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Abstract

We propose a new asymptotic approximation for the sampling behavior of nonparametric
estimates of the spectral density of a covariance stationary time series. According to the standard
approach, the truncation lag grows slower than the sample size. We derive �rst order limiting
distributions under the alternative assumption that the truncation lag is a �xed proportion of
the sample size. Our results extend the approach of Neave (1970) who derived a formula for the
asymptotic variance of spectral density estimators under the same truncation lag assumption.
We show that the limiting distribution of zero frequency spectral density estimators depends
on how the data is demeaned. The implications of our zero frequency results are qualitatively
similar to exact results for bias and variance computed by Ng and Perron (1996). Finite sample
simulations indicate that new asymptotics provides a better approximation than the standard
asymptotics when the bandwidth is not small.
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1 Introduction

Spectral density estimation is an important and well established area of time series analysis. Much

of the original work done on this topic was published in seminal papers going back over 50 years.

Priestley (1981) provides an excellent review and discussion. This paper adds to the now very large

literature on nonparametric spectral density by extending ideas �rst proposed by Neave (1970).

A well-known class of nonparametric spectral density estimators takes the form of weighted sums

of sample autocovariances. Asymptotic theory for these estimators has been developed under the

assumption that a truncation lag parameter, M (sometimes called a bandwidth) increases at a rate

slower than the sample size, T . Asymptotic normality of nonparametric spectral density estimators

has been established under this assumption (see Grenander and Rosenblatt (1953)). In practice,

a speci�c truncation lag must be chosen and the value of b = M=T is positive. Although this

asymptotic theory requires that b go to zero as T increases, in practice b is greater than zero and

can be nontrivially di¤erent from zero. Therefore, the traditional asymptotic theory can be labeled

as �small-b��asymptotics. Neave (1970) argued that a more accurate asymptotic variance formula

could be developed by treating b as a �xed constant as T increases, thus mimicking the fact that

b is not zero in small samples. Neave (1970) derived asymptotic variance formulas based on this

��xed-b�assumption.

In this paper we adopt the assumption that b is a �xed constant as T increases. We generalize

the results of Neave (1970) and derive asymptotic distributions of nonparametric spectral density

estimators. The distributions we obtain are nonstandard but can be expressed as functionals

of standard Wiener processes. One interesting result we �nd is that asymptotic distributions of

zero-frequency spectral density estimators depend on whether the data has been demeaned or

detrended. This contrasts with the standard asymptotics where demeaning or detrending has no

e¤ect on the �rst order asymptotics at frequency zero. Our zero frequency results are qualitatively

similar to exact results for bias and variance computed by Ng and Perron (1996). Because the

�xed-b asymptotic approximation captures much of the bias in zero frequency estimators when b

is not close to zero, it is a particularly useful result for serial correlation robust tests that use zero

frequency spectral density estimators as standard errors. Capturing the bias reduces the tendency

of serial correlation robust tests to over-reject when serial correlation in the errors is strong; see

Kiefer and Vogelsang (2005).

The paper is organized as follows. In the next section the model is given and estimators are

de�ned. Section 3 reviews well known asymptotic results under the standard small-b approach.

Section 4 presents the new �xed-b asymptotic results. This section contains the theoretical contri-

butions of the paper. Inference regarding the spectral density is brie�y discussed in Section 5, and

Section 6 presents a selection of Monte Carlo simulations that compare the accuracy of the small-b
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and the �xed-b asymptotics. All proofs are given in the appendix.

2 The Model and Estimators

Consider the time series

yt = dt + ut; t = 1; 2; :::; T (1)

where ut is a mean-zero covariance stationary time series with autocovariance function

j = cov(ut; ut�j).

The component dt represents the deterministic part of yt. Leading cases include dt = 0 (a mean-

zero time series), dt = � (a time series with mean �) and dt = �+ �t (a trending time series). Let

! 2 [0; �] denote frequencies and de�ne the spectral density of ut as

f(!) =
1

2�

240 + 2 1X
j=1

j cos(!j)

35 :
It is assumed that 0 < f(!) <1.

A well known class of estimators of f(!) is the nonparametric class which takes the form

bf(!) = 1

2�

24b0 + 2 T�1X
j=1

k(
j

M
)bj cos(!j)

35 ; (2)

where

bj = T�1
TX

t=j+1

butbut�j ;
but = yt � bdt;

and bdt is an estimate of dt. Estimators of the form given by (2) were �rst proposed (in a slightly

more general form) in the time series literature by Grenander and Rosenblatt (1953). The function

k(x) is a weighting function, or kernel, that typically downweights high lag sample autocovariances.

k(x) is an even function with k(0) = 1 and k(x) declines to zero as x ! 1. Well known kernels
have been proposed by Bartlett (1950), Daniell (1946), Parzen (1961) and Tukey (1949), among

many others. See Priestley (1981) for a general discussion. The truncation lag, M , controls the

amount of downweighting that is applied to the high order sample autocovariances. Consistency ofbf(!) requires that M !1 and M=T ! 0 as T !1.
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3 Asymptotic Normality

It has been shown that, under suitable regularity conditions, bf(!) has an asymptotically normal
distribution. Su¢ cient regularity conditions for obtaining such a result are that dt is a linear

polynomial in t, ut =
P1
j=0  j"t�j where "t is an i:i:d: process with E("t) = 0, E["2t ] < 1,

E["4t ] <1 and
P1
j=0 j j j <1 (see Anderson (1971)). Under these conditions it follows thatr

T

M

� bf(!)� f(!)�!d N(0; V (!));

where

V (!) =

�
2f2(!)

R1
�1 k2(x)dx for ! = 0; �

f2(!)
R1
�1 k2(x)dx for 0 < ! < �

:

Note that this asymptotic approximation can be rewritten as

bf(!)
f(!)

� N

�
1;
M

T
2

Z 1

�1
k2(x)dx

�
for ! = 0; �; (3)

bf(!)
f(!)

� N

�
1;
M

T

Z 1

�1
k2(x)dx

�
for ! 6= 0:

4 Fixed-b Asymptotic Approximation

In this section an alternative asymptotic approximation for the sampling behavior of bf(!) is de-
veloped. The approach taken here is in the spirit of Neave (1970) who argued that while the

assumption that b = M=T ! 0 is convenient mathematically and ensures consistency of bf(!), a
more accurate approximation for the sampling variance of bf(!) can be obtained under the assump-
tion that M = bT where b 2 (0; 1]: Under this alternative assumption for M , Neave (1970) proved
that

lim
T!1

T

M
var( bf(!)) = ( 2f2(!)

R 1=b
�1=b k

2(x) (1� b jxj) dx for ! = 0; �

f2(!)
R 1=b
�1=b k

2(x) (1� b jxj) dx for 0 < ! < �
;

and these expressions become the standard formulae when b = 0. It is important to note that this

result by Neave (1970) does not apply to demeaned or detrended data when ! = 0. Part of Neave�s

proof follows a proof by Parzen (1957) and there appears to be a mistake (or typo) on page 340 of

Parzen (1957) that does not a¤ect Parzen�s proof but a¤ects Neave�s proof. Speci�cally, to show

that demeaning or detrending have no asymptotic e¤ects on bf(0), Parzen (1957) requires a term
involving the scaled integral of the kernel, k(x), to be o(1). See the third equation on page 340 of

Parzen (1957). Parzen argues that this term is bounded from above by a constant times T�" where

" > 0 is a �xed constant. The mistake/typo is that the bound should be proportional to (T=M)�"

not T�". Obviously, under the standard small-b asymptotics, T=M !1 as T !1 in which case

(T=M)�" = o(1) and Parzen�s proof goes through as argued. The problem for Neave�s proof is the
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claim on page 72 of Neave (1970) that formulas given by his equation (2.5) follow from arguments

in Parzen (1957) and do not depend on the condition that M=T ! 0. This claim is true for ! 6= 0,
whereas for ! = 0 it is only true if the data is know to be mean zero (dt = 0). It does not hold for

! = 0 if the data is demeaned or detrended.

The appeal of Neave�s approach is that it provides an approximation that re�ects the fact that

M=T > 0 in �nite samples. The limitation of Neave�s result is that it only provides a formula for

the variance and it does not address bias of bf(!) or indeed the distribution of bf(!). Building on
the approach of Kiefer and Vogelsang (2005) who focused only on the case of ! = 0 for demeaned

data, it is possible to extend Neave�s result to the entire distribution of bf(!).
A �rst order asymptotic distribution theory for bf(!) can be developed under fairly general

regularity conditions. De�ne the partial sum processes

Sct (!) =
tX
j=1

cos(!j)uj ; Sst (!) =
tX
j=1

sin(!j)uj :

The key requirement for our results is that the following functional central limit theorems hold for

these partial sums:

T�1=2Sc[rT ](0) = T�1=2
[rT ]X
t=1

ut )
p
2�f(0)W (r); (4)

T�1=2Sc[rT ](�) = T�1=2
[rT ]X
t=1

(�1)tut )
p
2�f(�)W �(r); (5)

T�1=2Sc[rT ](!))
p
�f(!)W1(r); ! 6= 0; �; (6)

T�1=2Ss[rT ](!))
p
�f(!)W2(r); ! 6= 0; �; (7)

whereW (r);W �(r);W1(r) andW2(r) are standard independent Wiener processes, [rT ] is the integer

part of rT with r 2 (0; 1]. Note that it trivially follows that T�1=2Ss[rT ](0) = T�1=2Ss[rT ](�) = 0

because sin(0) = sin(�t) = 0. Su¢ cient conditions under which (4) - (7) hold is that ut is a

stationary Gaussian process with lim!!0 f(a!)=f(!) = 1 for any a > 0, see Theorem 3.2 of Chan

and Terrin (1995). It would also be straightforward to show that (5) - (7) follow from (4). A

well known su¢ cient condition for (4) is ut =
P1
j=0  j"t�j with E("t) = 0, E["2t ] < 1 andP1

j=0 j j j j < 1. These regularity conditions are similar to, but are di¤erent from, the regularity
conditions used in the standard approach. We do not require a �nite fourth moment for "t; but we

need the slightly stronger condition of one-summability of the  j coe¢ cients.

The asymptotic distribution of bf(0) depends on bdt. We consider three cases for dt and bdt. Case
(i): dt = 0; bdt = 0: Case (ii): dt = �; bdt = y = T�1

PT
t=1 yt: Case (iii): dt = �+�t; bdt = b�+ b�t whereb� and b� are the least squares estimates from a regression of yt on (1; t). The limiting distribution
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of bf(0) can be expressed in terms of demeaned and detrended W (r) which we denote by cW (r) and
is de�ned as follows. For case (i) cW (r) =W (r). For cases (ii) and (iii)

cW (r) =W (r)�
�Z r

0
g(s)ds

��Z 1

0
g(s)g(s)0ds

��1 Z 1

0
g(s)dW (s);

where g(s) = 1 for case (ii) and g(s) = [1; s]0 for case (iii). Note that cW (1) = 0 for cases (ii) and
(iii).

De�ne

k0�(1) = lim
h!0

[(k(1)� k(1� h)) =h] ;

i.e. k0�(1) is the derivative of k(x) from the left at x = 1. The following theorem provides the main

results of the paper. The proof is given in the appendix.

Theorem 1 Let yt be given by (1) where ut is a mean zero stationary process that satis�es (4) -

(7) and suppose that 0 < f(!) <1: Let M = bT with b 2 (0; 1]. The following hold as T !1 :

1. If k00(x) exists and is continuous, then for ! 6= 0; �:

bf(!)
f(!)

) 1

2

2X
i=1

�
� 1
b2

Z 1

0

Z 1

0
k00
�
r � s
b

�
Wi(r)Wi(s)drds

�

+
1

2

2X
i=1

�
2

b
Wi(1)

Z 1

0
k0
�
1� r
b

�
Wi(r)dr +Wi(1)

2

�
;

for ! = �:

bf(�)
f(�)

) � 1
b2

Z 1

0

Z 1

0
k00
�
r � s
b

�
W �(r)W �(s)drds+

2

b
W �(1)

Z 1

0
k0
�
1� r
b

�
W �(r)dr+W �(1)2;

for ! = 0:

bf(0)
f(0)

) � 1
b2

Z 1

0

Z 1

0
k00
�
r � s
b

�cW (r)cW (s)drds+ 2
b
cW (1)Z 1

0
k0
�
1� r
b

�cW (r)dr +cW (1)2:
2. If k(x) is continuous, k(x) = 0 for jxj � 1; and k(x) is twice continuously di¤erentiable

everywhere except for possibly jxj = 1, then for ! 6= 0; �:

bf(!)
f(!)

) 1

2

2X
i=1

"
� 1
b2

ZZ
jr�sj�b

k00
�
r � s
b

�
Wi(r)Wi(s)drds+

2

b
k0�(1)

Z 1�b

0
Wi(r)Wi(r + b)dr

#

+
1

2

2X
i=1

�
2

b
Wi(1)

Z 1

1�b
k0
�
1� r
b

�
Wi(r)dr +Wi(1)

2

�
;
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for ! = �:

bf(�)
f(�)

) � 1
b2

ZZ
jr�sj�b

k00
�
r � s
b

�
W �(r)W �(s)drds+

2

b
k0�(1)

Z 1�b

0
W �(r)W �(r + b)dr

+
2

b
W �(1)

Z 1

1�b
k0
�
1� r
b

�
W �(r)dr +W �(1)2;

and for ! = 0:

bf(0)
f(0)

) � 1
b2

ZZ
jr�sj�b

k00
�
r � s
b

�cW (r)cW (s)drds+ 2
b
k0�(1)

Z 1�b

0

cW (r)cW (r + b)dr
+
2

b
cW (1)Z 1

1�b
k0
�
1� r
b

�cW (r)dr +cW (1)2:
3. If k(x) = 1� jxj for jxj � 1 and k(x) = 0 otherwise, i.e. k(x) is the Bartlett kernel, then for

! 6= 0:

bf(!)
f(!)

) 1

2

2X
i=1

�
2

b

Z 1

0
Wi(r)

2dr � 2
b

Z 1�b

0
Wi(r)Wi(r + b)dr �

2

b
Wi(1)

Z 1

1�b
Wi(r)dr +Wi(1)

2

�
;

for ! = �:

bf(�)
f(�)

) 2

b

Z 1

0
W �(r)2dr � 2

b

Z 1�b

0
W �(r)W �(r + b)dr � 2

b
W �(1)

Z 1

1�b
W �(r)dr +W �(1)2;

and for ! = 0:

bf(0)
f(0)

) 2

b

Z 1

0

cW (r)2dr � 2
b

Z 1�b

0

cW (r)cW (r + b)dr � 2
b
cW (1)Z 1

1�b
cW (r)dr +cW (1)2:

The theorem shows that limiting distribution of bf(!) is proportional to f(!) under the assump-
tion that M = bT . Similar to the standard asymptotics, di¤erent limits are obtained for ! = 0

compared to ! 6= 0. Unlike in the standard approach, the limits in the ! = 0 case depend on the
estimated deterministic trend, bdt.

The limiting distribution theory for ! = 0 was used by Kiefer and Vogelsang (2005) for demeaned

data and by Bunzel and Vogelsang (2005) for detrended data to obtain a more accurate asymptotic

theory for tests that use bf(0) when constructing standard errors. When bf(0) is used to estimate
an asymptotic variance, consistency of bf(0) is usually the approximation used when determining
how the sampling behavior of bf(0) a¤ects the ultimate test. Thus, bf(0) is approximated by f(0).
Because bf(0) can exhibit severe downward bias, using the random variables in Theorem 1 to

approximate bf(0) yields a more accurate asymptotic approximation since some of the bias and
sampling variability in bf(0) is captured by the �xed-b asymptotics. A formal result along these
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lines has been established by Phillips, Sun and Jin (2005)a for the case where dt = 1 and ut is

Gaussian.

A recent paper by Phillips, Sun and Jin (2005)b develops an asymptotic theory analogous to

the results in Theorem 1 for the case of exponentiated kernels. Speci�cally, Phillips et al. (2005)b

consider estimators of f(!) where in (2) k( jM ) is replaced with k(
j
T )
 where  is a positive real

number. Increasing  places less weight on higher-order sample autocovariances in much the same

way as does smaller values of M . Holding  �xed as T increases leads to an asymptotic theory that

is analogous to �xed-b asymptotics. In addition to providing �xed- asymptotic results, Phillips et

al. (2005)b also derive a more traditional asymptotic normal approximation under the assumption

that  increases with T but at a slower rate.

5 Finite Sample Comparison of the Normal and Fixed-b Asymptotic Approximations

One standard metric by which to judge an asymptotic approximation is how well the asymptotic

distribution approximates the sampling distribution of the statistic. Suppose for a given sample of

size T; a particular value of M is used to construct bf(!). The question is then which asymptotic
approximation, the normal approximation based on standard small-b asymptotics or the new �xed-b

asymptotics, is more accurate.

We performed a simple Monte Carlo simulation study to compare the accuracy of the two

asymptotic approximations. The data is assumed to have unknown mean so that the data is

demeaned before estimating f(!) (this is case (ii) from above). We consider the data generating

process

yt = �+ ut; (8)

ut = �ut�1 + �t + ��t�1;

�t � iid N(0; 1);

where u0 = �0 = 0: The spectral density for yt is given by

f(!) =
1

2�

�
1 + 2� cos(!) + �2

�
(1� 2� cos(!) + �2) :

Data was generated according to (8) and bf(!) was computed using (2). Using R = 5; 000 replica-
tions we computed the empirical cumulative distribution function, bProb(x) of bf(!)=f((!) using

bProb(x) = 1

R

RX
i=1

1

 bfi(!)
f(!)

< x

!
;

where bf1(!); bf2(!); :::; bfR(!) are the simulated realizations from bf(!) and 1(�) is the indicator
function. We obtained results for large range of values for M , !, �, � and a group of well known
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kernels that includes the Bartlett, Parzen, Daniell and quadratic spectral (QS) kernels. We report

results for AR(1) errors with � = 0:0; 0:4;�0:4; for the frequencies ! = 0:0; 0:5�; and b = M=T =

0:04; 0:2; 0:5. Plots of the empirical CDFs for T = 50; 100; 200 are given in Figures 1.1-4.18.

The �gures are organized �rst by kernel: Bartlett (Figures 1.1-1.18), Parzen (Figures 2.1-2.18),

Daniell (Figures 3.1-3.18), QS (Figures 4.1-4.18) and then by frequency: ! = 0 (Figures x.1-x.9)

and ! = 0:5� and (Figures x.10-x.18). Each �gure also provides plots of the CDFs given by

the normal asymptotic approximation from (3) and by the �xed-b approximation from Theorem

1. The CDFs of the asymptotic random variables in Theorem 1 were accurately estimated using

simulation methods. The standard Brownian motions were approximated by scaled partial sums

of i:i:d: standard normal random variables using 1,000 increments and 50,000 replications.

Figures x.1-x.3 provide results for i:i:d: errors at frequency zero. When a small bandwidth

is used (b = 0:04) as in Figures x.1, we see that the �nite sample empirical CDFs are similar

for all three sample sizes and are close to the �xed-b asymptotic CDF. The asymptotic normal

CDF, on the other hand, is obviously di¤erent between the 0.1 and 0.9 percentiles. In situations

where larger bandwidths are used as in Figures x.2 (b = 0:2) and x.3 (b = 0:5), the �xed-b

asymptotic CDF remains very close to the empirical CDFs whereas the asymptotic normal CDF

systematically becomes a less accurate approximation. When the data has serial correlation as

is the case in Figures x.4-x.6 (� = �0:4) and Figures x.7-x.9 (� = 0:4), the �xed-b asymptotic

approximation remains accurate when b = 0:2; 0:5 whereas the asymptotic normal approximation

exhibits substantial inaccuracy. When b = 0:04, neither asymptotic approximation is accurate

when T = 50. But, the �xed-b asymptotic approximation improves as T increases whereas the

asymptotic normal approximation remains less accurate. It is interesting to note that for b = 0:2; 0:5

the CDF for the asymptotic normal approximation is strictly positive at the origin. Thus, the

asymptotic normal approximation attributes negative values to bf(!)=f((!) with positive probability
even though bf(!)=f((!) is positive by construction for the four kernels considered here. This

problem does not arise with the �xed-b approximation.

Now consider the frequency ! = 0:5�. As Figures x.10-x.18 illustrate, the di¤erences between

the normal and �xed-b approximations are smaller than when ! = 0 although the patterns are

similar. When b = 0:04, the CDFs of the two asymptotic approximations are very close to each

other and they are reasonably close to the empirical CDFs when T = 100; 200. When T = 50 and

� 6= 0, neither asymptotic approximation is adequate. When b = 0:2; 0:5, the �xed-b asymptotic

approximation is good for all three sample sizes and all three values of � whereas the asymptotic

normal approximation is much less accurate.

The overall picture that emerges from the �gures is that the �xed-b approximation can be

systematically better than the asymptotic normal approximation regardless of the kernel being

used. The next section provides some calculations that can shed some light on patterns exhibited
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in the simulations.

6 Asymptotic Bias and Variance

Many of the patterns seen in the simulations can be intuitively explained by examining the asymp-

totic bias and variances implied by �xed-b asymptotics in comparison to the asymptotic normal

approximation. We continue to focus on the case where the data is demeaned and the for the sake of

concreteness we isolate attention on the Bartlett kernel. In a recent paper, Hashimzade, Kiefer and

Vogelsang (2003) formally calculated the following results under �xed-b asymptotics. For ! 6= 0; �

lim
T!1

bias

" bf(!)
f(!)

#
= 0;

lim
T!1

var

" bf(!)
f(!)

#
= b

Z 1=b

�1=b
(1� bjxj) k2(x) dx = b

Z 1

�1
(1� bjxj)(1� jxj)2 dx

= 2b

�
1

3
� 1

12
b

�
;

Note that this variance formula exactly matches the formula obtained by Neave (1970). For ! = 0,

the formulas are given by

lim
T!1

bias

" bf(!)
f(!)

#
= �b+ 1

3
b2

lim
T!1

var

" bf(!)
f(!)

#
=
4

3
b� 7

3
b2 +

14

15
b3 +

2

9
b4 � 1

15b2
(2b� 1)51 (b > 1

2
):

This variance formula di¤ers from 4b
�
1
3 �

1
12b
�
; the formula given by Neave (1970), because Neave�s

zero frequency variance formula is only valid when the data has mean zero and the data is not

demeaned. Neave�s variance formula and the �xed-b variance are the same at frequency zero when

the data is mean zero and is not demeaned.

It is instructive to compare these bias and variance formulas with the well known standard

formulas for the Bartlett kernel which are given by

lim
T!1

bias

" bf(!)
f(!)

#
= 0;

lim
T!1

var

" bf(!)
f(!)

#
=
2

3
b;
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for ! 6= 0; � and

lim
T!1

bias

" bf(!)
f(!)

#
= 0

lim
T!1

var

" bf(!)
f(!)

#
=
4

3
b;

for ! = 0. In both sets of formulas, the bias and variance are given by polynomials in b and

they have the same leading terms. The di¤erence is that �xed-b asymptotics contains higher order

terms in b. When b is small, we would expect the higher order terms to be relatively small and

this suggests the normal and �xed-b approximations will be similar at least with respect to bias

and variance. In light of this observation, it not surprising that the CDFs of the two asymptotic

approximations are very close to each other in the �gures when b = 0:04. When b is not close to

zero, the higher order terms in the �xed-b bias and variances will matter and we would expect the

approximations to be di¤erent. This is exactly what we see in the �gures when b = 0:2; 0:5.

While the above bias and variance formulas help explain the di¤erences between the accuracy

of the normal asymptotic approximation and the �xed-b asymptotic approximation, they do not

explain the relative accuracy of the �xed-b asymptotic approximation across di¤erent value of b and

T . To provide an explanation, it is useful to examine the well-known spectral bias formulas derived

by Parzen (1957). For the Bartlett and Daniell kernels the Parzen bias is given by �f (1)(!)=M
and �f (2)(!)�2=(6M2) respectively where

f (k)(!) =
1

2�

24 1X
j=�1

jjjk j cos(!j)

35 :
Because under both the normal asymptotic approximation and the �xed-b asymptotic approxi-

mation, M ! 1 as T ! 1, the Parzen bias is o(1) and does not appear in the asymptotic
approximations (at least to �rst order). The behavior of the Parzen bias term can explain why the

�xed-b approximation improves as b increases when the data is not i:i:d: especially when T = 50.

Given T , as b increases, M increases thus reducing the Parzen bias and improving the approxima-

tion. This is why in Figures 6, 9, 15 and 18 (b = 0:5) we see that the T = 50 CDF and the �xed-b

CDF are close whereas in Figures 4, 7, 13 and 16 (b = 0:04) the T = 50 CDF and the �xed-b CDF

are not close. The Parzen bias also explains why, for a given value of b, the �xed-b approximation

improves as T increases. With b �xed, as T increases, so does M and the Parzen bias shrinks.
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7 Appendix: Proofs

De�ne the following partial sums:

bSct (!) = tX
j=1

buj cos(!j);
bSst (!) = tX

j=1

buj sin(!j):
Note that bSst (0) = bSst (�) = 0 (9)

because sin(0) = sin(�j) = 0: Consider the case where bdt = b� + b�t. Then, from simple algebra it

follows that but = ut � (b�� �)� (b� � �)t. Because T 1=2(b�� �) = Op(1) and T 3=2(b� � �) = Op(1),

it is easy to show that for ! 6= 0; �,

T�1=2
[rT ]X
t=1

h
(b�� �)� (b� � �)ti cos(!t) = op(1);

T�1=2
[rT ]X
t=1

h
(b�� �)� (b� � �)ti sin(!t) = op(1);

and

T�1=2
[rT ]X
t=1

h
(b�� �)� (b� � �)ti (�1)t = op(1):

Therefore, it directly follows from (5) - (7) that

T�1=2 bSc[rT ] (�))p
2�f(�)W �(r); (10)

T�1=2 bSc[rT ] (!))p
�f(!)W1(r); for ! 6= 0; �; (11)

T�1=2 bSs[rT ] (!))p
�f(!)W2(r); for ! 6= 0; �: (12)

Obviously, the limits (10), (11) and (12) continue to hold when bdt = y or when bdt = 0. The

remaining case is bSct (0) =Pt
j=1 buj , and this partial sum has a di¤erent type of limit because

T�1=2
[rT ]X
t=1

h
(b�� �)� (b� � �)ti = Op(1):

11



Simple algebra gives

T�1=2 bSc[rT ] (0) = T�1=2
[rT ]X
t=1

bu[rT ] = T�1=2
[rT ]X
t=1

h
ut � (b�� �)� (b� � �)ti

= T�1=2
[rT ]X
t=1

ut �
[rT ]

T
T 1=2(b�� �)� T 3=2(b� � �) 1

T 2

[rT ]X
t=1

t

)
p
2�f(0)cW (r): (13)

Note that the limiting result (13) is a standard result that follows from (4) and simpli�es in obvious

ways when bdt = y or when bdt = 0.
Proof of Theorem 1. De�ne the following functions:

Kij = k

�
i� j
bT

�
= k�

�
i� j
T

�
;

�2Kij = (Kij �Ki;j+1)� (Ki+1;j �Ki+1;j+1) :

Simple algebra gives

bf(!) = 1

2�

24b0 + 2 T�1X
j=1

k

�
j

bT

�bj cos(!j)
35

=
1

2�
T�1

TX
i=1

TX
j=1

buibujk� i� j
bT

�
cos [!(i� j)]

=
1

2�
T�1

TX
i=1

TX
j=1

bui cos(!i)Kijbuj cos(!j)+ (14)

+
1

2�
T�1

TX
i=1

TX
j=1

bui sin(!i)Kijbuj sin(!j)
Rewrite the �rst term in (14) as the following:

1

2�
T�1

TX
i=1

TX
j=1

bui cos(!i)Kijbuj cos(!j) = 1

2�
T�1

TX
i=1

bui cos(!i) TX
j=1

Kijbuj cos(!j)
=
1

2�
T�1

TX
i=1

aibi;

where

ai = bui cos(!i), bi =

TX
j=1

Kijbuj cos(!j):
12



Using the identity
TX
i=1

aibi =
T�1X
i=1

24(bi � bi+1) iX
j=1

aj

35+ bT TX
j=1

aj ; (15)

we obtain, for ai and bi de�ned above,

TX
i=1

aibi =

T�1X
i=1

0@ TX
j=1

(Kij �Ki+1;j) buj cos(!j)bSci (!)
1A+ TX

j=1

KTjbuj cos(!j)bScT (!) : (16)

By applying the identity (15) one more time, we obtain for the �rst term in (16)

TX
j=1

(Kij �Ki+1;j) buj cos(!j) = T�1X
j=1

[(Kij �Ki+1;j)� (Ki;j+1 �Ki+1;j+1)] bScj (!) + (KiT �Ki+1;T ) bScT (!)
=

T�1X
j=1

�2Kij
bScj (!) + (KiT �Ki+1;T ) bScT (!) :

Similarly, for the second term in (16) we obtain

TX
j=1

KTjbuj cos(!j) = T�1X
j=1

(KTj �KT;j+1) bScj (!) +KTT
bScT (!) :

Finally, noting that Kij = Kji and KTT = k(0) = 1, we obtain the following expression for the �rst

term in (14):

1

2�
T�1

T�1X
i=1

T�1
T�1X
j=1

T�1=2 bSci (!)T 2�2KijT
�1=2 bScj (!)

+ 2
1

2�
T�1

TX
j=1

T�1=2 bScj (!)T (KjT �Kj+1;T )T
�1=2 bScT (!) + 1

2�

�
T�1=2 bScT (!)�2 :

(17)

De�ne

D�
T (r) = T 2

��
k�
�
[rT ] + 1

T

�
� k�

�
[rT ]

T

��
�
�
k�
�
[rT ]

T

�
� k�

�
[rT ]� 1

T

���
Notice that T 2�2Kij = �D�

T

�
i�j
T

�
. If k00(x) exists and is continuous, then

lim
T!1

D�
T (r) = k�00(r) (18)

by de�nition of the second derivative. Also, in that case

lim
T!1

T (Kj+1;T �KjT ) = lim
T!1

k�
�
[rT ]+1
T

�
� k�

�
[rT ]
T

�
T�1

= k�0(r): (19)

13



For ! 6= 0 the limit of (17) follows from (11) (for ! 6= �), (10) (for ! = �), (18), (19) and the

continuous mapping theorem. For ! = 0, (17) simpli�es using the fact that bScT (0) = 0 and the

limit follows from (13). The second term in (14) is identical to (17), with bSci (!) replaced by bSsi (!)
and for ! 6= 0; � the limit follow using analogous arguments. For ! = 0; � the second term vanishes

because of (9). This completes the proof of part 1 of the theorem.

If k(x) is not everywhere twice continuously di¤erentiable, we cannot apply (18) and (19)

directly. The leading cases are kernels that truncate. Suppose k(x) is continuous, k(x) = 0 for

jxj � 1, and k(x) is twice continuously di¤erentiable everywhere except for possibly jxj = 1. We

can rewrite the sums in (17) to separate the kink points. For the �rst term in (17) we have:

T�1
T�1X
i=1

T�1X
j=1

bSci (!)�2Kij
bScj (!) = T�1

X
ji�jj<bT

� � �+ T�1
X

i�j=bT
� � �

+ T�1
X

i�j=�bT
� � �+ T�1

X
ji�jj>bT

� � � (20)

By the assumptions listed above, k(x) is continuous and twice continuously di¤erentiable in the

range of the �rst sum and is zero in the range of the last sum. Hence, the limit of the �rst term

follows from the arguments used in the proof of part 1 and the last term vanishes. For the second

term we have

T�1
X

i�j=bT
� � � = T�1

T�bTX
j=1

bScj (!) [(Kj+bT;j �Kj+bT;j+1)� (Kj+bT+1;j �Kj+bT+1;j+1)] bScj+bT (!)
= T�1

T�bTX
j=1

bScj (!) ��k (1)� k�1� 1

bT

��
�
�
k

�
1 +

1

bT

�
� k (1)

�� bScj+bT (!)
=
1

bT

T�bTX
j=1

T�1=2 bScj (!) k (1)� k �1� 1
bT

�
1
bT

T�1=2 bScj+bT (!) :
By de�nition of the derivative from the left it follows that,

lim
T!1

k (1)� k
�
1� 1

bT

�
1
bT

= k0�(1): (21)

Similar manipulation with the third term in (20) yields

T�1
X

i�j=�bT
� � � = � 1

bT

T�bTX
j=1

T�1=2 bScj (!) k ��1 + 1
bT

�
� k (�1)

1
bT

T�1=2 bScj+bT (!) :
By de�nition of the derivative from the right, it follows that

lim
T!1

k
�
�1 + 1

bT

�
� k (�1)

1
bT

= k0+(�1):
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By symmetry of k(x) around x = 0, k0+(�1) = �k0�(1). Hence, second and third terms in (20) are
equal and can be combined into one. Now consider the second term in (17):

T�1
TX
j=1

bScj (!) (KjT �Kj+1;T ) bScT (!) = T�1
T�bT�1X
j=1

� � �+ T�1
T�1X

j=T�bT
� � � (22)

The �rst term in (22) vanishes because for 1 � j � T � bT � 1, j�TbT < �1 and j+1�T
bT � �1, and

therefore KjT = Kj+1;T = 0. The second term in (22) can be expressed as

T�1
T�1X

j=T�bT
� � � = T�1

T�1X
j=T�bT

bScj (!) (KjT �Kj+1;T ) bScT (!) =
= � 1

bT

T�1X
j=T�bT

T�1=2 bScj (!) k
�
j+1�T
bT

�
� k

�
j�T
bT

�
1
bT

T�1=2 bScT (!) :
By de�nition of the �rst derivative,

lim
T!1

k
�
j+1�T
bT

�
� k (j � T )
1
bT

= k0
�
r � 1
b

�
= �k0

�
1� r
b

�
(23)

where the last equality follows from the symmetry of k(x). Collecting all terms in (20) and (22)

into (17), adding corresponding terms with bSsj (!) in place of bScj (!), and using (21) and (23) along
with (10), (11), (12), (13) and (9) (as needed depending on !) establishes part 2 of the theorem.

To prove part 3 of Theorem 1 we use the de�nition of Bartlett kernel:

Kij = k

�
i� j
bT

�
=

�
1� ji�jj

bT ; ji� jj � bT
0; ji� jj > bT

Then it follows that

Kij �Ki;j+1 =

8>><>>:
0; i � j � bT
1
bT ; j + 1� bT � i � j
� 1
bT ; j + 1 � i � j + bT

0; i � j + bT + 1

Ki+1;j �Ki+1;j+1 =

8>><>>:
0; i � j � bT � 1
1
bT ; j � bT � i � j � 1
� 1
bT ; j � i � j � 1 + bT

0; i � j + bT

and

�2Kij =

8<:
2
bT ; j = i
� 1
bT ; i = j � bT

0 otherwise

15



Hence, for the �rst term in (17) we obtain

T�1
T�1X
i=1

T�1X
j=1

bSci (!)�2Kij
bScj (!) = 2

bT

T�1X
i=1

�
T�1=2 bSci (!)�2 � 1

bT

T�[bT ]�1X
j=1

T�1=2 bScj+[bT ] (!)T�1=2 bScj (!)
� 1

bT

T�[bT ]�1X
i=1

T�1=2 bSci (!)T�1=2 bSci+[bT ] (!)
=
2

bT

T�1X
i=1

�
T�1=2 bSci (!)�2 � 2

bT

T�[bT ]�1X
i=1

T�1=2 bSci (!)T�1=2 bSci+[bT ] (!) :
Similarly, in the second term of (17) we have

KT;j �KT;j+1 =

�
0; 1 � j � T � bT � 1
� 1
bT ; T � bT � j � T � 1

(given that j takes values from 1 to T � 1). Hence, (17) can be expressed as

1

2�

2

bT

T�1X
i=1

�
T�1=2 bSci (!)�2 � 1

2�
T�1

2

bT

T�[bT ]�1X
i=1

T�1=2 bSci (!)T�1=2 bSci+[bT ] (!)
� 2 1

2�
T�1

T�1X
j=T�[bT ]

T�1=2 bScj (!)T�1=2 bScT (!) + 1

2�

�
T�1=2 bScT�2 :

An analogous expression holds with bSsj (!) in place of bScj (!) and the limit follows using (10), (11),
(12), (13) and (9) (as needed depending on !). This completes the proof of part 3 of the theorem.
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