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Abstract

The existing literature on treatment e¤ects assumes perfect observability of the treatments

received by the population of interest. Even in cases of imperfect compliance, it is usually as-

sumed that both the assigned and administered treatment are observed (or missing completely

at random). This paper abandons such assumptions. Imperfect observability of the received

treatment can arise as a result of survey nonresponse in observational studies, or noncompliance

with randomly assigned treatments that are not directly monitored. I study the problem in the

context of observational studies. I derive sharp worst case bounds without assuming anything

about treatment selection, and I show that the bounds are a function of the available prior

information on the distribution of the missing treatments. Under the maintained assumption of

monotone treatment response, I show that no prior information on the distribution of missing

treatments is necessary to get sharp informative bounds. I apply the methodologies recently

proposed by Imbens and Manski (2004) and Chernozhukov, Hong, and Tamer (2004) to derive

two types of con�dence intervals for the partially identi�ed parameters. The results are illus-

trated with an empirical analysis of drug use and employment using data from the National

Longitudinal Survey of Youth.
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1 Introduction

Part of the existing literature on programme evaluation has examined what can be inferred about

a treatment e¤ect of interest when the observability of some of the relevant variables is imperfect,

and when noncompliance to assigned treatments prevents identi�cation in randomized experiments.

Little (1992), Robins, Rotnizky, and Zhao (1994), and Wang, Wang, Zhao, and Ou (1997) formulate

sets of assumptions strong enough to achieve point identi�cation for the case of missing covariate

data. Imbens and Pizer (1999) show that in randomized experiments with complete random as-

signment of treatment, the assumption of covariate data missing at random can be tested. They

develop models that allow to achieve point identi�cation, are consistent with the restrictions im-

plied by the complete random assignment of treatment, and are as close to the assumption of data

missing at random as possible. Horowitz and Manski (2000) study the problem of missing outcome

and covariate data in randomized experiments. They derive sharp bounds on the distribution of

outcomes conditional on covariates without invoking untestable assumptions on the missing data

mechanism. Angrist, Imbens, and Rubin (1996) address the problem of imperfect compliance in

classical randomized experiments; they pose a set of assumptions under which it is possible to

identify the treatment e¤ect within the subpopulation of persons who comply with the assigned

treatment. Robins (1989) and Balke and Pearl (1994), (1995) and (1997) study similar identi�-

cation problems under weaker assumptions; in particular Balke and Pearl (1997) make use of the

statistical independence between the response functions and the assigned treatments to propose

alternative, assumption-free sharp bounds for assessing the average e¤ect of treatment over the

population as a whole. A di¤erent problem is addressed by Hotz, Mullin, and Sanders (1997), who

study what can be learned about treatment e¤ects when one uses a contaminated instrumental

variable, i.e. when a mean-independence assumption holds in a population of interest, but the

observed population is a mixture of the population of interest and one in which the assumption

doesn�t hold.

A common feature in this literature is the assumption of perfect observability of the received

treatment (both in randomized experiments and observational studies), or ignorability of the data

with missing treatments. This assumption is often at odds with the empirical evidence. Survey

nonresponse can a¤ect the observability of a variable whose e¤ect is under study, and often it is not

plausible to assume that the decision to respond to a speci�c question in a survey is random. For

example, researchers face relatively high nonresponse rates when studying the e¤ect of �problem

drinking�or drug abuse on labor market outcomes (see for example Mullahy and Sindelar (1995),

Kaestner (1991), (1994) and (1998), and Kaestner and Grossman (1995)); at the same time, it

doesn�t seem plausible to assume that the fraction of drug abusers or alcoholics is identical for

respondents and nonrespondents (see for example Pepper (2001)). Another example comes from
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Robins (1997), who describes a nonrandomized experiment in which observation of a treatment

group and a control group of women who had a breast cancer is used to infer the e¤ect of radiation

therapy on the development of a second cancer. While the outcome is observable for all subjects,

the treatment (as well as some of the covariates) is missing for some of the subjects. Robins suggests

assumptions on the missing data processes that imply point identi�cation.

In practice, in applied work it is often assumed that the data are missing completely at random,

and complete case (CC) analysis is conducted (see Little and Rubin (1987), Chapter 3, for a

critical presentation of CC analysis). In this paper I examine the missing treatments problem from

a �conservative�perspective, in the sense that I �rst determine the inferences that can be drawn in

the absence of assumptions about the missing data mechanism and then illustrate the identifying

power of widely credible assumptions posed on the distribution of the missing treatments and on

the treatment selection rule.

In the setting considered here there are three problems preventing point identi�cation of treat-

ment e¤ects: the usual latent outcome problem, the impossibility of identifying the distribution

of received treatments, and the impossibility of matching the unobserved received treatments with

the observed outcomes. I will propose a method to jointly address these problems. As will appear

from the analysis of the following sections, signi�cant progress can be made when the researcher

has some prior information on the distribution of the missing treatments.

The paper is organized as follows: Section 2 introduces the relevant notation and the questions

of interest. Section 3 introduces the empirical illustration, which focuses on the e¤ect of drug

abuse during work hours on unemployment, and shows that the assumption of ignorability of the

observations with missing treatment data can be rejected for this problem. Section 4 derives worst

case bounds on the treatment e¤ects of interest. I show that in observational studies, when nothing

is assumed about the distribution of the missing treatments, no information can be extracted from

the observations for which the received treatment is unknown, and the additional degree of under-

identi�cation is proportional to the fraction of missing data. However, if some prior knowledge

of the marginal distribution of the unobservable received treatments is available, some progress

can be made. In Section 5 I show that under the maintained assumption of monotone treatment

response (Manski (1997)), such prior knowledge is not necessary to extract information from the

observations for which the received treatment is unknown. The bounds derived in this paper are

sharp, in the sense that they exhaust all information available from the data and the maintained

assumptions. In Sections 3-5, to keep the focus on identi�cation, I treat identi�ed quantities as

known. Section 6 addresses statistical considerations by deriving two types of con�dence intervals:

a type that asymptotically covers the identi�cation regions with a prespeci�ed probability, following

the approach of Chernozhukov, Hong, and Tamer (2004), and a type that asymptotically covers

the true parameter of interest (rather than its identi�cation region) with at least a prespeci�ed
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probability, following the approach of Imbens and Manski (2004). Section 7 presents the results of

the empirical illustration. Section 8 concludes.

2 Setup of the Problem

Using standard notation (e.g., Neyman (1923)), let each member j of a population of interest J be

characterized by some covariates xj 2 X, be exposed to a set of mutually exclusive and exhaustive
treatments T , and have a speci�c response function yj (�) : T ! Y mapping treatments t 2 T into
outcomes yj (t) 2 Y . If zj 2 T is the treatment that individual j actually receives, then yj � yj (zj)

is the realized outcome, while yj (t) is a latent outcome for t 6= zj . Denote by dj a binary variable

which takes value 1 if the treatment received by individual j is observed, 0 otherwise, and assume

that the population is a measure space (J;
; P ), with a probability measure P . In the analysis

developed in this paper I assume perfect observability of realized outcomes as well as covariates; I

also assume that all variables are correctly measured. Such assumptions are maintained in order to

focus attention on the problem of missing treatments; Horowitz and Manski�s (1995, 1998 and 2000)

results can be easily incorporated in the analysis in case of missing or contaminated outcome data,

or missing covariate data. Molinari�s (2005) results can be applied in the presence of classi�cation

error in the outcome data, the covariate data, or the treatment data.

The researcher learns the distribution P [y; x; d] of realized outcomes, covariates, and observ-

ability of realized treatments, and the distribution P [zjx; y; d = 1] of realized treatments given
covariates, realized outcome and observability of the realized treatment. The researcher�s prob-

lem is to learn the distribution P [y (�)jx] of response functions, in order to infer the e¤ect of a
treatment.

I study the problem of missing treatments in the context of observational studies; however this

problem can appear as well in randomized experiments, either because the assigned treatments

are partially unobservable, or because there is uncertainty about the degree of compliance of the

individuals with the treatments. If there is full compliance and partial unobservability of the

assigned treatment, it is easy to show that the problem can be expressed as a case of missing

covariates identical to the one studied by Horowitz and Manski (1998), so their results apply.1 If

there is perfect observability of the assigned treatment but uncertainty on the degree of compliance,

the problem can be approached adapting the method of Balke and Pearl (1994)-(1997). They

consider the problem of an experimental study where random assignment has taken place, but

compliance is not perfect (i.e. the treatment received di¤ers from that assigned). In case of

observability of the received treatments, Balke and Pearl (1994)-(1997) derive sharp bounds on the

1 If the treatments are randomly assigned, the treatment e¤ect of interest can be evaluated by means of a regression

of realized outcomes on treatments.
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average treatment e¤ect by solving a complex linear programming problem. The same method can

be used in case of unobservability of the received treatment or uncertainty about the degree of

compliance, as long as we can perfectly observe d (if it is only known that a fraction of the agents

doesn�t comply with the assigned treatments, but it is not known who does not comply, the method

below does not apply, as we are facing a contamination problem).

To simplify notation I omit the covariates in all that follows. I assume that the outcome variable

y takes values in a bounded set Y; where K0 � inf Y and K1 � supY are known �nite numbers.

For ease of exposition I assume that T = f0; 1g; in case of multiple treatments, all of the results in
Sections 4 and part of the results in Section 5 (to be speci�ed below) still hold. Since the focus of

this paper is on the missing treatments problem, I assume 0 < Pr (d = 0) < 1. The questions to be

addressed are:2

� what can be learned about E [y (t)] ; t 2 T , the average outcome under a mandatory policy;

� what can be learned about E [y (1)]� E [y (0)], the average treatment e¤ect (ATE).

3 Empirical Application

3.1 The E¤ect on Unemployment of Drug Use During Work Hours

Illicit drug and alcohol abuse have generally been associated with huge economic costs, and such

association has been a motivation for drug-related and alcohol-related public policies in the US

and worldwide. A large share of these costs is related to reduced labor productivity. Harwood,

Fountain, and Livermore (1998) report that in 1992 alcohol and drug abuse cost society an esti-

mated $176.4 billion as a result of (i) lost productivity, due to premature death and illness among

abusers, (ii) crime-related costs of abusers, (iii) time abusers spent in residential treatment, and

(iv) developmental disabilities among fetal alcohol syndrome survivors. Shortfalls in productivity

and employment among individuals with alcohol or drug abuse disorders accounted for estimated

losses of $80.9 billion in lost productivity ($66.7 billion resulting from alcohol problems and $14.2

billion from drug problems).3 Harwood, Fountain, and Livermore (1998) report as well that in

the subpopulation of enrollees in publicly funded treatment providers, chronic and severe alcohol

and drug abusers appear often to have great di¢ culties obtaining and keeping stable employment.

Those who do have a job may often be intoxicated or high and unable to work, and commonly

move from one part-time job to another.

2Formal results on what can be learned about E [y (t)]�E [y (z)], i.e. the status quo treatment e¤ect (STE), are
available from the author upon request.

3These estimates were constructed using the data from the National Longitudinal Alcohol Epidemiologic Survey,

and the microsimulation techniques used in studies of the RAND Health Insurance Experiment.
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It may seem logical to expect a negative relationship between the presence and severity of an

alcohol and/or drug abuse problem and the employment status, labor supply, and wage rate of

individuals. However, while there is evidence that �problem drinking�is associated with lower em-

ployment rates and greater unemployment,4 the �ndings on the e¤ects of drug use on labor market

outcomes are still controversial. For example Kandel and Davies (1990), Kaestner (1991), Register

and Williams (1992), and Gill and Michaels (1992) �nd that drug use is positively correlated with

wages, even when one accounts for individual characteristics and endogeneity. At the same time,

Kaestner (1994) and Buchmueller and Zuvekas (1998) �nd signi�cant negative e¤ect of drug use

on employment or labor supply for males, but insigni�cant or positive e¤ect for females (Kaestner

(1994)). Kandel and Yamaguchi (1987) study the e¤ect of drug use on job mobility, and show that

drug use predicts job turnover and decreased tenure on the job; however their results suggest that

these e¤ects probably re�ect the in�uence of preexisting di¤erences among individuals who start

using drugs instead of the e¤ects of drugs themselves.

One of the problems which a¤ect the empirical work in this area is the relatively high fraction

of missing data (see for example Pepper (2001)); people are reluctant to answer questions relative

to illicit activities or stigmatized activities, like drug abuse or �problem drinking�. In practice,

researchers often assume that the data are missing completely at random (MCAR), and conduct

their analysis only on the subpopulation of respondents. I adopt a more conservative approach and

study the e¤ect for the population as a whole of drug use during work hours on the probability of

being �red, discharged or laid o¤.

3.2 Data

I use data from the National Longitudinal Survey of Youth (NLSY). In its base year of 1979 the

NLSY interviewed 12; 686 persons who were between the age of 14 to 22 at that time. The survey

has been updated each year since 1979 (and every two years since the early 1990�s). The data

contain detailed information on a respondent�s labor market experience, and family and personal

background. Approximately half of the total NLSY respondents were randomly sampled, the

remaining being selected to overrepresent certain demographic groups (see BLS (1999)). In all that

follows I restrict attention to the randomly sampled subpopulation; hence, problems connected

with sampling design can be ignored. In 1984 and 1988 the respondents were asked questions

about their lifetime and current use of several illicit drugs. In 1984, a (randomly sampled) group

of 1; 441 respondents who had been employed either in that year or in the past were asked whether

(on their most recent job since the 1983 interview) they had been under the e¤ect of illicit drugs

during work hours.

4See for example Mullahy and Sindelar (1995).
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While self reports may provide a great deal of information about an individual�s behavior, the

validity of such reports is sometimes questioned. Mensch and Kandel (1998) compare the declared

illicit drugs use in the 1984 youth survey with the reports of other national surveys of drug use,

and �nd underreporting of drug abuse (other than marijuana). But they as well suggest that such

underreporting seems to be more common among light drug users than heavy users, and more

common among blacks and Hispanics than among whites. As Gleason, Veum, and Pergamit (1991)

argue, it may be that individuals who use drugs at work are more frequent users, and as Mensch

and Kandel (1998) document less likely to underreport their drug use. Embracing this argument, in

the analysis which follows I will assume that whenever an individual chooses to answer the question

on drug use during work hours, she/he answers the truth.5 However, as drug use at work may be

a highly socially unacceptable activity, I will allow for the decision to not respond to the questions

to be motivated by respondents�reluctance to report that they did engage in such activity.

I will focus attention on the 1345 (randomly sampled) respondents who were employed in 1983.

Thus my empirical analysis concerns the subpopulation of persons who, in the notation introduced

in Section 2 (and which will be left implicit in Sections 4-7), have the shared observable covariate

x = femployed in 1983g : Additional covariates will be brie�y considered in the next subsection.
Out of this group, 236 persons answered that they did use drugs during work hours, 994 answered

that they did not, and 115 refused to answer the question (8:55%). I take the outcome of interest

to be the number of weeks an individual was unemployed during the calendar year 1983-84. If

the respondent answered the question on drug abuse (dj = 1), we observe whether she has been

under the e¤ect of drugs during work hours (zj = 1jdj = 1) or not (zj = 0jdj = 1); if the

respondent skipped the question, we register the missing data (dj = 0). In the subpopulation of

respondents, the average number of weeks of unemployment is relatively low regardless of drug

use. Abstracting from sample variability, E [yj z = 1; d = 1] = 3:267, and E [yj z = 0; d = 1] =
2:703, while Pr [z = 1j d = 1] = 0:192. If one were to assume random treatment selection (i.e.

z ? fy (0) ; y (1)g) and ignorability of the observations with missing treatment data (i.e. d ?
fy (0) ; y (1) ; zg), he would conclude that the average treatment e¤ect is equal to 0:564 weeks. This
would imply that drug use increases the average number of weeks of unemployment in a calendar

year by little over half a week. Table 1 summarizes these descriptive statistics, along with their

95% con�dence intervals.

3.3 Testing for MCAR and for Validity of the Complete Case Analysis

When facing missing data problems as the one described above, researchers often conduct �complete

case�analyses, in which observations with any missing values are simply discarded (Little (1992)).

5This assumption can be relaxed, allowing for misreporting of drug use during work hours, using the direct

misclassi�cation approach of Molinari (2005).
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Table 1: NLSY Descriptive Statistics, N=1345
Point Est. 95% CI

Probability of missing treatments: Pr [d = 0] 0:086 [0:071 ; 0:100]

Probability of drug use given observable treatments: Pr [z = 1jd = 1] 0:192 [0:170 ; 0:214]

Average number of weeks of unemployment in subpopulation for whom

treatments are observed and drugs are used: E[yjz = 1; d = 1] 3:267 [2:322 ; 4:212]

Average number of weeks of unemployment in subpopulation for whom

treatments are observed and drugs are not used: E[yjz = 0; d = 1] 2:703 [2:303 ; 3:103]

Average number of weeks of unemployment in subpopulation for whom

treatments are observed: E[yjd = 1] 2:811 [2:441 ; 3:182]

Average number of weeks of unemployment in subpopulation for whom

treatments are not observed: E[yjd = 0] 1:930 [1:502 ; 2:359]

Di¤erence in the average number of weeks of unemployment between

subpopulation for whom treatments are observed and for whom

treatments are unobserved: E[yjd = 1]�E[yjd = 0] 0:881 [0:314 ; 1:448]

ATE assuming exogenous treatment selection and treatments missing

completely at random: E[yjz = 1; d = 1]�E[yjz = 0; d = 1] 0:564 [�0:462 ; 1:590]

In the context of treatment e¤ects, when the treatment data are partially unobservable, this can

lead to valid inference if: (i) the treatment data are MCAR, (ii) d ? f(y (0) ; y (1))jxg, (iii) d ?
f(y (0) ; y (1) ; z)jxg. Note that assuming P [y (t)j z; d; x] = P [y (t)j z; x] alone does not imply
validity of the CC analysis. Validity would be assured if one assumed also that Pr (z = tj d; x) =
Pr (z = tjx). The assumption d ? f(y (0) ; y (1))jxg, is not testable, and in general it does not
seem appealing. For example, if Pr (z = tj d; x) 6= Pr (z = tjx) and P [y (t)j z; d; x] = P [y (t)j z; x],
it follows that P [y (t)jx; d = 1] 6= P [y (t)jx; d = 0]. Similarly, if Pr (z = tj d; x) = Pr (z = tjx) and
P [y (t)j z; d; x] 6= P [y (t)j z; x], it follows again that P [y (t)jx; d = 1] 6= P [y (t)jx; d = 0].

On the other hand, a necessary condition for the assumption d ? f(y (0) ; y (1) ; z)jxg ; as well
as for the assumption MCAR, to hold can be tested. In particular, the following result is easy to

verify:

Lemma 1 Suppose that d ? f(y (0) ; y (1) ; z)jxg. Then

P [yj d = 1; x] = P [yj d = 0; x] (1)

Clearly, if the observability of the treatments is independent from the response functions and

from the received treatments conditional on the observed covariates, the distribution of realized
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outcomes, conditional on the observed covariates, for the subpopulation for whom the received

treatments are observable should be the same as that for the subpopulation with missing treatment

data. In practice, before conducting CC analyses, one can test whether the equality in (1) holds.

Note that if the assumptions P [y (t)j z; d; x] = P [y (t)j z; x] and P (zj d; x) = P (zjx) are jointly
maintained, condition (1) should again hold, and therefore the same test as described in Lemma 1

can be performed. However in both cases, condition (1) is only necessary but not su¢ cient for the

CC analysis to be valid, or for the MCAR assumption to hold.

Given the NLSY sample, for x = femployed in 1983g a Wilkoxon rank-sum test rejects the

equality in (1) at the 5% signi�cance level. Conditioning on additional covariates, the equality in

(1) can again be rejected. For example, if we look at the group of respondents employed in 1983,

younger than 24, with at least a high school degree, we can again reject the null at 5% signi�cance

level.

4 Worst Case Bounds

The following Subsections 4.1-4.2 analyze what can be learned about the treatment e¤ects of

interest when nothing is assumed about the distribution of the missing treatments. The availability

of prior information on this distribution will turn out to be crucial: if nothing is known about

Pr [z = 1j d = 0], no information can be extracted from the observations for which the treatments

are missing. However, if a bound (or point identi�cation) on Pr [z = 1j d = 0] is available, it is
possible to extract information from the observations with missing treatment data; Subsection 4.3

discusses how.

4.1 Worst Case Bounds on a Mandatory Policy

Suppose that we are interested in E [y (1)]; by the Law of Iterated Expectations

E [y (1)] = E [y (1)j d = 1]Pr (d = 1) + E [y (1)j d = 0]Pr (d = 0) (2)

From the data we can learn Pr (d = 1) and Pr (d = 0); regarding the other two terms on the

right hand side of (2), let us �rst focus our attention on E [y (1)j d = 1]:

E [y (1)j d = 1] = E [yj d = 1; z = 1]Pr [z = 1j d = 1] + E [y (1)j d = 1; z = 0]Pr [z = 0j d = 1] (3)

The equality in (3) expresses the usual problem of learning the distribution of outcomes under

a mandatory policy (in this case assigning treatment 1): the only unobserved quantity is the

counterfactual probability of success under the treatment for people who actually did not receive

it: E [y (1)j d = 1; z = 0].
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Let us now consider E [y (1)j d = 0]:

E [y (1)j d = 0] = E [yj d = 0; z = 1]Pr [z = 1j d = 0] + E [y (1)j d = 0; z = 0]Pr [z = 0j d = 0] (4)

The problem arising in the case of missing treatments is that all quantities in (4) are unknown:

not only do we have the usual problem of latent outcomes, but we also do not know the distribution

of treatments when they are unobservable; moreover the data do not reveal how to match the

realized outcome with the received but unobservable treatment. The only thing we can learn from

the data is the distribution of realized outcomes under unobserved treatments, i.e. we can learn

Q (t) � Pr [y � tj d = 0] = Pr [y � tj d = 0; z = 1] p+ Pr [y � tj d = 0; z = 0] (1� p)

where p � Pr [z = 1j d = 0]. If p is known, it is possible to use the result of Corollary 4.1 in Horowitz
and Manski (1995) to �nd a sharp bound on E [y (1)j d = 0] using the information provided by Q
(similarly for E [y (0)j d = 0]). However, if we do not know anything about p, knowledge of Q does

not help to bound the outcome distribution under received treatment unobservability. Indeed, it

may be that all treatments we do not observe are of type 0, in which case knowledge of Q does not

provide any information about E [y (1)].

Proposition 1 states what can be learned about a mandatory policy, both when p is known and

when p is unknown. Before stating the result, I need to introduce some additional notation: for

any � 2 [0; 1], let r (�) denote the ��quantile of Q:

r (�) � inf
t
fQ (t) � �g :

De�ne probability distributions L� and U� on < as follows

L� [�1; t] � Q (t)

�
for t < r (�) ;

� 1 for t � r (�) :

U� [�1; t] � 0 for t < r (1� �) ;

� Q (t)� (1� �)
�

for t � r (1� �) :

Proposition 1 Given the value of p 2 [0; 1] and no other information, the sharp bounds on

E [y (1)j d = 0] and on E [y (1)] are given by:

E [y (1)j d = 0] 2
�
p
R
ydLp + (1� p)K0; p

R
ydUp + (1� p)K1

�
(5)

(E [yj d = 1; z = 1]Pr [z = 1; d = 1] + P [z = 0; d = 1]K0) +
�
p
R
ydLp + (1� p)K0

�
Pr (d = 0)

� E [y (1)] �

(E [yj d = 1; z = 1]Pr [z = 1; d = 1] + P [z = 0; d = 1]K1) +
�
p
R
ydUp + (1� p)K1

�
Pr (d = 0)

(6)
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In absence of knowledge of p, the sharp bounds on E [y (1)j d = 0] and on E [y (1)] are given by:

K0 � E [y (1)j d = 0] � K1 (7)

E [yj d = 1; z = 1]Pr [z = 1; d = 1] + (P [z = 0; d = 1] + Pr (d = 0))K0 �

E [y (1)] � E [yj d = 1; z = 1]Pr [z = 1; d = 1] + (P [z = 0; d = 1] + Pr (d = 0))K1

Proof. See Appendix.

While the width of the bound on E [y (1)] with no missing data is equal to Pr [z = 0] (K1 �K0) =

Pr [z = 0j d = 1] (K1 �K0), with missing treatments it increases to (Pr [z = 0j d = 1]Pr (d = 1)+
Pr (d = 0)) (K1 �K0). This expression can be rewritten as

(Pr [z = 0j d = 1] + Pr [z = 1j d = 1]Pr (d = 0)) (K1 �K0) :

It is then easy to see that the increase in the width is proportional to Pr [z = 1j d = 1]Pr (d = 0),
and hence, for given fraction of individuals observed to receive treatment 1, proportional to the

fraction of missing data.

4.2 Worst Case Bounds on the Average Treatment E¤ect

Consider now the case in which the researcher is interested in learning about the average treatment

e¤ect (ATE)

E [y (1)]� E [y (0)] (8)

As we did for E [y (1)], we can decompose the quantity in (8) using the Law of Iterated Expectations:

E [y (1)]� E [y (0)] = fE [y (1)j d = 1]� E [y (0)j d = 1]gPr (d = 1)

+ fE [y (1)j d = 0]� E [y (0)j d = 0]gPr (d = 0)

Let us �rst consider the ATE under observability of the received treatment. A sharp bound on

this quantity can be found using results well known in the literature (e.g., Manski (1995)):

LBd=1
ATE � E [y (1)j d = 1]� E [y (0)j d = 1] � UBd=1

ATE (9)

where
LBd=1

ATE = E [yj d = 1; z = 1]Pr [z = 1jd = 1] +K0 Pr [z = 0jd = 1]
�E [yj d = 1; z = 0]Pr [z = 0jd = 1]�K1 Pr [z = 1jd = 1]

(10)

UBd=1
ATE = E [yj d = 1; z = 1]Pr [z = 1jd = 1] +K1 Pr [z = 0jd = 1]

�E [yj d = 1; z = 0]Pr [z = 0jd = 1]�K0 Pr [z = 1jd = 1]
(11)
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Note that the width of this bound is exactly (K1 �K0), as for the usual ATE.

Consider now the ATE under unobservability of the received treatment. In what follows let

Pr [z = 1j d = 0] � p P [yj d = 0] � Q

E [yj d = 0; z = 1] � E11 E [y (1)j d = 0; z = 0] � E10

E [yj d = 0; z = 0] � E00 E [y (0)j d = 0; z = 1] � E01

Then we can restate the problem as to �nd a bound on

E [y (1)j d = 0]� E [y (0)j d = 0] = E11p+ E10 (1� p)� E00 (1� p)� E01p (12)

Note that all quantities on the right hand side of (12) are unknown; however, for a given value

of p we can extract information from the knowledge of Q. As p ranges from 0 to 1 we move from

knowing exactly the value of E11, to having decreasing information on it and increasing information

on E00, to knowing exactly the value of E00. Even if E01 and E10 are unknown, using this fact we can

�nd a sharp p-dependent bound on the average treatment e¤ect under treatment unobservability.

Proposition 2 Given the value of p 2 [0; 1] and no other information, the sharp bound on

E [y (1)j d = 0]� E [y (0)j d = 0] is given by:

LBd=0
ATE = p

R
ydLp + (1� p)K0 � (1� p)

R
ydU1�p � pK1

UBd=0
ATE = p

R
ydUp + (1� p)K1 � (1� p)

R
ydL1�p � pK0

(13)

For any value of p this bound is informative. The sharp bound on E [y (1)]� E [y (0)] is given by:

LBd=1
ATE � Pr (d = 1) + LBd=0

ATE � Pr (d = 0) � E [y (1)]� E [y (0)] (14)

� UBd=1
ATE � Pr (d = 1) + UBd=0

ATE � Pr (d = 0)

where LBd=1
ATE and UB

d=1
ATE were de�ned in (10)-(11).

In absence of knowledge of p, the sharp bounds on E [y (1)j d = 0]�E [y (0)j d = 0] and on E [y (1)]�
E [y (0)] are given by:

� (K1 �K0) � E [y (1)j d = 0]� E [y (0)j d = 0] � (K1 �K0) (15)

LBd=1
ATE � Pr (d = 1)� (K1 �K0) Pr (d = 0) � E [y (1)]� E [y (0)] (16)

� UBd=1
ATE � Pr (d = 1) + (K1 �K0) Pr (d = 0) :

The width of the band in (16) is equal to (K1 �K0) (1 + Pr (d = 0)).

Proof. See Appendix.
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4.3 Identifying Power of Assumptions on Pr [z = 1j d = 0]

The bounds derived in Propositions 1 and 2 are functions of p � Pr [z = 1j d = 0]. We showed
that as long as p is unknown no information can be extracted from the observations with missing

treatment data. However, if some prior information on the distribution of the missing treatments

is available, some progress can be made.6

Suppose for example that p is identi�ed, either because the results of a validation study are

available, or because one is willing to assume that the treatments are missing at random,7 i.e.

d ? z, which implies p = Pr [z = 1j d = 1]. Then the bounds reported in Propositions 1 and 2 can
be evaluated at this value of p.

Alternatively, one may learn that p 2 [p1; p2]. For example, if the survey from which the data are
drawn concerns activities to which a stigma is associated (e.g.: illicit drug use), the decision not to

respond to the questions can be motivated by respondents�reluctance to report that they engaged

in such activities. In this case, it may be credible to assume that the probability of having engaged

in such activities for people who didn�t answer the survey is not smaller than for people who did

answer the question. Pepper (2001) introduces an assumption of this type. Then the bound on the

ATE can be calculated by taking (respectively) the in�mum value and the supremum value that

the lower bound and the upper bound reported in Proposition 2 achieve for p ranging in [p1; p2].

Regarding the mandatory policy, the bound on E [y (1)] can be calculated by evaluating the bound

in Proposition 1 at p = p1 (while the information provided by p2 can be used to bound more tightly

E [y (0)]).8

5 Missing Treatments with Monotonicity Assumptions

Manski (1997) investigates what may be learned about treatment response when it is assumed that

response functions are monotone, semi-monotone, or concave monotone, and no assumptions are im-

posed on the treatment selection process. He shows that assuming monotone or concave monotone

response qualitatively improves the identi�cation problem relative to the worst case situation in

which no prior information is available. Manski and Pepper (2000) study the identifying power

of monotone instrumental variable assumptions, and in particular the special case of monotone

treatment selection (MTS). They show that the joint assumption of monotone treatment selection

6A more detailed derivation of the identifying power of assumptions on P [z = 1j d = 0] is available from the author
upon request.

7Note that in this case we are not assuming d ? (y (0) ; y (1) ; z).
8Another example along these lines is given by recent work of Kreider and Hill (2005), who apply some of the

results in this paper to study the problem of learning utilization rates of health services under a hypothetical policy

of universal health insurance, when insurance status is subject to classi�cation error and is unveri�ed for some

respondents (the respondents with missing treatments).
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and response can be tested, and that if such joint assumption is maintained, informative bounds

are obtainable even if Y is unbounded.

In this section I study the identifying power of assuming monotone treatment response (MTR),

and of jointly assuming monotone treatment response and selection (MTR�MTS), when some of

the treatments are missing. I show that under the maintained assumption of monotone treatment

response (alone or jointly withMTS), one can extract information from the observations for which

the treatment data are missing even without any prior knowledge of p � P [z = 1j d = 0]. Clearly,
prior information on p will further shrink the bounds.

Let us assume that the response function is weakly increasing; in the case studied here, since

T = f0; 1g, this implies that for each j 2 J :

yj (0) � yj (1) (17)

To interpret this assumption, consider the example of the e¤ect of drug abuse during work hours

on the number of weeks an individual is unemployed in a calendar year. The monotone treatment

response assumption implies that each person�s unemployment outcome is weakly increasing in

conjectured use of drugs during work hours.

If (17) holds, we can use the results of Manski (1997) to tighten the bounds on the quantities

of interest given observability of the received treatment; in particular we get the following sharp

bounds:

K0 Pr [z = 1j d = 1] + E [yj z = 0; d = 1]Pr [z = 0j d = 1] � E [y (0)j d = 1] � E [yj d = 1] (18)

E [yj d = 1] � E [y (1)j d = 1] � E [yj z = 1; d = 1]Pr [z = 1j d = 1] +K1 Pr [z = 0j d = 1] (19)

Under the MTR assumption we can as well extract information from knowledge of the dis-

tribution of realized outcomes given unobservability of the treatment, and get tighter bounds on

E [y (0)j d = 0] and E [y (1)j d = 0]. Then, through the Law of Iterated Expectations and given

(18)-(19), we get narrower bounds on E [y (0)] and E [y (1)].

Proposition 3 Suppose that the treatment response function is weakly increasing. Then:

K0 � E [y (0)j d = 0] � E [yj d = 0]
E [yj d = 0] � E [y (1)j d = 0] � K1

(20)

and

K0 Pr [z = 1; d = 1] + E [yj z = 0; d = 1]Pr [z = 0; d = 1] +K0 Pr (d = 0) � (21)

E [y (0)] � E (y)
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E (y) � E [y (1)] (22)

� E [yj z = 1; d = 1]Pr [z = 1; d = 1] +K1 Pr [z = 0; d = 1] +K1 Pr (d = 0)

0 � E [y (1)]� E [y (0)] �(
(E [yj z = 1; d = 1]�K0) Pr [z = 1; d = 1]

+ (K1 �K0) Pr (d = 0) + (K1 � E [yj z = 0; d = 1]) Pr [z = 0; d = 1]

)
(23)

In absence of additional information, these bounds are sharp.

Proof. See Appendix.

The result in (20) is quite intuitive: if we assume yj (0) � yj (1), it follows that assigning

treatment 0 as a mandatory policy can�t imply a larger outcome than the realized one, while

assigning treatment 1 as a mandatory policy can�t imply a smaller outcome than the realized one.

In case of multiple treatments, i.e. T = ft1; t2; : : : ; tNg and t1 � t2 � : : : � tN , one can use

the results in (20) to get tighter bounds on E [y (t1)j d = 0] and on E [y (tN )j d = 0]. However
no information can be extracted from the observations with incomplete data in order to tighten

the bounds on E [y (t)j d = 0] for 8 t 2 T; t 6= t1; tN , unless prior information is available on

Pr [z = 1j d = 0] : Regarding E [y (t)j d = 0] � E [y (s)j d = 0], under the MTR Assumption this

quantity ranges in [0;K1] for 8 t; s 2 T , t > s.

Let us now assume that E [y (t)j z = u] is weakly increasing in u; let�s assume further that

this restriction holds for the subpopulation with complete data. In the case studied here, since

T = f0; 1g, this implies that for each t 2 T :

E [y (t)j z = 1; d = 1] � E [y (t)j z = 0; d = 1] (24)

To interpret this assumption, consider the example of the e¤ect of drug abuse during work hours

on the average number of weeks of unemployment. The monotone treatment selection assumption

implies that, for each t 2 T , persons who do not select into using drugs during work hours experience
a weakly lower average number of weeks of unemployment than do people who do select into using

drugs during work hours. Note that I require such assumption to hold for the subpopulation for

which treatments are observable since to make use of it one needs to observe the received treatments.

This implies that the MTS Assumption does not have identifying power on E [y (t)j d = 0], unless
prior information is available on Pr [z = 1j d = 0] :

Given (24), we can use the results of Manski and Pepper (2000) to tighten the bounds on the

quantities of interest given observability of the received treatment; in particular we get the following

sharp bounds:

E [yj z = 0; d = 1] � E [y (0)j d = 1] � E [yj z = 0; d = 1]Pr [z = 0j d = 1] +K1 Pr [z = 1j d = 1]
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K0 Pr [z = 0j d = 1] + E [yj z = 1; d = 1]Pr [z = 1j d = 1] � E [y (1)j d = 1]

� E [yj z = 1; d = 1]

If one is willing to impose jointly the MTR and MTS assumptions, the width of the bounds

shrinks signi�cantly. In particular, for the subpopulation with no missing data, under the joint

MTR�MTS Assumption

E [yj z = 0; d = 1] � E [y (0)j d = 1] � E [yj d = 1] (25)

E [yj d = 1] � E [y (1)j d = 1] � E [yj z = 1; d = 1] (26)

0 � E [y (1)j d = 1]� E [y (0)j d = 1] � E [yj z = 1; d = 1]� E [yj z = 0; d = 1] (27)

The following Proposition, which can be easily veri�ed given the results in (20), the results

in (25)-(27), and the Law of Iterated Expectations, shows what are the bounds on the treatment

e¤ects of interest under the joint MTR�MTS Assumption.

Proposition 4 Suppose that (17) and (24) jointly hold. Then:

E [yj z = 0; d = 1]Pr (d = 1) +K0 Pr (d = 0) � E [y (0)] � E (y)

E (y) � E [y (1)] � E [yj z = 1; d = 1]Pr (d = 1) +K1 Pr (d = 0)

0 � E [y (1)]� E [y (0)]

� fE [yj z = 1; d = 1]� E [yj z = 0; d = 1]gPr (d = 1) + (K1 �K0) Pr (d = 0)

In absence of additional information, these bounds are sharp.

The joint MTR � MTS Assumption is a testable hypothesis, which should be rejected if

E [yj z = u] is not weakly increasing in u. When some of the treatments are missing, it is straight-

forward to show that such assumption can still be tested on the subpopulation for which the

treatments are observable. However the hypothesis cannot be tested on the subpopulation with

missing data, and hence on the population as a whole.

6 Con�dence Sets for the Parameters of Interest and for the Iden-

ti�cation Regions

Con�dence intervals which asymptotically cover the identi�cation regions derived in Sections 4-5

with a prespeci�ed probability (1� �) can be obtained by using the results of Chernozhukov, Hong,
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and Tamer (2004). A conceptually di¤erent type of con�dence regions that asymptotically cover the

true parameter of interest (rather than its identi�cation region) with probability at least (1� �) can
be obtained by using the results of Imbens and Manski (2004). In both cases, denoting by #̂L and

#̂U the estimated lower and upper bound for a certain parameter of interest, the con�dence interval

is of the form
h
#̂L � cL�; #̂U + cU�

i
; where cL� and cU� depend on the critical value of a certain

distribution, which di¤ers in the two approaches, and on the sample size. In this paper I utilize

both methodologies, and compare the con�dence intervals obtained for the empirical application in

Section 7.

Chernozhukov, Hong and Tamer (2004) discuss how to construct con�dence sets for identi�-

cation regions of parameters obtained as the solution of the minimization of a criterion function.

They also discuss how to construct con�dence regions when the object of interest is a parameter

of the form E [y (1)] or E [y (1)� y (0)] ; the identi�cation region for such parameter is the entire
interval between two functionals of the distribution of the observed data (#̂L and #̂U ), and the

estimates of the lower and upper bounds converge at the parametric rate. In order to be able to

use their result, I need to derive the joint asymptotic distribution of the sample analogs of each of

the lower and upper bounds obtained in Sections 4-5. Using standard arguments on the asymptotic

properties of sample means and L-statistics (Shorack and Wellner (1986), Chapter 19), I provide

these results in Appendix B.

The con�dence intervals proposed by Imbens and Manski (2004) asymptotically cover the true

parameter of interest with at least a prespeci�ed probability. They are designed for intervally

identi�ed parameters, and require the derivation of the joint asymptotic distribution of the sample

analogs of the lower and upper bounds of the parameter of interest. However, in order to ensure

uniformity in the coverage properties of their con�dence intervals (and to avoid anomalies in the

width of the con�dence intervals that arise as one approaches point identi�cation), Imbens and

Manski (2004) require that a uniform central limit theorem hold for the joint asymptotic distribution

of the sample analogs of each of the lower and upper bounds of interest. Such requirement is satis�ed

for the lower and upper bounds in Section 5, and for some of those in Section 4. However, some of the

endpoints of the bounds obtained in Sections 4 involve randomly trimmed means, and, to the best

of my knowledge, uniform CLT for such estimators are not available, unless the fraction of trimmed

observations converges to zero as the sample size goes to in�nity (Shorack (1997)). Alternatively,

Berry-Esseen results are available for trimmed means, provided the trimming proportion is non-

random (see, e.g., Ser�ing (1984)).9 Since the lower and upper bounds in Section 4 do not satisfy

either of these requirements, uniformity of the convergence of the con�dence intervals to their

nominal level is not guaranteed, and is the subject of ongoing research.

9Chavez-Martin-Del-Campo (2005) uses these results to derive Imbens-Manski con�dence intervals for the case of

identi�cation and estimation of poverty measures with contaminated data.
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7 Results for the Empirical Application

Tables 2-3 report respectively the bounds on the average outcome under a mandatory policy of

no illicit drug use, and the bounds on the ATE; along with the Imbens and Manski (IM) and

the Chernozhukov, Hong and Tamer (CHT) 95% con�dence intervals, for the �ve di¤erent sets of

assumptions considered in the previous sections. As predicted by the theory, the CHT con�dence

intervals are always larger than the IM con�dence intervals, as the former cover the entire identi�-

cation region with a prespeci�ed probability, while the latter cover the true parameter of interest.

In practice, in this empirical application the di¤erence in the width of the con�dence intervals is

relatively small. The biggest di¤erence for the case of the average outcome under a mandatory

policy of no illicit drug use is 13% of the width of the corresponding IM con�dence intervals, and

occurs under theMTR�MTS assumption. The biggest di¤erence for the case of the ATE is 3% of

the width of the corresponding IM con�dence intervals, and occurs again under the MTR�MTS

assumption.

Since the outcome of interest in this application is the number of weeks an individual is unem-

ployed in a calendar year, I set K0 = 0 and K1 = 52: The �rst set of bounds in each Table (�No

Assumptions�) constitute the baseline of our analysis. With no assumptions on the distribution of

the missing treatments and on the treatment selection rule the bounds are necessarily wide; this is

mainly due to the non observability of latent outcomes, which for example implies that the bound

on the ATE is at least of width (K1 �K0) = 52: The second set of bounds in each Table (�Complete

Cases�) assumes that the observations with missing treatments data can be ignored. To interpret

the di¤erence in the results between the �rst and second row in Table 2 and in Table 3, notice that

under the maintained assumption of ignorability of the observations with missing treatments, only

the subsample of observations with complete data is used (N = 1230). On the other hand, when

nothing is assumed about the distribution of the missing treatments, all observations are used to

draw inference (N = 1345). However, as long as p � P [z = 1j d = 0] is unknown, no information
can be extracted from the subsample with missing treatment data.

As 80:8% of the respondents report that they have not been under the e¤ect of drugs during work

hours, the bounds on the average number of weeks of unemployment under a mandatory policy of

no illicit drug use are relatively narrow. Notice that the bound is much wider if nothing is assumed

about the distribution of the missing treatments, in which case the width is 13:57 weeks, than if

we assume ignorability of the observations with missing treatments data, in which case the width

is 9:98 weeks (that is, the width increases by 36% once we account for the missing treatments).

Regarding the bound on the average treatment e¤ect (ATE), while ignoring the observations with

missing treatments data the width of the bound is equal to 52 weeks, when nothing is assumed

about the distribution of missing treatments the width enlarges to (1 + Pr (d = 0))K1 = 56:41.
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Table 2: Bounds and Con�dence Intervals for the Average Number of Weeks of Unemployment

under a Mandatory Policy of no Illicit Drug Use: E[y(0)]

Bounds 95% IM CI 95% CHT CI

No Assumptions [1:998 ; 15:568] [1:744 ; 16:572] [0:995 ; 16:571]

Complete Cases [2:185 ; 12:162] [1:908 ; 13:116] [1:225 ; 13:121]

TMR [1:998 ; 14:715] [1:744 ; 15:592] [1:123 ; 15:590]

MTR [1:998 ; 2:736] [1:744 ; 3:029] [1:670 ; 3:063]

MTR�MTS [2:472 ; 2:736] [2:161 ; 3:031] [2:112 ; 3:096]

Table 3: Bounds and Con�dence Intervals for the ATE: E[y(1)] - E[y(0)]

Bounds 95% IM CI 95% CHT CI

No Assumptions [�14:995 ; 41:451] [�15:967 ; 42:295] [�16:081 ; 42:538]
Complete Cases [�11:535 ; 40:465] [�12:443 ; 41:374] [�12:611 ; 41:542]
TMR [�11:567 ; 40:762] [�12:478 ; 41:669] [�12:648 ; 41:843]
MTR [ 0 ; 41:451] [ 0 ; 42:295] [ 0 ; 42:454]

MTR�MTS [ 0 ; 4:962] [ 0 ; 5:982] [ 0 ; 6:173]

In order to illustrate the identifying power of assumptions on P [z = 1j d = 0], the third row
of Table 2 and the third row of Table 3 report the bounds and the 95% con�dence intervals on

the treatment e¤ects of interest under the maintained assumption of treatments missing at random

(TMR; note that we are not assuming d ? (y (0) ; y (1) ; z)), which can be speci�ed as follows:

TMR : P [z = 1j d = 0] = P [z = 1j d = 1]

This assumption states that respondents who did not answer the question relative to drug abuse are

as likely as respondents who did answer the question to have been under the e¤ect of drugs during

work hours. This assumption can be credible if for example some of the people interviewed in the

NLSY are �impatient�. Suppose that a fraction of the respondents get easily bored answering the

questionnaire, and hence don�t answer some of the questions, including the one on drug use. Suppose

further that drug abuse is independent from impatience; then we can assume that the treatments are

missing at random. However, unemployment outcomes may be correlated with impatience, hence

it may not be reasonable to assume that the outcomes�distribution is identical for patient and

impatient people. Given the NLSY sample, this assumption implies that P [z = 1j d = 0] = 0:192.
Once P [z = 1j d = 0] becomes known, it is possible to use the results in Propositions 1 and 2
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to get narrower bounds on the average number of weeks of unemployment under mandatory policy

of no illicit drug use, and on the ATE. Note that under the TMR Assumption all observations

are used to draw inference (N = 1345), and information can be extracted also from the subsample

with missing treatment data, as illustrated in Section 4.

The last two rows of Tables 2�3 report the bounds and the con�dence intervals on the treatment

e¤ects of interest, under the maintained assumption of monotone treatment response (MTR), and

under the maintained assumption of joint monotone treatment response and selection (MTR �
MTS). As already introduced in the previous section, such assumptions are speci�ed as follows:

MTR : yj (1) � yj (0)

MTS : E [y (t)j z = 1; d = 1] � E [y (t)j z = 0; d = 1] , t 2 f0; 1g
(28)

In this application, the monotone treatment response assumption states that each person�s un-

employment outcome is weakly increasing in conjectured use of drugs during work hours. The

monotone treatment selection assumption states that, for all t 2 f0; 1g, persons who do not select
into using drugs during work hours experience a weakly lower average number of weeks of unem-

ployment than do people who do select into using drugs during work hours. In other words, the

MTS is a �sorting�assumption. In this application, it states that if we divide the population in

two groups according to the received treatment, then the average outcome for the group who did

not use drugs during work hours is lower than for the group who did use it, for each t 2 T .
Manski and Pepper (2000) show that the jointMTR�MTS Assumption is a testable hypothesis,

which should be rejected if E [yj z = u] is not weakly increasing in u. Table 1 reports that in

the NLSY sample E [yj z = 1; d = 1] = 3:267 and E [yj z = 0; d = 1] = 2:703. The 95% con�dence

interval shows that we cannot reject the assumption that E [yj z = 1; d = 1]�E [yj z = 0; d = 1] � 0,
and that the band contains everywhere monotone non-decreasing functions. Hence I proceed on

the basis that MTR�MTS assumption is consistent with the empirical evidence.

While the identifying power of the MTR Assumption can be appreciated almost exclusively for

the average number of weeks of unemployment under a mandatory policy of no illicit drug use, the

joint MTR�MTS Assumption appears to have substantial identifying power. In particular, if we

look at E [y (1)] � E [y (0)], under the maintained assumption of MTR �MTS we conclude that

using drugs during work hours can increase the average number of weeks of unemployment by up

to 4:96 weeks. If we look at the 95% con�dence intervals around the true parameter, we conclude

that this increase can be of up to 5:98 weeks. If we look at the 95% con�dence intervals around

the bound, we conclude that this increase can be of up to 6:17 weeks.
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8 Conclusions

This paper has introduced the problem of missing treatments, i.e. what we can learn from the

data about a treatment e¤ect of interest when we do not know which treatment some individuals

have received. While for the observations for which we know the received treatment the problem is

identical to the standard one, namely the non observability of the latent outcomes, when we do not

observe the received treatments we face a new issue. Not only we have the usual latent outcome

problem, but we do not know the distribution of the treatments, and we are also unable to match

the unobserved received treatments with the observed realized outcomes.

I considered the missing treatments problem in the context of observational studies and of

survey nonresponse relative to the variable to be used as a treatment, and I showed that the

assumption of ignorability of the observations with missing treatment data can be tested. Sharp

worst case bounds were derived for the case in which no assumptions are imposed; I showed that no

information can be extracted from the observations for which the received treatment is unknown,

and that the additional degree of under-identi�cation is proportional to the fraction of missing

data. I illustrated how to use prior information on the distribution of the missing treatments (as

for example prior knowledge of P [z = 1j d = 0] or bounds on this quantity) to shrink the width
of the bounds. Finally, I showed that under the maintained assumption of monotone treatment

response information can be extracted from the observations with missing treatment data even

without any prior knowledge of P [z = 1j d = 0].
The theoretical results were illustrated by means of an empirical application studying the e¤ect

of drug abuse during work hours on unemployment. Given the NLSY sample, I showed that under

the maintained assumption of joint monotone treatment response and selection, using drugs during

work hours can increase the average number of weeks of unemployment by up to 4:96 weeks.
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A Proofs of Propositions

In all that follows, let Hp [P (yj �)] denote the identi�cation region of the distribution P (yj �) given
the observable data and the value p � P (z = 1j d = 0) :

A.1 Proposition 1

Proof. Denote by 	 the set of all probability distributions on Y ; then by Proposition 1 in Horowitz

and Manski (1995):

P [yj d = 0; z = 1] 2 Hp [P [yj d = 0; z = 1]]
Hp [P [yj d = 0; z = 1]] � 	 \

n
Q�(1�p) 

p ;  2 	
o (29)

Horowitz and Manski (1995) show that Lp and Up are respectively stochastically dominated and

stochastically dominating every other element of Hp [P [yj d = 0; z = 1]] : The result in (5) follows
because the mean is a parameter that respects stochastic dominance. When the treatments are

observable, the sharp bound on the average outcome under a mandatory policy is well known:

E [yj d = 1; z = 1]P [z = 1j d = 1] +K0P [z = 0j d = 1] � P [y (1) = 1j d = 1]

� P [y = 1j d = 1; z = 1]P [z = 1j d = 1] +K1P [z = 0j d = 1]

Using the Law of Iterated Expectations the result in (6) follows. To get the result in (??), notice

that in absence of information on the distribution of the missing treatments, all that we can learn

on E [y (1)j d = 0] is that it ranges in [K0;K1]. Hence, the result follows.

�

A.2 Proposition 2

Proof. To �nd the sharp upper and lower bounds described in Proposition 2, observe that in any

UB, E10 = K1 and E01 = K0, while in any LB, E10 = K0 and E01 = K1. Moreover, Proposition

4 in Horowitz and Manski (1995) implies that

(Lp; U1�p) 2 Hp;(1�p) [P [yj d = 0; z = 1] ; P [yj d = 0; z = 0]] :

Note that Lp is stochastically dominated by every member of Hp [P [yj d = 0; z = 1]] ; while U1�p
stochastically dominates every member of H1�p [P [yj d = 0; z = 0]] : Hence the lower bound on
E11p�E00 (1� p) will be given by p

R
ydLp� (1� p)

R
ydU1�p: Similar considerations hold for the

upper bound. The Law of Iterated Expectations and expression (9) imply (14). To get the result

in (15), take inf
p2[0;1]

LBd=0
CTE and sup

p2[0;1]
UBd=0

CTE . Then use the Law of Iterated Expectations to get the

result in (16).

�
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A.3 Proposition 3

Proof. Under the monotone treatment response assumption, we have: E10 2 [K0; E00] and E01 2
[E11;K1]. The quantities that we want to bound are: E [y (1)j d = 0] = E11p + E10 (1� p) and
E [y (0) = 1j d = 0] = E00 (1� p) + E01p. Since we know that E [yj d = 0] = E11p + E00 (1� p),
and that in any upper bound E10 and E01 are at their highest possible value, and in any lower

bound they are at their lowest possible value, the result in (20) follows. Using the Law of Iterated

Expectations and given (18)-(19), we get the results in (21)-(22). To get the lower bound in (23),

subtract from the lower bound in (22) the upper bound in (21); to get the upper bound in (23),

subtract from the upper bound in (22) the lower bound in (21).

�

B Asymptotic Distribution of the Estimated Lower and Upper

Bounds

As a �rst step, I introduce sample analog estimators of the population parameters appearing in

the population bounds; for ease of notation, I continue to omit covariates in all that follows. Let

�̂1 � bE (y) = 1
N

PN
i=1 yi denote the sample analog of E (y) ; �̂2 � cPr (d = 1) = 1

N

PN
i=1 di denote

the sample analog of Pr (d = 1) ; and

�̂3 � cPr (z = 1j d = 1) = 1
N

PN
i=1 zidi

1
N

PN
i=1 di

denote the sample analog of Pr(z = 1j d = 1) :Using similar notation, let E (yj d = 1) and E (yj d = 0)
be estimated by

�̂4 � bE (yj d = 1) = 1
N

PN
i=1 yidi

1
N

PN
i=1 di

and �̂5 � bE (yj d = 0) = 1
N

PN
i=1 yi (1� di)

1
N

PN
i=1 (1� di)

;

and E (yj z = 1; d = 1) and E (yj z = 0; d = 1) be estimated by

�̂6 � bE (yj z = 1; d = 1) = 1
N

PN
i=1 yizidi

1
N

PN
i=1 zidi

and �̂7 � bE (yj z = 0; d = 1) = 1
N

PN
i=1 yi (1� zi) di

1
N

PN
i=1 (1� zi) di

:

Let p̂ denote a root�N consistent and asymptotically normal estimator of p: Finally let �L �R
ydLp; �U �

R
ydUp; �L;1�p �

R
ydL1�p; and �U;1�p �

R
ydU1�p be estimated by

�̂8 � �̂L =

1
Np̂

PN
i=1 yi (1� di) I (yi � r̂ (p̂))

1
N

PN
i=1 (1� di)

�̂9 � �̂U =

1
Np̂

PN
i=1 yi (1� di) I (yi � r̂ (1� p̂))

1
N

PN
i=1 (1� di)
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�̂10 � �̂L;1�p =

1
N(1�p̂)

PN
i=1 yi (1� di) I (yi � r̂ (1� p̂))

1
N

PN
i=1 (1� di)

�̂11 � �̂U;1�p =

1
N(1�p̂)

PN
i=1 yi (1� di) I (yi � r̂ (p̂))

1
N

PN
i=1 (1� di)

where r̂ (�) is the ��quantile of the empirical distribution function of yj d = 0: Under a proper

set of assumptions on the data generating process listed below, the above estimators are root�N
consistent and asymptotically normal.10 Such assumptions are:

Assumption 1: A random sample fyi; di; zidig ; i = 1; : : : ; N is available, such that V ar (y) <1;
0 < Pr (d = 1) < 1; 0 < Pr (z = 1j d = 1) < 1:

Assumption 2: If an auxiliary sample of size n = N
� ; 0 < � < 1; is available, such that

p � Pr (z = 1j d = 0) can be consistently estimated using this sample, the auxiliary sample is
independent from the sample used to estimate the distribution of yj d = 0: Let p̂ denote the

estimator of p: Then p̂ satis�es: p̂ = 0 (1) if p = 0 (1) ; and
p
n (p̂� p) d! N (0; Vp) otherwise, so

that
p
N (p̂� p) d! N (0; �Vp) :

Assumption 3: Q is continuously di¤erentiable in neighborhoods of r (p) and r (1� p) ; and
Q0 (r (p)) > 0 and Q0 (r (1� p)) > 0:

The �rst assumption simply states that the researcher observes a random sample from the

population of interest. The second assumption requires that if the researcher can estimate p̂ from

an auxiliary sample, then this auxiliary sample has to be independent from that used to estimate

the distribution of yj d = 0. This assumption is necessary to obtain the asymptotic distribution of
�̂L and �̂U ; which are randomly trimmed means. The random trimming proportion is given by p̂;

and the distribution to be trimmed is the empirical distribution function of yj d = 0: For example,
if one assumes that the treatments are missing at random, then p̂ = cPr (z = 1j d = 1) ; and the
independence assumption is satis�ed. Assumption 3 is a regularity condition needed to obtain the

asymptotic distribution of �̂L and �̂U (Shorack and Wellner (1986), Chapter 19).

For reasons of brevity, rather than obtaining the con�dence sets for each of the identi�cation

regions of Sections 4-5, I derive below the joint asymptotic distribution of all estimators listed above.

Given this asymptotic distribution, one can easily obtain the joint distribution of the estimators

of each of the lower and upper bounds in Sections 4-5 by using the delta method, and then obtain

con�dence sets as detailed in Imbens and Manski (2004) and Chernozhukov, Hong and Tamer (2004,

Section 3.3). Alternatively, one can use the bootstrap to estimate the variance-covariance matrix

of the lower and upper bounds of interest.

10Root�N consistency and asymptotic normality of the estimators of population means follows from standard

arguments. For a discussion of the asymptotic properties of randomly trimmed means, see Shorack and Wellner

(1986), Chapter 19. Related results are derived by Horowitz and Manski (1997).
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Let �̂ =
h
�̂1; : : : ; �̂11

i0
; with � its population counterpart. Then, under Assumptions 1-3 the

following result holds:
p
N

 
�̂ � �
p̂� p

!
d! N (0;�) ;

where, denoting the elements of � by �ij ; �11 = V ar (y) ; �22 = Pr (d = 1) [1� Pr (d = 1)] ;
�33 =

Pr( z=1jd=1)[1�Pr( z=1jd=1)]
Pr(d=1) ; �44 =

V ar(yjd=1)
Pr(d=1) ; �55 =

V ar(yjd=0)
Pr(d=0) ; �66 =

V ar(yjz=1;d=1)
Pr(z=1;d=1) ; �77 =

V ar(yjz=0;d=1)
Pr(z=0;d=1) ; �12;12 = �Vp: Shorack and Wellner (1986, Chapter 19, Theorem 1) show that

p
N (�̂L � �L) =

a
�1
p

nR r(p)
K0

Udr � (r (p)� �L)
p
N (p̂� p)

o
whereU is the empirical process of the Uniform order statistics corresponding to the order statistics

of y1; : : : ; yN j d = 0: Similar results hold for �̂U ; �̂L;1�p; and �̂U;1�p: Given the independence of p̂
and Q̂; where Q̂ denotes the empirical distribution function of yj d = 0; it follows that

�88 =

�
p(1�p)[r(p)]2+

R r(p)
K0

y2dQ�p�2L+p(1�p)�2L�2p(1�p)�Lr(p)
�
+�Vp(r(p)��L)2

p2
;

�99 =

�
p(1�p)[r(1�p)]2+

R K1
r(1�p) y

2dQ�p�2U+p(1�p)�2U�2p(1�p)�Ur(1�p)
�
+�Vp(�U�r(1�p))2

p2
;

�10;10 =

�
p(1�p)[r(1�p)]2+

R r(1�p)
K0

y2dQ�(1�p)�2L;1�p+p(1�p)�2L;1�p�2p(1�p)�L;1�pr(1�p)
�
+�Vp(r(1�p)��L;1�p)

2

(1�p)2

�11;11 =

�
p(1�p)[r(p)]2+

R K1
r(p)

y2dQ�(1�p)�2U;1�p+p(1�p)�2U;1�p�2p(1�p)�U;1�pr(p)
�
+�Vp(�U;1�p�r(p))

2

(1�p)2 :

Regarding the covariances, those involving products of sample averages can be derived using stan-

dard results, and are available from the author upon request. Here I focus on providing the co-

variances involving �̂L; for the case that p̂ = cPr (z = 1j d = 1) ; those involving �̂U can be obtained
analogously. In particular,

�18 =
r(p)��L

p
[E(yjz=1;d=1)�E(yjd=1)] Pr(z=1;d=1)

Pr(d=1) + Pr(d=0)
p

R 1
0

R p
0 (min (s; t)� st) dr (s) dr (t) ;

�28 = 0;

�38 =
r(p)��L

p
Pr( z=1jd=1)[1�Pr( z=1jd=1)]

Pr(d=1) ;

�48 =
r(p)��L

p
[E(yjz=1;d=1)�E(yjd=1)] Pr( z=1jd=1)

Pr(d=1) ;

�58 =
1
p

R 1
0

R p
0 (min (s; t)� st) dr (s) dr (t) ;

�68 = 0;

�78 = 0;

�98 =
1
p2

R 1
1�p

R p
0 (min (s; t)� st) dr (s) dr (t)�

�U�r(1�p)
p

r(p)��L
p �Vp;

�10;8 =
1

p(1�p)
R 1�p
0

R p
0 (min (s; t)� st) dr (s) dr (t)�

r(1�p)��L;1�p
1�p

r(p)��L
p �Vp;

�11;8 =
1

p(1�p)
R 1
p

R p
0 (min (s; t)� st) dr (s) dr (t) +

�U;1�p�r(p)
1�p

r(p)��L
p �Vp;

�12;8 = �Vp
r(p)��L

p :
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Given these results, one can show, for example, that the joint asymptotic distribution of the

sample analogs of the lower and upper bounds on E [y (1)j d = 0] as in equation (5), given by
#L = p

R
ydLp + (1� p)K0; #U = p

R
ydUp + (1� p)K1; is as follows:

p
N

 
#̂L � #L
#̂U � #U

!
d!
 
W1

W2

!
� N (0;
) ;

where the elements of 
; denoted !ij ; are given by

!11 =
h
p (1� p) [r (p)]2 +

R r(p)
K0

y2dQ� p�2L + p (1� p) �2L � 2p (1� p) �Lr (p)
i
+ �Vp (r (p)�K0)

2 ;

!22 =
h
p (1� p) [r (1� p)]2 +

RK1

r(1�p) y
2dQ� p�2U + p (1� p) �2U � 2p (1� p) �Ur (1� p)

i
+�Vp (r (1� p)�K1)

2 ;

!12 =
R 1
1�p

pR
0

(min (s; t)� st) dr (s) dr (t)� (K1 � r (1� p)) (r (p)�K0)�Vp;

Con�dence intervals CI#
?
that asymptotically cover #? � E [y (1)j d = 0] with probability at least

(1� �) ; as in Imbens and Manski (2004), can be obtained by calculating the value of c� such that

�

 
c� +

p
N

#̂U � #̂L
max

�p
!̂11;

p
!̂22
�!� � (�c�) = 1� �;

and setting

CI#
?

=

�
#̂L �

c�
p
!̂11p
N

; #̂U +
c�
p
!̂22p
N

�
Con�dence intervals CI [#L;#U ] that asymptotically cover [#L; #U ] with probability (1� �) ; as

in Chernozhukov, Hong, and Tamer (2004), can be obtained by calculating the value of c� such

that

Pr
h
max

�
(W1)

2
+ ; (W2)

2
�

�
� c�

i
= 1� �;

where (u)2+ = (u)
2 � I [u > 0] and (u)2� = (u)

2 � I [u < 0] ; and setting

CI#
?

=

�
#̂L �

r
c�
N
; #̂U +

r
c�
N

�
:
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