most useful results for the hypothetical datasets? The

maximum-likelihood estimator b� is very sensitive to small changes in the data.
One might imagine that updating would be done periodically, leading to

occasional substantial jumps in the estimator. Is this reasonable? For n=100,

the MLE ranges from 0.00-0.05 as the number of defaults ranges from 0 to 5 (the

last value is incredibly unlikely). The posterior mean ranges in the same case

from 0.0036 to 0.011, and the posterior mode lies on a similar range slightly left

shifted. Which are more reasonable estimates of the true underlying default

probabilities? Further, note that the usual estimator for the standard deviation of

the maximum-likelihood estimator gives 0 when no defaults are observed. This is

surely unacceptable. The major di¤erences between the posterior statistics (� and
�
�) and b� occur at extremely unusual samples, for example the �ve-default sample
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in the 100-observation case. But what would be the modeler�s reaction to such a

sample? Would it be that the default probability for this portfolio, thought to be

an extremely safe portfolio, is indeed 0.05? Or, would the reaction be that there

is something unusual happening, signaling a need for further investigation.

Perhaps it is just a very unusual sample (in which case the estimate b� is very
unusual and it might be better to stick with � as an indication of the actual

default probability). Or perhaps some assets have been misclassi�ed or there are

other errors in the data. Or, perhaps, economic conditions have become so dire

that a portfolio with a 5% default is a low-default portfolio. If so, surely some

other hints that things are not going well would be available.

8 Information

In many applications, including the present application to default probabilities,

the approaches via posterior distribution statistics and maximum likelihood agree

for "large" samples. The logic of the argument is that the likelihood function

depends on the sample size n, and thus information in the sample is increasing

with n. On the other hand, the information in the prior is �xed and not

increasing with the sample size. Thus, for large enough samples, the prior can be

ignored, since the inference based on the posterior distribution will approach the

inference based on the likelihood as the likelihood information dominates the prior

information. Formally, the information in the likelihood is O(n), while the prior

information is O(1). Now, information is not easily measured, but one widely

accepted local measure of information is the curvature of the logarithm of the

likelihood or prior around the maximum. This is measured by the negative second

derivative, as 2.3 for the likelihood function and (�� 1)=(t� a)2 + (� � 1)=(b� t)2

for the prior. Evaluated at the MLE b� with in addition the expectation taken
over r with respect to the prior p(�je), these numbers are 42206, 126619, and
211032 for n= 100, 300 and 500. Note that this is not the Fisher Information,

since the expectation is taken with respect to the prior, rather than for the true

but unknown distribution or more commonly, relying on the continuous mapping

theorem, for the distribution corresponding to b� (which is r/n, and therefore
disturbingly self referential). The negative second derivative of the log of prior

distribution evaluated at the prior mode is 203689. Thus the prior information is

quantitatively substantially more important than the sample information for the
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n=100 and 300 cases, and just as important at the large sample value of 500. This

is an unlikely sample size for our conjectural portfolio of loans to highly rated large

banks. It would take vastly more data before the likelihood dominated the prior.

There are a number of other measures of the information in a random variable or

the relative information between a pair of random variables (or distributions).

These lead to di¤erent numerical particulars but the same message: the

importance of the prior information in any practical analysis simply cannot be

ignored.

9 Continuing Issues

The approach suggested here raises a number of issuers worthy of further

treatment or comment.

9.1 Assessment and combination of expert information

There is a large literature on probability assessment. Much of this focusses on

experts who are not necessarily familiar with formal probability concepts. The

situation is somewhat simpler here, as the experts are used to dealing with

probabilities and thinking about the ways probabilities combine (but not

necessarily with assessing uncertainty about parameters in probabilistic terms).

Thinking about small probabilities is notoriously di¢ cult; Kahneman and Tversky

(1974) began a large literature. What are the easiest probability questions to

assess when constructing a prior distribution? What are the most informative

questions, in terms of tying down prior parameters tightly? How should

information be fed back to the expert for revision? How should information from

several experts be combined? This is addressed by Garthwaite, Kadane, and

O�Hagan (2005), Lindley, Tversky, and Brown (1979) and many others. Here there

are essentially two reasonable possibilities. Answers to the same question from

di¤erent experts can simply be entered into the GMM calculation as separate

equations. Alternatively, they could be averaged as repeated measurements on

the same equation (the di¤erence here is only one of weighting). Or, the prior

speci�cation could be done for each expert m, and the results combined in a

mixture, p(�je1; :::; em) =
P

m �mp(�jem); where �m is the nonnegative weight
assigned to the mth expert and

P
m �m = 1: This procedure should be combined
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with feedback to the experts and subsequent revision.

9.2 Robustness

The issue of robustness of the inference about the default probability arises at the

validation stage. Modelers can expect to have to review their prior assessment

mechanisms with validators and to provide justi�cation for the methods used.

This is no di¤erent from the requirements for any other method of estimation of

the default probability (and other required parameters). Prudent modelers will

report not only the posterior distribution of � as well as its mean � but summary

statistics and any interesting or unusual features of the dataset. "Surprises" in

the data will have to be explained. This is not speci�c to the Bayesian approach,

but applicable to any method used. Bayesian robustness issues, and procedures

for assessing robustness of results, are described by Berger and Berliner (1986).

Some experimentation shows that inferences are not particularly sensitive to

speci�cation of the parameters a and b, as long as r=n is in the interval [a; b];as

expected. Thus, primary attention should be paid to the determination of � and

�: Robustness is closely related to issues of supervision, as supervisors will review

both the modeling e¤orts and the validation procedures of institutions.

9.3 Relation to Bernoulli Mixture Models

Giesecke and Weber (2004) provide a model leading to a mixture model for

defaults quite similar in mathematical form to our model. The models are

conceptually quite di¤erent, as the prior distribution for � in our model re�ects

the state of information about the default probabilities, while in mixture models

the distribution represents a physical mechanism. In Giesecke and Weber (2004)

that mechanism includes a random element in �, generated by interactions in the

economy, as well as systematic variation generated by a regressor �a "risk driver"

in Baselspeak (see Basel Committee on Banking Supervision (2005)). Adding risk

drivers to our formulation is a matter for future development. Here we focus on

conceptual issues in the simplest and most widely speci�ed model.
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9.4 Supervision

Subjectivity enters every statistical analysis. For many problems, data

information is substantial and the subjective elements are perhaps less important.

In the present setting subjectivity enters explicitly in the speci�cation of p(�jr; e).
Subjectivity also enters in speci�cation of p(Dj�; e), but we are used to that and
the explicit dependence on judgement is usually dropped. Similarly, subjectivity

enters in the classi�cation of assets into "homogeneous" groups and many other

places in settings involving supervision. Supervisors generally insist that the

decisions made at the modeling level be logically based and validated. Thus,

supervisors are willing to accept subjective decisions, as long as they are well

grounded. It is a small additional step to add subjective information about

plausible parameter values. There should be evidence that due consideration was

given to speci�cation of p(�jr; e) (as well as the current requirement that p(Dj�; e)
be justi�ed). As in the case of validation, examples can be provided and standards

set, while still relying on banks to perform their own analyses and validation.

Newsletter No. 6 was written by the Basel Committee Accord Implementation

Group�s Validation Subgroup in response to banking industry questions and

concerns regarding portfolios with limited loss data. Problem portfolios are those

for which a "calculation based on historic losses ... would not be su¢ ciently

reliable to form the basis of a probability of default estimate...."(p.1) The

newsletter notes that problem portfolios are also those which "may not have

incurred recent losses, but historical experience or other analysis might suggest

that there is a greater likelihood of losses than is captured in recent data."(p.1).

The implication is that the actual probability of default is greater than the

measured default rate. This case clearly points to disagreement between data

information and a prior, where the prior is explicitly based on other data

("historical experience," not in the current sample) or expert opinion ("other

analysis"). The newsletter does not suggest impossible mechanical solutions and

instead sticks to sensible recommendations like getting more data. A section

heading in the newsletter reads as follows: "A relative lack of loss data can at

times be compensated for by other methods for assessing risk parameters." This is

precisely what I am proposing. In reference to the Basel II document itself (Basel

Committee on Banking Supervision (2004)), the newsletter quotes paragraph 449:

"Estimates must be based on historical experience and empirical evidence, and not
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based purely on subjective or judgmental considerations." This seems to allow

both data and nondata information, but not exclusively the latter, and thus to

hold open the possibility of combining data evidence with nondata evidence in the

formal system of conditional probability. Paragraph 448 notes that "estimates of

PD, LGD and EAD must incorporate all relevant, material and available data,

information, and methods." This seems to make a distinction between data and

other sources of information, which is consistent with our analysis.

One danger is that an institution could claim about a bizarre assessment that it is

the prior assessment of an expert who predicts no defaults. And indeed, it might

be true. There are a lot of experts. Thus some standards will be necessary, not

just showing that the prior uncertainly was rigorously assessed, but that it meets

some general standards of reliability. If asset groups were standardized across

banks, then an agency could provide standardized descriptions of expert opinion.

Supervisors do not currently seem to think such standardization appropriate or

desirable. Could the agencies nevertheless provide some guidance? I think this

would be feasible. Newsletter 6 states (p.4), "Supervisors expect to continue to

share their experience in implementing the Framework in the case of LDPs in

order to promote consistency." Could this mean that supervisors will share expert

information to be incorporated into each bank�s analysis? Clearly, the role of the

supervisor, used to dealing with less formal subjectivity, will have to be de�ned

when it comes to formal (probabilistically described) subjective information.

10 Conclusion

I have considered inference about the default probability for a low-default

portfolio on the basis of data information and expert judgement. Examples

consider sample sizes of 100, 300, and 500 for hypothetical portfolios of loans to

very safe, highly-rated large banks. The sample sizes of 100 and 300 are perhaps

most realistic in this setting. I have also represented the judgement of an expert

in the form of a probability distribution, for combination with the likelihood

function. This prior distribution seems to re�ect expert opinion fairly well.

Errors, which would be corrected through feedback and respeci�cation in practice,

are likely to introduce more certainty into the distribution rather than less. There

are no real data here; the portfolios are hypothetical. Nevertheless, it is possible

to study the posterior distributions for all of the most likely con�gurations of
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defaults in the samples. In each case, the modal number of defaults is small. In

the sample of 500, two defaults are expected. I have reported results for zero

defaults through a number of defaults above any reasonable likelihood. In all of

these, the sample information contributes rather little relative to the expert

information. Although real data are not included, bounds for the likely value for

the default probability (the most likely value and the expected value) are fairly

tight within the relevant range of data possibilities. Thus, the data variability

which is reasonably expected, and indeed data variability which is highly unlikely,

will not a¤ect sensible inference about the default probability beyond the second

decimal place. These results raise issues about how banks should treat estimated

default probabilities and how supervisors should evaluate both procedures and

outcomes for particular portfolios.
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