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Abstract

Capital gains play an essential role in the intertemporal allocation
of resources, but they can also fuel self-ful�lling bubbles. The simple
case of 2 "identical" capitals is analyzed in an OG model. The only
trajectory in which expectations are realized at every date is the one
in which blue machines and red machines have the same price. If ever
their prices di¤er, then there is a "bubble" which must burst in �nite
time.
Key Words: bubbles, capital gains, heterogeneous capital, irre-

versible investment, overlapping generations, Tobin�s q

1 Introduction

Capital gains (and losses) are essential to the workings of private-ownership

economies. Changes in asset prices signal anticipated changes in relative

scarcities. Capital gains can, however, fuel self-perpetuating bubbles, some

of which will eventually burst.

�Paper prepared for the Singapore Economic Review conference, August 4-6, 2005.
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For individuals (or corporations or universities), the capital gains on

(growth) stocks are no less income than the interest paid on bonds or the

dividends paid on (value) stocks. For individuals, the increase in wealth re-

sulting from realized or unrealized capital gains is saving just as are payroll

deductions deposited in a 401K retirement account.

The analysis of capital gains requires (1) more than one asset in a macro-

dynamic model and (2) careful attention to the workings of the asset market.

We take our cue from the old paper by Shell and Stiglitz (1967)1. In Shell

and Stiglitz, there are two capitals, perfect foresight, but savings behavior

is not based on individual utility maximization. In the present paper, we

analyze a two-capital production technology very much like that in Shell and

Stiglitz (1967). We replace the ad hoc consumption function of Shell-Stiglitz

with utility-maximizing individuals in the overlapping-generations model of

Diamond (1965) extended to allow for two capitals. We also assume that

capital, once installed, cannot be directly consumed.2 Therefore, investments

are irreversible allowing for the prices of used machines to fall below their

reproduction costs, i.e. for a Tobin�s q which is less than 1.

We will in a subsequent paper study the more general 2-capital technology

of Shell and Stiglitz, but here we focus on the very special (but revealing)

case in which the machines are perfect substitutes as factors of production

and have identical replacement costs if newly produced. Hence we refer to the

two capitals as, respectively, blue machines and red machines. However, we

allow used machinery to have market prices that depend on the machine color

(blue or red). Capitals are non-malleable: the color of a machine cannot be

altered. This assumption allows for the possibility of di¤erent prices between

blue and red machines. We adopt discrete time and assume that individuals

live for two periods.

If the prices of blue and red machines are always equal, the model re-

1Also see, e.g., Shell, Sidrauski, and Stiglitz (1969), Caton and Shell (1971), Burmeister,
Caton, Dobell, and Ross (1973), Shell (1972), and Burmeister and Graham (1974).

2See Magill and Quinzii (2003).
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duces in essence to the Diamond model adjusted to incorporate irreversible

investment:

� In the steady state there is a unique overall capital to labor ratio, which
is stable.

� If the overall capital to labor ratio is su¢ ciently high, then the price
of used machinery is below its reproduction cost and there is no new

investment. Otherwise the prices of used machines equal their repro-

duction costs. Once the economy enters the range in which investment

is positive, it does not return to the no-investment regime.

If, however, the price of blue machines is allowed to di¤er from that of

red machines, we have:

� The price of the lower-priced machine will become zero or negative in
�nite time, revealing that this path is not a long-run perfect foresight

competitive equilibrium trajectory.

� On the unique competitive equilibrium trajectory in which expectations
are always ful�lled, the price of red machines equals the price of blue

machines at every date.

2 The Model

In each period, there is a generation of identical, old consumers and a gen-

eration of identical, young consumers. Each young consumer inelastically

supplies one unit of labor. The old do not work. The labor force L grows at

the rate n � 0, so we have

Lt+1 = (1 + n)Lt; (1)
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where Lt is the number of consumers born in year t = 0; 1; ::: . Consumers

have identical utility functions

u(xyt ; x
o
t ) = log x

y
t + � log x

o
t ;

where xyt is consumption when young and x
o
t is consumption when old.

Production is given by the 1-sector, 3-output, 3-input model:

Ct + Z
1
t + Z

2
t = Yt = (K

1
t +K

2
t )
�L1��t , (2)

where � is a scalar between 0 and 1, K1
t > 0 and K

2
t > 0 are, respectively,

the quantities of blue machines and red machines, Yt > 0 is undi¤erentiated

output, Ct � 0 is consumption, Z1t � 0 and Z2t � 0 are respectively gross

investment in blue machines and red machines, all at time t: Investment is

irreversible and capital goods are non-malleable (i.e. blue machines cannot

be turned into red ones, nor vice versa) since Zit � 0. Let � > 0 be the rate
of depreciation on each type of machinery:

Ki
t+1 = (1� �)Ki

t + Z
i
t (3)

for i = 1; 2: Denote by lower case letters quantities normalized by L, e.g.,

kt = Kt=Lt, so we have

ct + z
1
t + z

2
t = yt = (k

1
t + k

2
t )
� (4)

and

(1 + n)kit+1 = (1� �)kit + zit (5)

for i = 1; 2: Under competition, factors are rewarded by their marginal

products, so we have

rit = �(k
1
t + k

2
t )
��1 > 0 (6)

for i = 1; 2; and

wt = (k
1
t + k

2
t )
� � �(k1t + k2t )� > 0; (7)
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where rit is the rental rate on type-i capital and wt is the wage rate. Of

course, blue machines and red machines yield the same marginal product,

r1t = r
2
t = �(k

1
t + k

2
t )
��1 = rt: (8)

We assume that individuals possess perfect foresight about price changes.

Hence equilibrium in the used machinery market requires that the rate of

return (including capital gains) on blue machines be equal to the rate of

return on red machines, or

(1� �)p1t+1 + r1t+1
p1t

=
(1� �)p2t+1 + r2t+1

p2t
= �t+1; (9)

where pi � 0 is the current price of machine i in terms of the consumption
good. The common rate of return is denoted by �: Equations 8 and 9 yield

(1� �)p1t+1 + rt+1
p1t

=
(1� �)p2t+1 + rt+1

p2t
: (10)

The consumer chooses (xyt ; x
o
t ) and savings st � 0 to maximize

u(xyt ; x
o
t ) = log x

y
t + � log x

o
t

subject to

xyt = wt � st

and

xot = �t+1st;

where 0 < � < 1 is the discount factor, "log" denotes the natural logarithm,

and st is savings. The consumer�s problem can be stated more succinctly:

max
st

log(wt � st) + � log(�t+1st); (11)

where 0 � st � wt. The solution to this problem is given by:

st =
�

1 + �
wt: (12)
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3 Competitive Equilibrium

Young consumers use their savings to buy capital that they will rent in period

t and sell in period t+1. In competitive equilibrium, the supply of machinery

must equal savings, or

(1 + n)(p1tk
1
t+1 + p

2
tk
2
t+1) =

�

1 + �
wt =

�

1 + �
(1� �) (k1t + k2t )�: (13)

Consumption per head is always positive, so we can normalize prices

by the price of current consumption. Under competition, �rms will only

produce goods with the highest market price. Hence we have

max(p1t ; p
2
t ) � 1:

If max(p1t ; p
2
t ) < 1, then z1t = z2t = 0: If max(p1t ; p

2
t ) = 1, then the ma-

chine with the lower price will not be produced. If p1t = p2t = 1, then the

composition of investment is indeterminate. De�ne z by

zt = z
1
t + z

2
t

and � by

�t = z
1
t =zt:

We have

�t

8>>>>>>>><>>>>>>>>:

= 1 if p1t > p
2
t and zt > 0

2 [0; 1] if p1t = p
2
t and zt > 0

= 0 if p1t < p
2
t and zt > 0

unde�ned if zt = 0

: (14)

De�nition 1 Given initial per capita capital stocks (k10; k
2
0), a long-run

perfect-foresight competitive equilibrium is given by the sequence of allocations�
k1t+1; k

2
t+1; st; x

y
t ; x

o
t

	1
t=0
and the sequence of non-negative prices fr1t ; r2t ; p1t ; p2tg1t=0

such that equations (7), (8) and (12), and the market-clearing conditions 10

and 13 are satis�ed.
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4 Steady State

Since r1 = r2 = r, we have from (10) that p1 = p2: Unless max(p1t ; p
2
t ) = 1;

(k1t + k
2
t ) must fall by (5). Hence we have

p1 = p2 = 1:

From (4) and (13), we derive the overall steady-state capital stock per head,

k1 + k2; and output per head, y, in the steady state:

k1 + k2 =

�
�

(1 + �)

(1� �)
(1 + n)

� 1
1��

(15)

y = (k1 + k2)�

We see that (k1 + k2) and y are uniquely determined and positive but that

k1 and k2 are indeterminate. Summarizing we have:

Proposition 1 In the steady state, the overall capital to labor ratio (k1+k2)
and output per worker y are uniquely determined, but � = k1=(k1 + k2) is

any number in [0; 1]:

5 Existence and uniqueness of the competi-
tive equilibrium trajectory

Given initial endowments, we will show that there is a competitive equilib-

rium path, which is unique in fct; yt; k1t + k2t ; p1t ; p2tg10 : First it is useful to
show that if gross investment is ever positive it will remain positive.

Proposition 2 If gross investment is strictly positive at time t; it will also
be strictly positive at time t+ 1

Proof. If zt > 0 then max (p1t ; p
2
t ) = 1: Without loss of generality assume

that p1t = 1: If p
2
t = 1 the proof is trivial so consider p

2
t < 1: Given this we
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have (1� �) k1t + p2t (1� �) k2t < �
1+�

(1� �) (k1t + k2t )
� and we want to show

that

p1t+1 (1� �) k1t+1 + p2t+1 (1� �) k2t+1 <
�

1 + �
(1� �)

�
k1t+1 + k

2
t+1

��
First note that the no-arbitrage condition 10 immediately implies that

since p1t > p
2
t we must have

p1t+1
p1t
>

p2t+1
p2t
; which implies that p1t+1 > p

2
t+1: So it

is enough to show that

(1� �) k1t+1 + p2t+1 (1� �) k2t+1 <
�

1 + �
(1� �)

�
k1t+1 + k

2
t+1

��
:

But if p1;t+1 = 1 we must have p2;t+1 < p2;t; so we only need to show that

(1� �) k1t+1 + p2t (1� �) k2t+1 <
�

1 + �
(1� �)

�
k1t+1 + k

2
t+1

��
:

Using k2t+1 =
(1��)
(1+n)

k2t we have

(1� �)
�
k1t+1 + p

2
t

(1� �)
(1 + n)

k2t

�
<

�

1 + �
(1� �)

�
k1t+1 +

(1� �)
(1 + n)

k2t

��
:

After some rearranging and using k1t+1+p
2
t (1� �) k2t = �

(1+�)
(1��)
(1+n)

(k1t + k
2
t )
�,

and p2t (1� �) k2t n
1+n

> 0 it is immediate that it is enough to show that

(1� �)
(1 + n)

�
k1t + k

2
t

��
<

�
�

(1 + �)

(1� �)
(1 + n)

�
k1t + k

2
t

��
+ (1� �)

�
1� p2t

�
k2t � n

(1� �)
(1 + n)

k2t

��
;

which is equivalent to�
1� �
1 + n

� 1
�

k1t+p
2
t (1� �) k2t+

�
1� �
1 + n

� 1
�

k2t <
�

(1 + �)

(1� �)
(1 + n)

�
k1t + k

2
t

��
+
1� �
1 + n

k2t ;

which is true because�
1� �
1 + n

� 1
�

k1t + p
2
t (1� �) k2t <

�

1 + �

1� �
1 + n

�
k1t + k

2
t

��
and �

1� �
1 + n

� 1
�

k2t <
1� �
1 + n

k2t :
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Proposition 3 The sequence of prices fp1t ; p2tg
1
t=0 such that p

1
t = p

2
t and the

market clearing condition (13) are satis�ed is compatible with a competitive

equilibrium.

Proof. Case 1. Suppose that

(1� �) k1t + (1� �) k2t <
�

1 + �
(1� �)

�
k1t + k

2
t

��
;

then new investment is positive and we have p1t = p2t = 1: The arbitrage

condition is automatically satis�ed and the dynamics reduce to the dynamics

of a standard Diamond model with�
k1t+1 + k

2
t+1

�
=

�

(1 + �)

(1� �)
(1 + n)

�
k1t + k

2
t

��
:

Case 2. Now suppose we have

(1� �) k1t + (1� �) k2t �
�

1 + �
(1� �)

�
k1t + k

2
t

��
:

In this case investment cannot be strictly positive and prices should adjust

so that

p1t (1� �) k1t + p2t (1� �) k2t =
�

1 + �
(1� �)

�
k1t + k

2
t

��
;

with p1t = p2t � 1. In period 1, we will have kit+1 =
(1��)
(1+n)

kit; i = 1; 2, and�
k1t+1 + k

2
t+1

��
=
�
1��
1+n

��
(k1t + k

2
t )
�
: So it is a matter of time for the inequal-

ity to �ip, and the economy moves to case 1, where it will stay by the previous

proposition.

Proposition 4 The equilibrium described in proposition 3 is unique.

Proof. We prove by contradiction. Without loss of generality assume

that p1t > p2t : The arbitrage condition tells us that (1� �)
p1t+1
p1t
+ rt+1

p1;t
=

(1� �) p
2
t+1

p2t
+ rt+1

p2t
: Since p1t > p

2
t we must have

p1t+1
p1t
>

p2t+1
p2t
: Since p1t > p

2
t ; we
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must have p1t+1 > p2t+1; and then p
1
t+2 > p2t+2; and so on. Therefore, if any

new investment is made, it will be in capital 1 (blue machines).

Case 1. Suppose that

p1t (1� �) k1t + p2t (1� �) k2t <
�

1 + �
(1� �)

�
k1t + k

2
t

��
:

This implies that there is new investment in capital 1, and hence:

p1tk
1
t+1 =

�

(1 + �)

(1� �)
(1 + n)

�
k1t + k

2
t

�� � p2t (1� �) k2t ;
k2t+1 =

(1� �)
(1 + n)

k2t ;

and

p1t = 1:

Case 2. Suppose we have

p1t (1� �) k1t + p2t (1� �) k2t =
�

1 + �
(1� �)

�
k1t + k

2
t

��
:

There is no new investment, p1t � 1 and kit+1 =
(1��)
(1+n)

kit; i = 1; 2. It is a

matter of time to move to Case 1, where the economy will stay. So we can

focus our attention in Case 1.

To rule out the possibility an equilibrium, we only need to show that

in �nite time p2 will become negative. Since p1t = 1 for all t, the arbitrage

condition tells us that p2t+1�p2t =
rt+1
1�� (p

2
t � 1) : Note that the right hand side

is negative and bounded away from zero. So in �nite time p2 will become

negative.
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6 Computed Examples - how long before the
bubble bursts?

Our numerical exercises are inspired in part by Atkinson (1969)3. The para-

meter values used in our computations are given in Table 1.

Table 1: Assumed Parameter Values

� � � n k10 . k20
0:4 0:6 0:55 0 1 5

In the 2-period-lifetime OG model we identify "youth" with the working

years and "old age" with the retirement years. Therefore, one period in the

OG model corresponds to roughly 20 years. So � = 0:6 corresponds to an

annual discount factor on the order of 97:5%, while � = 0:55 corresponds to

an annual depreciation rate of about 4%.

In Table 2 we display an e¢ cient, bubble-free growth path. The initial

overall capital to labor ratio, k10+k
2
0; is large, so the initial gross investments

are zero and initial prices are bellow unity: p10 = p
2
0 = 0:170639376. The total

value of capital converges to its equilibrium steady-state value:, k1 + k2 =

0:083234658. There are no bubbles: p1t = p
2
t for t = 0; 1; 2; : : :

In Figure 1, we present the evolution of (k1t + k
2
t ) : After 6 periods, or

about 120 years, the steady state is nearly achieved. In Figure 2, p1t = p2t

is plotted. In period zero, prices of used machines are less than 1 and only

in period 4 do they become 1. As we can see in Figure 3, there is no gross

investment as long as prices are smaller than 1. We plot the trajectories

of savings st (curve marked with squares) and gross investment zt (curve

marked circles). st declines with time, as total capital decreases. zt increases

sharply in periods 4 and 5 and and then quickly approaches its steady state

value.
3See especially pages 144-148.
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Table 2: Bubble-free growth path

t k1t + k
2
t p1t = p

2
t st zt

0 6 0:170639376 0:460726 0
1 2:7 0:275519122 0:334756 0
2 1:215 0:444860901 0:243228 0
3 0:54675 0:718284888 0:176725 0
4 0:246038 1:000 0:128405 0:017688
5 0:110717 1:000 0:093297 0:043474
6 0:093297 1:000 0:087122 0:045139
7 0:087122 1:000 0:084768 0:045563
8 0:084768 1:000 0:083845 0:045699
9 0:083845 1:000 0:083478 0:045748
10 0:083478 1:000 0:083332 0:045767
11 0:083332 1:000 0:083274 0:045774
12 0:083274 1:000 0:083250 0:045777
13 0:083250 1:000 0:083241 0:045778
14 0:083241 1:000 0:083237 0:045778
15 0:083237 1:000 0:083235 0:045779
16 0:083236 1:000 0:083235 0:045779
17 0:083235 1:000 0:083235 0:045779
18 0:083235 1:000 0:083235 0:045779

k1+k2

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: Evolution of the overall capital/labor ratio on the bubble-free

path
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p1 = p2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

Figure 2: Evolution of prices on the bubble-free path

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
saving (left axis) Gross Investment (right axis)

Figure 3: Evolution of savings and gross investment on the bubble-free path

For Table 3, we perturb the previous exercise. Instead of setting p10 = p
2
0,

we allow for p20 to be slightly larger than p
1
0. That is we introduce a positive

red-machine "bubble".

In Figure 4, the p1t path is marked by circles, and the p
2
t path is marked

by squares. Since p10 is smaller than p
2
0; the yield for the di¤erent machines

is di¤erent with
r

p10
>
r

p20
:
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Table 3: Red-machine bubble growth path

t k1t k2t p1t p2t st zt
0 1 5 0:170639000 0:170639451 0:460726 0
1 0:45 2:25 0:275517436 0:275519459 0:334756 0
2 0:2025 1:0125 0:444853339 0:444862414 0:243228 0
3 0:091125 0:455625 0:718250971 0:718291671 0:176725 0
4 0:041006 0:205031 0:999826513 1:000 0:128405 0:017692
5 0:018453 0:109956 0:999298119 1:000 0:098997 0:041219
6 0:008304 0:090699 0:996799366 1:000 0:089216 0:044676
7 0:003737 0:085491 0:98467151 1:000 0:085582 0:045455
8 0:001682 0:083926 0:925127357 1:000 0:084176 0:045709
9 0:000757 0:083476 0:631441715 1:000 0:083632 0:045853
10 0:000341 0:083417 < 0 1:000 0:083444

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

p1 p2

Figure 4: Bubble prices

So, for the asset market to clear, the capital gains on red machines must be

greater than the capital gains on blue machines. The bubble on red machines

must burst before period 10.

If the initial bubble is greater, then the bubble will burst more quickly.

For example, if p10 = 0:16 and p20 = 0:172767251 the bubble must burst by

period 3.

We have investigated economies with parameter values di¤erent from

those given in Table 1. We have replaced � = 0:55 with � = 0:9; corre-

sponding to a yearly depreciation rate of 10%. The initial prices consistent

14



with bubble-free competitive equilibrium are p10 = p20 = 0:767 877 191. In

period 1, we have p11 = p
2
1 = 1:00 After 5 periods, (k

1
t + k

2
t ) becomes close to

its steady state value (k1 + k2) = 0:08323. If we have a small bubble on red

machines, given by p10 = 0:767 877 and p
2
0 = 0:767 877 230; then by period 6

p1t becomes negative. Hence the red machine bubble must burst by period

6.

It is not surprising that the higher is the depreciation rate the quicker the

bubble will burst. The larger are the depreciation rates, other things equal,

the smaller are the capital gains. Hence changes in the prices will have to be

even bigger to compensate for the di¤erences in the yields on the machines,

leading to shorter lived bubbles. If the depreciation rate is 100% , there

would be no capital gains and there would be no room for perfect-foresight

bubbles.

7 Concluding Remarks

Blue machines are technologically identical to red machines. The central

planner and the representative in�nitely-lived agent are indi¤erent to the

color of machinery. The shadow price of a blue machine is equal to the

shadow price of a red machine on the optimal trajectory.

We investigate prices and capital gains (and losses) on blue machines and

red machines in a simple OG model. On the unique competitive path in

which expectations are always ful�lled, the market price of blue machines

is always equal to the market price of red machines. If there are complete

futures markets in machinery, then this bubble-free path is the only one that

will be pursued. But we are talking here about a large (potentially in�nite)

number of futures markets.

In the real world, futures markets extend out to only a few years at most.

In our computed examples, bubble-trajectories will eventually be revealed to

be disequilibrium paths, but only after decades or more. The question re-
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mains: Does the ownership economy steer away from bubbles that eventually

burst? If so, how is this accomplished? If not, what are the consequences for

public policy?

8 Biographical Note

Our particular model has important antecedents: (1) The technology is es-

sentially that of Shell-Stiglitz (1967)4 except that the present paper employs

discrete time and explicitly allows for irreversible capital so that Tobin�s q

can be less than unity.5 Except for the introduction of 2 capitals and the

irreversibility of investment, we are using the OG model of Diamond (1965)6.
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