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Abstract

This paper addresses the problem of data errors in discrete variables. When data errors occur,

the observed variable is a misclassified version of the variable of interest, whose distribution is

not identified. Inferential problems caused by data errors have been conceptualized through

convolution and mixture models. This paper introduces the direct misclassification approach.

The approach is based on the observation that in the presence of classification errors, the

relation between the distribution of the “true” but unobservable variable and its misclassified

representation is given by a linear system of simultaneous equations, in which the coefficient

matrix is the matrix of misclassification probabilities. Formalizing the problem in these terms

allows one to incorporate any prior information − e.g., validation studies, economic theory,

social and cognitive psychology − into the analysis through sets of restrictions on the matrix of
misclassification probabilities. Such information can have strong identifying power; the direct

misclassification approach fully exploits it to derive identification regions for any real functional

of the distribution of interest. A method for estimating the identification regions and construct

their confidence sets is given, and illustrated with an empirical analysis of the distribution of

pension plan types using data from the Health and Retirement Study.
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1 Introduction

Error-ridden data constitute a significant problem in nearly all fields of science. There are many

possible sources of data errors. Examples include use of inexact measures because of high costs

or infeasibility of exact evaluation, tendency of study subjects to underreport socially undesirable

behaviors and attitudes, and overreport socially desirable ones, or imperfect recall (or lack of

knowledge) by study subjects. When data errors are present, often the sampling process does not

identify the probability distribution of interest, and inference is impaired.

This paper addresses the problem of data errors in discrete variables. Interest in the question

emerges from the observation that much of the empirical work in economics and related fields is

based on the analysis of survey data. The reliability of these data is well documented to be less

than perfect (see for example Bound, Brown, and Mathiowetz (2001)). Although survey questions

may gather information on variables that are conceptualized as continuous (e.g.: age, earnings,

etc.), a considerable part of the collected data is in the form of variables taking values in finite sets.

Examples include educational attainment, language proficiency, workers’ union status, employment

status, health conditions and health/functional status.

When data errors occur in variables of this type, it is natural to think about the problem in

terms of classification errors (see for example Bross (1954) and Aigner (1973)). An example may

clarify this point. Suppose that an analyst is interested in learning the distribution of pension plan

types in the American population. Three types are possible: defined benefit, defined contribution,

and plans incorporating features of both. Suppose that the analyst has data from a nationally

representative survey which queried a random sample of American households about their pension

plans’ characteristics. Validation studies document that a significant fraction of the reported plan

types differ from the truth; for example, some people who truly have a defined benefit plan are

erroneously classified as having a defined contribution plan (Gustman and Steinmeier (2001)).

To formalize the problem, suppose that each member l of a population L is characterized by

the vector (wl, xl) ∈ X × X, where X is a discrete set, not necessarily ordered, denoted by X ≡
{1, 2, . . . , J} , 2 ≤ J < ∞. Let a sampling process draw persons at random from L. Suppose

that the analyst is interested in learning features of the distribution P (x) from the available data.

However, she does not observe realizations of x, but observes realizations of w, which can either be

equal or differ from the realizations of x. In the above example, x would denote the true pension

plan type, and w the type reported in the survey.

Much of the existing literature on drawing inference in presence of error-ridden data has concep-

tualized the problem using either convolution models or mixture models. In the case of convolution

models, a latent variable v ∈ V is introduced, and w is assumed to measure x with chronic (i.e.,

affecting each observation) “errors-in-variables:” w = x+ v. Researchers using convolution models
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commonly assume that the latent variable v is statistically independent from x or uncorrelated

with x, and has mean zero (see, e.g., Klepper and Leamer (1984)).

In the case of mixture models, latent variables v ∈ V and z ∈ {0, 1} are introduced, and w is

viewed as a contaminated version of x, generated by the mixture w = z · x + (1− z) · v. In this
model, the unobservable binary variable z denotes whether x or v is observed, and realizations of w

with z = 1 are said to be error free. Researchers using mixture models commonly assume that the

error probability Pr (z = 0) is known, or at least that it can be bounded non-trivially from above

(see, e.g., Horowitz and Manski (1995)).

When a variable with finite support is imperfectly classified, it is widely recognized that the

assumption, typical in convolution models, of independence between measurement error and true

variable cannot hold (see for example Bound et al. (2001), p. 3735). Moreover, compelling evidence

from validation studies suggests that errors in the data are occasional rather than “chronic:” a

significant part of the observed data are error free. Mixture models seem therefore more suited for

the analysis of such data. However, often the researcher has prior information on the nature of the

misclassification pattern that has transformed x into w. This information may aid in identification,

but cannot easily be exploited through a mixture model.

In this paper I propose an alternative framework, which I call the direct misclassification ap-

proach, to draw inference on the distribution of discrete variables subject to classification errors.

The approach does not rely on the introduction of latent variables, but is based on the observation

that in the presence of misclassification, the relation between the observable distribution of w and

the unobservable distribution of x is given by⎡⎢⎢⎣
Pr (w = 1)
...

Pr (w = J)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Pr (w = 1|x = 1) . . . Pr (w = 1|x = J)
...

. . .
...

Pr (w = J |x = 1) . . . Pr (w = J |x = J)

⎤⎥⎥⎦
⎡⎢⎢⎣
Pr (x = 1)
...

Pr (x = J)

⎤⎥⎥⎦ . (1.1)

In all that follows I will denote by Π the matrix of elements {Pr (w = i|x = j)}i,j∈X which appears
on the right hand side of the above equation. For i 6= j, Pr (w = i|x = j) is generally referred to as

“misclassification probability.” Equation (1.1) is a simple formalism, and does not have content per

se. However, it becomes potentially informative when combined with assumptions on the matrix

of misclassification probabilities Π ; such assumptions generate a misclassification model.

The method that I introduce allows one to draw inference on P (x) and on any real functional of

this distribution using equation (1.1) directly, when restrictions on the elements of Π are imposed.

Due to the classification errors, the identification of the probability distribution P (x) is partial,

and the inference on any of its real functionals is in the form of identification regions, that is, sets

collecting the feasible values of such functionals. I show that these regions are “sharp,” in the sense

that they exhaust all the available information, given the sampling process and the maintained
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assumptions. Manski (2003) gives an overview of the literature on partial identification; for other

work see e.g. Hotz, Mullin, and Sanders (1997) and Blundell, Gosling, Ichimura, and Meghir (2003).

The restrictions imposed on Π can have several origins, including validation studies, economic

theory, cognitive and social psychology, or information on the circumstances under which the data

have been collected. In this paper I study their identifying power in general. I then consider a few

specific examples. As a starting point, I assume that the researcher has a known lower bound on

the probability that the realizations of w and x coincide, i.e., Pr (w = x) ≥ 1−λ, or, strengthening
this assumption, that the researcher has a known lower bound on the probability of correct report

for each value that x can take, i.e., Pr (w = j|x = j) ≥ 1 − λ, ∀j ∈ X. This information is often

provided by validation studies or knowledge of the circumstances under which the data have been

collected.1 In this paper it is regarded as “base-case” information, and the identification regions

derived under these assumptions constitute the baseline of the analysis. Then, I consider the case

of “constant probability of correct report,” and the case of “monotonicity in correct reporting.” I

show that these assumptions can have identifying power when maintained alone, as well as when

imposed jointly with the base case assumptions.

The assumption of constant probability of correct report is motivated by the findings of valida-

tion studies. For specific survey inquiries, these studies suggest that the probability of correct re-

port, for at least a subset of the values that x can take, is constant (formally, Pr (w = j|x = j) = π ,

∀j ∈ X̃ ⊆ X. In all that follows, I will denote by X̃ ⊆ X the subset of values that x can take, for

which a given restriction holds). For example, in the context of self reports of employment status,

Poterba and Summers’ (1995) analysis suggests that there is approximately the same probability

of correct report for people who are employed and for those who are not in the labor force, but a

much lower probability of correct report for people who are unemployed.

The assumption of monotonicity in correct reporting is motivated by social psychology, which

suggests that when survey respondents are asked questions relative to socially and personally sen-

sitive topics, they tend to underreport socially undesirable behaviors and attitudes, and overreport

socially desirable ones. This suggestion is supported by validation studies, which often document,

within a given survey inquiry, that the probability of correct report of a certain alternative is

greater or equal than the probability of correct report of a less socially desirable alternative (for-

mally, Pr (w = j|x = j) ≥ Pr (w = j + 1|x = j + 1) , ∀j ∈ X̃ ⊂ X, where a higher value of j

denotes a decrease in social desirability of an alternative). This is the case for example when

survey respondents are asked about their participation in welfare programs, and j indicates non

1Availability of a lower bound on the error probability is a commonplace assumption in the statistic literature on

robust estimation, which makes use of mixture models. For example, Hampel (1974) and Hampel et al. (1986) state

that “the proportion of gross errors in data, depending on circumstances, is normally between 0.1% and 10% with

several percent being the rule rather than the exception” (p. 387 and p. 28, respectively).
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participation, while j+1 indicates participation (Bound et al. (2001) present a survey of validation

studies on transfer program recipiency).

The proposed method allows the researcher to easily incorporate these assumptions, and in

general any restriction on the misclassification pattern, into the analysis. The method is easy to

implement, and often computationally tractable. Despite the fact that the results of validation

studies on discrete variables are often presented in the form of matrices of misclassification prob-

abilities (see, e.g., Bound et al. (2001)), and the appeal of the simple formalization given by the

misclassification models, there appear to be no precedents to the direct use of equation (1.1) to

deal with the identification problems caused by classification errors.

However, there are precedents to the use of specific restrictions on misclassification probabil-

ities. Aigner (1973), Klepper (1988), and Bollinger (1996) imposed different sets of assumptions

on the probabilities of misclassifying a dichotomous variable x, and derived sharp nonparametric

bounds on the mean regression E (y|x). Their approach is close in spirit to the one in this paper,
but their methods are designed exclusively for binary variables, and for the case in which specific

assumptions hold. On the other hand, most of the related literature (e.g.: Card (1996), Hausman,

Abrevaya, and Scott-Morton (1998), Abrevaya and Hausman (1999), Lewbel (2000), Dustmann and

van Soest (2000), Kane, Rouse, and Staiger (1999), Ramalho (2002)) proposes methods imposing

restrictions on misclassification probabilities to achieve parametric or semiparametric identification

of the quantities of interest (i.e., features of P (y|x), or, less often, P (x)).2 As such, these methods
are subject to criticisms against possible misspecifications; moreover, while the assumptions em-

ployed might hold in some data sets, there might be other data sets for which they do not hold, and

in that case the methods cannot be applied. Additionally, often these assumptions are maintained

for technical reasons, and do not have an obvious interpretation.

Horowitz and Manski (1995) introduced fully nonparametric methods to draw inference on

features of the distribution of a random variable x, when the sampling process is corrupted or

contaminated. They adopted a mixture model, and showed that if the researcher has a (nontrivial)

lower bound 1 − λ on the probability that the realization of w is drawn from the distribution of

x, informative bounds can be obtained on any parameter of the distribution P (x) that respects

stochastic dominance. Horowitz and Manski (1995) showed that these bounds are sharp, in the

sense that they exhaust all the available information, given the sampling process and the maintained

assumptions. The assumptions they entertain imply the base case assumptions on Π introduced

2Specific restrictions include the following: Bross (1954), when introducing the misclassification problem for binary

data, assumed that Pr (w = 1|x = 0) and Pr (w = 0|x = 1) are of the same order of magnitude. Usually with binary
data it is assumed either that Pr (w = 1|x = 0) = Pr (w = 0|x = 1) < 1

2
(e.g., Klepper (1988), Card (1996)), or

that Pr (w = 1|x = 0) + Pr (w = 0|x = 1) < 1 (e.g., Bollinger (1996), Hausman et al. (1998)). When J > 2, it is

assumed that other monotonicity restrictions between the elements of Π hold (e.g., Abrevaya and Hausman (1999),

Dustmann and van Soest (2000)), or that specific types of misclassification do not occur (Gong et al. (1990)).
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above, namely Pr (w = x) ≥ 1 − λ, and Pr (w = j|x = j) ≥ 1 − λ, ∀j ∈ X.3 When only these

assumptions are maintained, in terms of identification of the types of parameters considered by

Horowitz and Manski, the method developed in this paper is equivalent to the one they proposed.

However, often different, and perhaps more, information is available to the applied researcher

beyond that maintained by Horowitz and Manski (1995). This information can have strong identify-

ing power, but cannot be easily used within a mixture model. The direct misclassification approach

allows one to readily incorporate it into the analysis, and fully exploit its identifying power. The

method does not rely on any specific set of assumptions, but can incorporate any prior informa-

tion that the researcher might have on the misreporting pattern into the analysis and guarantees

sharpness of the implied identification regions.

While in the paper I focus on a single misclassified variable x, the method easily extends to

drawing inference on features of the distribution of x conditional on a perfectly observed covariate,

or on the joint distribution of several misclassified variables, taking values in finite sets. Given an

outcome variable of interest y ∈ Y , the approach also extends to drawing inference on features

of the distribution P (y|x) when x is subject to classification errors. Moreover, it can allow one

to draw inference when the data are not only error-ridden, but also incomplete, a situation very

common in practice. In fact, in presence of both misclassified and missing data, the matrix in

equation (1.1) will simply become rectangular rather than square, with additional rows giving the

probabilities of having missing data, conditional on the true values of x.

The paper is organized as follows. Section 2 introduces the method, describes connectedness

properties of the identification regions, outlines how the identification regions can be estimated

consistently, and proposes a procedure to calculate confidence sets for the identification regions.

Section 3 studies the identifying power of a few specific assumptions, some of which have not

been previously considered in the literature. Section 4 illustrates the estimation method with an

application to data on the distribution of pension plans’ characteristics in the American population.

Section 5 discusses the extensions of the direct misclassification approach mentioned above, showing

how it allows the researcher to draw inference on features of the joint distribution of two or more

variables, when one is perfectly measured, but at least another is subject to classification error.

It also illustrates how to extend the method to the case of jointly missing and error ridden data.

Section 6 concludes. An analysis of the relationship between misclassification models, convolution

models, and mixture models is provided in Appendix A. All of the mathematical details are in

Appendix B.

3 If the researcher has an upper bound λ on the error probability, and the sampling process is corrupted, the first

assumption follows; if the sampling process is contaminated, the second assumption follows. These results will be

rigorously proved in Appendix A.
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2 The Direct Misclassification Approach

In all that follows, to keep the focus on identification, I treat identified quantities as population

parameters, and I assume that Pr (w = j) > 0 ∀ j ∈ X. A method to consistently estimate the

identification regions and construct their confidence sets are provided at the end of this section.

Let Pw denote the column vector
h
Pw
j , j ∈ X

i
≡ [Pr (w = j) , j ∈ X], Px the column vector

[Pr (x = j) , j ∈ X], and Π the stochastic matrix which, through equation (1.1), generates the

misclassification of x into w. Denote the elements of Π by πij ≡ {Pr (w = i|x = j)} , i, j ∈ X,

and the columns of Π by πj . Let ΨX denote the space of all probability distributions on X, and

define analogously ΨX×W ; let < denote the real line. Let τ : ΨX → < be a real functional of

P (x) , denoted τ [Px] , with analogous definitions for functionals of the joint distribution of (w, x) .

A particularly simple functional of P (x) is τ [Px] = E [1 (x = j)] = Pr (x = j) , j ∈ X. For any

given matrix of functionals of interest Θ, let H [Θ] denote its identification region.

Given this notation, we can rewrite equation (1.1) as

Pw = Π ·Px. (2.1)

The direct misclassification approach starts from the observation that Pr (x = j) , j ∈ X, enters

each of the J equations in system (1.1). Hence, each one of these equations can, potentially, imply

restrictions on Pr (x = j), and therefore on Px and τ [Px]. The extent to which this will be the

case crucially depends on what assumptions are imposed on the misreporting pattern.

The approach is quite intuitive. If Π were known, and of full rank, we would be able to solve

the system of linear equations in (2.1) and uniquely identify Px, and therefore τ [Px]. In practice,

the misclassification probabilities πij , i, j ∈ X, are known only to belong to a set H [Π ], defined

below. This set accounts both for the restrictions coming from probability theory, as well as for

the restrictions on the misreporting pattern coming from validation studies, social and cognitive

psychology, economic theory, etc. Denote the elements of H [Π ] by Π ≡ {πij}i,j∈X , and the

columns of this matrix by πj , j ∈ X. When H [Π ] is not a singleton, Px is not identified and

τ [Px] need not be identified, but only known, respectively, to lie in the identification regions H [Px]

and H {τ [Px]}.
The identification region H [Px] is defined as the set of column vectors px = [pxk, k ∈ X] , such

that, given Π ∈ H [Π ], px solves system (2.1):

H [Px] = {px : Pw = Π · px, Π ∈ H [Π ]} . (2.2)

In the next Subsection, H [Π ] will be formally defined, and characterized in a way such that ∀
Π ∈ H [Π ], pxk ≥ 0, ∀ k ∈ X, and

PJ
k=1 p

x
k = 1.

Throughout this paper, the notation px will be reserved to elements of H [Px], and the notation

pxk to the k−th component of a vector px. Hence, pxk and px represent, respectively, feasible values of
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Pr (x = k) , k ∈ X, and [Pr (x = j) , j ∈ X], given Π ∈ H [Π ] and equation (2.1). By construction

px ≡ px (Π;Pw) ,

pxk = pxk (Π;P
w) , k ∈ X.

For ease of notation, I omit the arguments of pxk and p
x. The identification region H {τ [Px]} is

then defined as:

H {τ [Px]} = {τ [px] : px ∈ H [Px]} . (2.3)

The set H [Π ] is of central importance for the identification of Px and τ [Px], as the identifica-

tion regions of these functionals are defined on the basis of H [Π ] . I denote by HP [Π ] the set of

matrices that satisfy the probabilistic constraints and by HE [Π ] the set of matrices satisfying the

constraints coming from validation studies and theories developed in the social sciences. Hence,

H [Π ] = HP [Π ] ∩HE [Π ]

In what follows, I will describe the geometry of H [Π ], and in particular its connectedness proper-

ties. Interest in connectedness arises from the fact that the continuous image of a connected set is

connected. This implies that if H [Π ] is connected and px is a continuous function of Π, H [Px] is

connected as well, and so is H {τ [Px]} if τ (·) is a continuous functional. Conversely, if H [Π ] is

not connected or if the functionals are not continuous, H [Px] and H {τ [Px]} need not necessarily
be connected. This has implications for the estimation of the identification regions. Consider for

example the case that interest centers on a real valued functional τ [Px]. When H {τ [Px]} is a
connected set, it is given by the entire interval between its smallest and its largest points. Hence

by estimating these two points one obtains an estimate of the entire identification region. When

H {τ [Px]} is disconnected, parts of the interval between the smallest and the largest points are
not feasible, and therefore are not elements of the identification region. Section 2.2 introduces a

method to estimate H {τ [Px]} when this is the case.
A relevant example of a case in which px is a continuous function of Π is obtained when each

matrix Π ∈ H [Π ] is of full rank. In this case, for each Π ∈ H [Π ] , one can solve the linear system

in (2.1), obtaining px = Π−1 · Pw. It is a well known result in matrix algebra that the inverse of

a nonsingular matrix is continuous in the elements of the matrix (see, e.g., Campbell and Meyer

(1991) Ch. 10). A very simple condition ensuring that each matrix Π ∈ H [Π ] is of full rank is

assuming that the probability of correct report is greater than 1
2 for each of the values that x can

take.4 Validation studies suggest that this requirement is often satisfied in practice.5

4 If πjj > 1
2 , ∀j ∈ X, ∀ Π ∈ H [Π ], ΠT is strictly diagonally dominant, and hence Π is nonsingular. An n × n

matrix A = {aij} is said to be strictly diagonally dominant if, for i = 1, 2, . . . , n, |aii| > n
j=1(j 6=i) |aij |. A proof of

the fact that if A is strictly diagonally dominant, then A is nonsingular, can be found in Horn and Johnson (1999),

Theorem 6.1.10.
5Among others, this is the case in the context of workers’ union status (see, e.g., Card (1996)), transfer program
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2.1 The Set H [Π ] and its Geometry

We start by characterizing the set HP [Π ] and its geometry. Probability theory requires thatPJ
i=1 πij = 1, ∀j ∈ X, that πij ≥ 0, ∀i, j ∈ X, and that, given Pw, equation (2.1), and Π, the

implied px gives a valid probability measure. Denote by HP [Π ] the set of Πs that satisfy these

probabilistic requirements, so that, throughout the entire paper,

HP [Π ] ≡
(
Π :

Ã
πij ≥ 0, ∀i, j ∈ X,

PJ
i=1 πij = 1, ∀j ∈ X,

pxh ≥ 0 ∀h ∈ X,
PJ

h=1 p
x
h = 1

!)
. (2.4)

Notice that the set HP [Π ] can be defined alternatively using the notions of (J − 1)− dimensional
simplex and convex hull of a set of vectors. We will use the following definitions:

Definition 1 The (J − 1)−dimensional simplex is the set∆J−1 ≡
©
δ ∈ <J

+ : δ1 + δ2 + . . .+ δJ = 1
ª
.

Definition 2 The convex hull of a finite subset {ξ1, ξ2, . . . , ξJ} of <J , denoted conv {ξ1, ξ2, . . . , ξJ},
consists of all the vectors of the form α1ξ1 + α2ξ2 + . . . + αJξJ with αi ≥ 0 ∀ i = 1, . . . , J andPJ

i=1 αi = 1. (Rockafellar (1970), Corollary 2.3.1.)

By definition, Pw ∈ ∆J−1. We can now rewrite the set HP [Π ] as

HP [Π ] ≡
©
Π : πj ∈ ∆J−1 and pxj ≥ 0 ∀j ∈ X, and Pw ∈ conv {π1,π2, . . . ,πJ}

ª
. (2.5)

In words, a matrix Π is an element of HP [Π ] if its columns are probability mass functions, the

implied px is nonnegative, and the vector Pw can be expressed as a convex combination of the

columns of Π.

To describe the geometry of HP [Π ] we need to introduce another definition:

Definition 3 A subset Γ of <n is star convex with respect to γ0 ∈ Γ if for each γ ∈ Γ the line
segment joining γ and γ0 lies in Γ. (Munkres (1991), p. 330.)

As a remark, a star convex set is always pathwise-connected, which in turn is always connected.

Given a set of matrices HP [Π ] ⊂ <J×J , I will define the line segment between two matrices

Π1,Π2 ∈ HP [Π ] as

Πα = αΠ1 + (1− α)Π2, α ∈ [0, 1] ,

and I will say that the set HP [Π ] is convex if given any two matrices Π1,Π2 ∈ HP [Π ] , Πα ∈
HP [Π ] for all α ∈ (0, 1) . Given these preliminaries, let Π̃ be a matrix with each column identical
to Pw, and notice that Π̃ is trivially in HP [Π ] . We are now ready to state a result describing the

connectedness of the set HP [Π ] .

recipiency (see, e.g., Moore, Marquis, and Bogen (1996)), employment status (see, e.g., Poterba and Summers (1995)),

and 1- and 3-digit level classification of industry and occupation (see, e.g., Mellow and Sider (1983)).

8



Proposition 1 The set HP [Π ] is star convex with respect to Π̃. However, it is not star convex

with respect to any other of its elements. ¤

The result in Proposition 1 implies that the set HP [Π ] is not convex, because a convex set is star

convex with respect to each of its elements. The set HP [Π ] is illustrated in Example 1 and in the

first panel of Figure 1.

Example 1 Suppose that x and w are binary, i.e. that J = 2, and let Pw
1 = 0.3. Then the matrix

Π is determined by its two diagonal elements, π11 and π22, and

px1 =
Pw
1 − (1− π22)

π11 − (1− π22)
.

It is easy to verify that

HP [Π ] = {π11, π22 : (π11 ∈ [0, Pw
1 ] , π22 ∈ [0, 1− Pw

1 ]) ∪ (π11 ∈ [Pw
1 , 1] , π22 ∈ [1− Pw

1 , 1])} .

This set is plotted in the first panel of Figure 1, and its star convexity is apparent.

Let us now turn to the set of matrices, denoted HE [Π ] , that satisfy the restrictions on the

misreporting pattern coming from prior information. Then if, for example, validation studies

suggest a uniform lower bound on the probability of correct report for each j ∈ X, we will have

HE [Π ] = {Π : πjj ≥ 1− λ ∀j ∈ X} .

If social psychology suggests that individuals, when answering about the frequency with which they

engage in a certain socially desirable activity, either provide correct reports or over-report, we will

have

HE [Π ] = {Π : πij = 0 ∀ i < j ∈ X} .

Of course, plenty of other restrictions are possible.

Let us now return to Proposition 1, and analyze the insight that it provides. Since HP [Π ]

is connected, but not convex, when we take its intersection with the set HE [Π ] we obtain a set

H [Π ] that might be disconnected, connected, or convex, depending on how HE [Π ] slices HP [Π ].

Below I provide three examples of sets HE [Π ] , that will further be analyzed in Section 3. Each

of these sets is trivially convex, as it is linear in Π, but its intersection with HP [Π ] generates sets

H [Π ] that can be disconnected, connected, and convex. These examples are illustrated in the six

panels of Figure 1.
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Example 2 Constant Probability of Correct Report.

Let HE [Π ] = {Π : πjj = π, ∀j ∈ X}. Suppose that x and w are binary, i.e. that J = 2. Then

H [Π ] =

⎧⎪⎪⎨⎪⎪⎩
{π : π ∈ [0, Pw

1 ] ∪ [1− Pw
1 , 1]} if Pw

1 < 1
2 ,

{π : π ∈ [0, 1− Pw
1 ] ∪ [Pw

1 , 1]} if Pw
1 > 1

2 ,

{π : π ∈ [0, 1]} if Pw
1 =

1
2 .

Hence, if Pw
1 6= 1

2 , H [Π ] is disconnected. This set is plotted in the second panel of Figure 1, and

the fact that it is disconnected is apparent. Moreover, it is apparent that the set H [Π ] will remain

disconnected, if Pw
1 6= 1

2 , even if the assumption of constant probability of correct report is weakened

to requiring that π22 = π11 + ε, as long as |ε| < |1− 2Pw
1 | (and ε is such that π22 ∈ [0, 1]).

Example 3 Monotonicity in Correct Reporting.

Let HE [Π ] =
©
Π : πjj ≥ π(j+1)(j+1), ∀j ∈ X

ª
. Suppose that x and w are binary, i.e. that J = 2,

so that the monotonicity assumption simplifies to π11 ≥ π22. Then if Pw
1 < 1

2 ,

H [Π ] = {π11, π22 : (π11 ∈ [0, Pw
1 ] , π22 ∈ {[0, π11]}) ∪ (π11 ∈ [1− Pw

1 , 1] , π22 ∈ [1− Pw
1 , π11])}

If Pw
1 ≥ 1

2 ,

H [Π ] = {π11, π22 : (π11 ∈ [0, Pw
1 ] , π22 ∈ [0,min (1− Pw

1 , π11)]) ∪ (π11 ∈ [Pw
1 , 1] , π22 ∈ [1− Pw

1 , π11])}

Hence, if Pw
1 < 1

2 , H [Π ] is disconnected, but otherwise it is connected. This set is plotted in the

third panel of Figure 1. The fact that it is disconnected is apparent given the choice of Pw
1 = 0.3.

To see why the set can be connected, the fourth panel of Figure 1 plots the set H [Π ] that would be

obtained if the monotonicity assumption was π11 ≤ π22 (in the binary case, reversing the sign of

the monotonicity assumption has an effect similar to maintaining π11 ≥ π22 but having Pw
1 > 1

2).

Example 4 Lower Bound on the Probability of Correct Report.

Let HE [Π ] = {Π : πjj ≥ 1− λ,∀j ∈ X} . Suppose that x and w are binary, i.e. that J = 2. Then

if 1 > λ > max {Pw
1 , 1− Pw

1 } ,

H [Π ] = {π11, π22 : (π11 ∈ [1− λ, Pw
1 ] , π22 ∈ [1− λ, 1− Pw

1 ]) ∪ (π11 ∈ [Pw
1 , 1] , π22 ∈ [1− Pw

1 , 1])} .

This set is connected through the point π11 = Pw
1 , π22 = 1−Pw

1 , and is plotted in the fifth panel of

Figure 1 for Pw
1 = 0.3 and λ = 0.8.

If max {Pw
1 , 1− Pw

1 } > λ, then

H [Π ] = {π11, π22 : π11 ∈ [max {1− λ, Pw
1 } , 1] , π22 ∈ [max {1− λ, 1− Pw

1 } , 1]} ,

and H [Π ] is convex. This set is plotted in the sixth panel of Figure 1, and the fact that it is convex

is apparent given the choice of Pw
1 = 0.3 and λ = 0.2.
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2.2 Consistent Estimation of the Identification Regions

Suppose first that the researcher is simply interested in the extreme points of the identification

region of a functional of Px, say for example τ [Px] = Pr (x = j) , j ∈ X, and that the matrix Π is

of full rank for any Π ∈ H [Π ] . Then these points can be calculated and consistently estimated by

solving nonlinear optimization problems subject to linear and nonlinear constraints. In particular,

let px = Π−1 ·Pw, Π ∈ H [Π ] . Then the smallest and the largest points in H [Pr (x = j)] , j ∈ X,

can be calculated as
px,Lj = inf

Π∈H[Π ]
pxj , px,Uj = sup

Π∈H[Π ]
pxj ,

and similarly for any other real functional. These extreme points are continuous functions of Pw.

Suppose for simplicity that only Pw needs to be estimated, and that a random sample {wi} ,
i = 1, . . . , N is available. Let Pw

N be the vector collecting the fraction of observations reporting

w = i, i = 1, . . . , J,

Pw
i,N =

1

N

NP
j=1

1 (wj = i) , i = 1, . . . , J. (2.6)

Then one can consistently estimate the above extreme points by replacing Pw with Pw
N .

Suppose now that the researcher is interested in estimating the entire identification region.

While the general identification approach proposed in Section 2.1 is valid for any set of restrictions

on Π , here I will focus on restrictions that satisfy certain regularity conditions, described in

Assumptions C0 and C1 below, so that a simple estimator can be utilized.

We have seen in the previous section that the set H [Π ] can be disconnected, connected or

convex. These properties will be reflected in the shape of the identification regions of the functionals

that we are interested in, namely H [Px], H {τ [Px]} and H {Θ [Px]} , for some vector of dimension
k of functionals Θ : ΨX → <k. Hence, it is important to have a method to calculate and consistently

estimate the entire identification regions, that will be able to capture their possible disconnectedness

and nonconvexities.

Manski and Tamer (2002) introduced methods to estimate the entire identification region of

a vector of parameters of interest when the identification region cannot be expressed in closed

form solution, but is given by all values of the vector that minimize a specified objective function.

Here I introduce a related nonlinear programming estimator, using the same insight as in the linear

programming estimator proposed by Honore and Tamer (2003) and further discussed by Honore and

Lleras-Muney (2004). Observe that if we can calculate H [Px] , we can then calculate H {τ [Px]}
and H {Θ [Px]} for any functionals τ (·) and Θ (·) (for example, the mean of x, its variance, the
Gini coefficient, etc.); hence, we focus on the calculation of H [Px].
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The set H [Px] consists of the vectors px ∈ ∆J−1 for which the equations⎧⎪⎪⎨⎪⎪⎩
Pw = Π · px,
πj ∈ ∆J−1 ∀j
Π ∈ HE [Π ] ,

(2.7)

have a solution for Π. In general, HE [Π ] can be written as

HE [Π ] =

(
Π : fj (Π) ≥ µj , j = 1, . . . , q1, gi (Π) ≤ µq1+i, i = 1, . . . , q2,

hk (Π) = µq1+q2+k, k = 1, . . . , q3,

)

where q1 + q2 + q3 = q is the number of constraints imposed, and for j = 1, . . . , q, 0 ≤ µj ≤ M

is a non-negative bounded parameter, and fj : <J2 −→ <, gi: <J2 −→ <, and hk: <J2 −→ <, are
functions taking as arguments the elements of the matrix Π.

To give a concrete example, if X = {1, 2, 3} and

HE [Π ] = {Π : πjj ≥ 0.8 ∀j ∈ X, 0.125 ≤ π12π13 ≤ 0.33, π11 = π22} ,

then q1 = 4, q2 = 1, q3 = 1, q = 6, and

fj (Π) = πjj , µj = 0.8, j = 1, 2, 3,

f4 (Π) = π12π13, µ4 = 0.125,

g1 (Π) = π12π13, µ5 = 0.33,

h1 (Π) = π11 − π22, µ6 = 0.

The equations in (2.7) have the same structure as the constraints in a nonlinear programming

problem. Hence one can check whether a particular vector ξ ∈ ∆J−1 belongs to H [Px] by checking

if a nonlinear programming problem that has constraints given by (2.7) has a solution with a specific

value for the objective function. Consider the nonlinear programming problem

max
{πij},{vk}

P
k

−vk (2.8)

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk ≥ 0 ∀ k,
πij ≥ 0, i, j = 1, . . . , J,
1−

PJ
i=1 πij = vj , j = 1, . . . , J,

Pw −Π · ξ =
h
vJ+1 . . . v2J

iT
,

fl (Π)− µl + v2J+l ≥ 0, l = 1, . . . , q1,
µq1+m − gm (Π) + v2J+q1+m ≥ 0, l = 1, . . . , q2,
hs (Π)− µq1+q2+s + v2J+q1+q2+s = 0, l = 1, . . . , q3.

(2.9)
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We will consider restrictions determining the set HE [Π ] that satisfy the following conditions:

Assumption C0: For each j = 1, . . . , q1, i = 1, . . . , q2, and k = 1, . . . , q3, fj (Π)|Π=0 =

gi (Π)|Π=0 = hk (Π)|Π=0 = 0 and fj (Π) , gi (Π) , and hk (Π) are continuous on [0, 1]
J2 .

Let P×V denote the constraint set defined by (2.9). Then under Assumption C0, P×V is

closed, as the functions defining it are continuous. It is also non-empty, as it contains the vector£
π01; . . . ;π

0
J ;v

0
¤
, with π0ij = 0 for i, j = 1, . . . , J, v

0
j = 1 for j = 1, . . . , J, v

0
J+j = Pw

j for j = 1, . . . , J,

v02J+l = µl, l = 1, . . ., q1, v
0
2J+q1+m

= 0, m = 1, . . ., q2, and v02J+q1+q2+s = µq1+q2+s, s = 1, . . ., q3.

The objective function in (2.8) is continuous. Moreover, the set©
[π1; . . . ;πJ ;v] ∈ P×V :

P
k−vk ≥

P
k−v0k

ª
is bounded. Hence, by the Bolzano-Weierstrass theorem, the objective function in (2.8) achieves a

maximum on (2.9). The optimal function will have value zero if and only if all vk = 0, that is if a

solution exists to (2.7). Hence, for given ξ ∈ ∆J−1 one can check whether ξ ∈ H [Px] by solving

the above nonlinear programming problem and checking whether vk = 0 for all k.

The above method for calculating identification regions has a natural sample analog counterpart,

and under some regularity conditions about the functions defining the set HE [Π ] and the sampling

process, this estimator is consistent. In particular, we will maintain the following assumptions:

Assumption C1: For each j = 1, . . . , q1, i = 1, . . . , q2, and k = 1, . . . , q3, either (i) fj (Π) ,

gi (Π) and hk (Π) are homogeneous functions of degree (respectively) rj , ri, rk ≥ 1, or (ii) fj (Π) ,
gi (Π) and hk (Π) are multivariate polynomials in Π with non-negative coefficients. Additionally,

gi (Π) ≥ 0 and hk (Π) ≥ 0 on [0, 1]J
2

.

Assumption C2: (a) Let a random sample {wi} , i = 1, . . . , N be available, and let Pw
N be defined

as in (2.6). (b) If the set HE [Π ] contains constraints involving any parameters to be estimated,

let these parameters enter the constraints additively. Without loss of generality, to simplify the

notation, let the parameters to be estimated be µl, l = 1, . . . , q̄ ≤ q. (c) Suppose that a random

sample of size n = N
κ for some constant κ such that 0 < κ < ∞ is available to estimate µl,

l = 1, . . . , q̄, so that
√
N
¡
µl,n − µl

¢ d→ N
¡
0, κVµl

¢
. (d) Let µl satisfy µl > 0, l = 1, . . . , q̄ ≤ q.

In Section 3 we will consider several examples of restrictions defining the set HE [Π ] that satisfy

Assumptions C0-C1. For example, suppose that a validation study provides a lower bound on the

probability of correct report for each type j = 1, . . . , J, so that HE [Π ] =
©
Π : πjj ≥ µj , j ∈ X

ª
.

Then Assumptions C0-C1 are clearly satisfied. Moreover, if a validation (random) sample {w̃i, x̃i} ,
i = 1, . . . , n is available (with n = N

κ , 0 < κ < ∞), Assumption C3 is satisfied, and µj,n can be

obtained as:

µj,n =

Pn
i=1 1 (w̃i = j, x̃i = j)Pn

i=1 1 (x̃i = j)
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Let HE
N [Π ] denote the set HE [Π ] obtained when µl is replaced by µl,n, l = 1, . . ., q, with the

convention that µl,n = µl for l = q̄ + 1, . . ., q. Define an objective function QN (ξ) by

QN (ξ) = max
{πij},{vk}

P
k

−vk

subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vk ≥ 0 ∀ k
πij ≥ 0 ∀ i, j = 1, . . . , J
1−

PJ
i=1 πij = vj , j = 1, . . . , J

Pw
N −Π · ξ =

h
vJ+1 . . . v2J

iT
fl (Π)− µl,n + v2J+l ≥ 0, l = 1, . . . , q,
µ(q1+m),n − gm (Π) + v2J+q1+m ≥ 0, l = 1, . . . , q2,
hs (Π)− µ(q1+q2+s),n + v2J+q1+q2+s = 0, l = 1, . . . , q3.

Let Q (ξ) be defined similarly, using (2.8)-(2.9). Then we have the following consistency result:

Proposition 2 Let Assumptions C0, C1 and C2 hold. Define the set

HN [P
x] =

(
pxN ∈ ∆J−1 : QN (p

x
N) ≥ sup

ξ∈∆J−1

QN (ξ)− N

)
, (2.10)

where N = N−τ , 0 < τ < 1
2 . Then the set HN [P

x] is a consistent estimator of H [Px] , in the

sense that

ρ (HN [P
x] ,H [Px]) ≡ sup

pxN∈HN [Px]
inf

px∈H[Px]
kpxN−pxk→p 0,

ρ (H [Px] ,HN [P
x]) ≡ sup

px∈H[Px]
inf

pxN∈HN [Px]
kpxN−pxk→p 0.

Proof. See Appendix B.

Most of the calculations and estimations of H [Px] presented in this paper are performed using

this nonlinear programming method.

2.3 Confidence Sets for the Identification Regions6

The problem of the construction of confidence intervals for partially identified parameters was ad-

dressed by Horowitz and Manski (1998, 2000). They considered the case in which the identification

region of the parameter of interest is an interval whose lower and upper bounds can be estimated

from sample data, and proposed confidence intervals that asymptotically cover the entire identifi-

cation region with fixed probability. For the same class of problems, Imbens and Manski (2004)

6 I am very grateful to Elie Tamer for suggestions that led to the construction of these confidence sets.
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suggested shorter confidence intervals that uniformly cover the parameter of interest, rather than

its identification region, with a prespecified probability. These approaches are not applicable to

the problem studied here, because our identification regions are given by the set of values of the

parameters of interest that solve a minimization problem, and do not have a closed form solution.

The problem of construction of confidence sets for identification regions of parameters obtained

as the solution of the minimization of a criterion function has recently been addressed by Cher-

nozhukov, Hong, and Tamer (2004). They provided a method to construct confidence sets that

cover the identification region with probability asymptotically equal to (1− α) , and developed

a new subsampling bootstrap method to implement this procedure. Here I consider a different

procedure, and show that the coverage property of these confidence sets follow directly from well

known results in the literature (e.g., Rao (1973), Cox and Hinkley (1974)). The counterpart of the

simplicity of this approach is that the confidence sets may be conservative, in the sense that given a

prespecified confidence coefficient (1− α) , 0 < α < 1, the confidence sets will asymptotically cover

the identification region with probability at least equal to (1− α) .

The main insight for the construction of the confidence sets for H [Px] , denoted C
H[Px]
N , is

given by observing that the only parameters to be estimated for obtaining HN [P
x] in (2.10) are

Pw
i,N , i = 1, . . . , J − 1, and µl,n, l = 1, . . . , q̄. Let ϑ̂N denote the J − 1 + q̄ vector collecting these

estimators. Under Assumption C2, ϑ̂N is root-N consistent and asymptotically normal, and has a

covariance matrix (V ar (ϑ)) that can be consistently estimated from the data (dV ar ³ϑ̂N´). Hence,
if c1−α denotes the (1− α) quantile of the χ2(J−1+q̄) distribution, we can construct a joint confidence

ellipsoid for ϑ ≡
h
(Pw

i )i=1,...,J−1 ; (µl)l=1,...,q̄

i
as

Cϑ
N ≡

½
ϑ0:

³
ϑ̂N − ϑ0

´0 ³dV ar ³ϑ̂N

´´−1 ³
ϑ̂N − ϑ0

´
≤ c1−α

¾
.

It follows from the results in Rao (1973) (Section 7b) that

lim
N→∞

Pr
³
ϑ ∈ Cϑ

N

´
= 1− α.

Given Cϑ
N , we can construct C

H[Px]
N as follows. For a given ϑ0 ∈ Cϑ

N , let Hϑ0 [P
x] denote the iden-

tification region for Px obtained when ϑ̂N is replaced by ϑ0 in the estimation procedure described

in the previous section. Let

C
H[Px]
N =

S
ϑ0∈CϑN

Hϑ0 [P
x] .

Then

ϑ ∈ Cϑ
N =⇒ H [Px] ⊆ C

H[Px]
N ,

and therefore

lim
N→∞

Pr
³
H [Px] ⊆ C

H[Px]
N

´
≥ 1− α.
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The confidence sets presented in Section 4 are obtained using this procedure. Using similar

procedures one can construct confidence regions for H {τ [Px]} and H {Θ [Px]} , where again τ (·)
and Θ (·) denote functionals of P (x) .

3 Analysis of the Identifying Power of Specific Restrictions on Π

This Section analyzes in detail examples of restrictions on the matrix Π (which satisfy Assumptions

C0-C1) coming from validation studies and theories developed in the social sciences. I suggest

settings in which such assumptions may be credible, show their implications for the structure

of H [Π ], and present results on the inferences that they allow one to draw on Px and τ [Px].

While the identification regions can be calculated and consistently estimated using the nonlinear

programming method described in the previous section, it is often not possible to express them in

closed form, unless J = 2. Yet it is possible to derive closed form results for H [Pr (x = j)] , j ∈ X,

when the “base-case” assumptions are maintained. I will use these results as benchmark to evaluate

the identifying power of additional assumptions. Notice however that H [Pr (x = j)] , j ∈ X, is just

the projection of H [Px] on its j−th component. Hence, when J > 2, a comparison based simply

on H [Pr (x = j)] , j ∈ X, understates the identifying power of the additional assumptions. When

J = 2, H [Px] is entirely described by H [Pr (x = 1)] and closed form bounds can be derived under

different sets of assumptions, hence allowing for a full comparison.

3.1 Upper Bound on the Probability of Data Errors

Suppose that the researcher has a known lower bound on the probability that the realizations of

w and x coincide, i.e., Pr (w = x) ≥ 1 − λ, or, strengthening this assumption, that the researcher

has a known lower bound on the probability of correct report for each value that x can take, i.e.,

Pr (w = j|x = j) ≥ 1− λ, ∀j ∈ X. Formally, consider the following:

Assumption 1 Pr (w = x) ≥ 1− λ > 0,

or, as a stronger version of Assumption 1, that

Assumption 2 Pr (w = j|x = j) ≥ 1− λ > 0, ∀ j ∈ X.

Assumptions 1 and 2 are quite often satisfied in practice, mainly due to the availability of results

of validation studies, and are therefore of particular interest. Additionally, as shown in Appendix A,

Assumptions 1 and 2 exhaust the implications for the structure of Π of the assumptions typically

maintained by researchers adopting mixture models. As already discussed, often the researcher has

more or alternative information about the misreporting pattern than what is assumed in mixture
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models. Hence, the results obtained under these “base-case” assumptions are particularly suited

to evaluate the identifying power of the available additional information. In the next section I will

show that informative identification regions might be obtained even if one dispenses of Assumptions

1 and 2, when other information is available.

When the researcher has prior information suggesting that either Assumption 1, or the stronger

Assumption 2, hold, she can specify the set HE [Π ], respectively, as follows:

HE,1 [Π ] =
n
Π :

PJ
h=1 πhhp

x
h ≥ 1− λ

o
,

HE,2 [Π ] = {Π : πjj ≥ 1− λ, ∀j ∈ X} .

where HE,1 [Π ] denotes the set HE [Π ] when Assumption 1 is maintained, and HE,2 [Π ] denotes

the set HE [Π ] when Assumption 2 is maintained. Notice that HE,2 [Π ] ⊂ HE,1 [Π ]. Proposition

3 gives closed form bounds on Pr (x = j) , j ∈ X, for the case in which either Assumption 1 or

Assumption 2 holds.

Proposition 3 a) Suppose that Assumption 1 holds, and that no other information is available.

Then from system (1.1) we can learn that

H [Pr (x = j)] =
£
max

¡
Pw
j − λ, 0

¢
,min

¡
1, Pw

j + λ
¢¤
, j ∈ X. (3.1)

b) Suppose that Assumption 2 holds, and that no other information is available. Then from system

(1.1) we can learn that

H [Pr (x = j)] =

∙
max

µ
Pw
j − λ

1− λ
, 0

¶
,min

µ
1,

Pw
j

1− λ

¶¸
, j ∈ X. (3.2)

¤

The proof of Proposition 3 proceeds in two steps. First, it is shown that from the j−th equation
of system (1.1) we can learn, depending on the maintained assumption, that Pr (x = j) lies in one

of the intervals in (3.1)-(3.2). Then it is shown that there exists a Π ∈ H [Π ] for which the extreme

values of these intervals solve system (1.1), and that there exists no Π ∈ H [Π ] for which a smaller

lower bound or a bigger upper bound can be feasible. This implies that the bounds are sharp. The

proof shows that when only Assumption 1 or Assumption 2 is maintained, only the j−th equation
in system (1.1) implies restrictions on Pr (x = j) , j ∈ X. In the next Section I will show that

when more structure is imposed on the matrix Π, several of the equations in system (1.1) imply

restrictions on Pr (x = j) , j ∈ X, and additional progress can be made.

The same identification regions as those in Proposition 3 were obtained by Horowitz and Man-

ski (1995). They used a mixture model to study the problem of inference with corrupted and
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contaminated data, and assumed that a known lower bound is available on the probability that a

realization of w is drawn from the distribution of x. Molinari (2003) shows that under Assumptions

1 and 2, the identification regions for parameters that respect stochastic dominance obtained using

the direct misclassification approach are also equivalent to those obtained by Horowitz and Manski

(1995). Those results, along with Proposition 3 and Proposition 9 in Appendix A, show that when

the error-ridden data take values in a finite set, and all the prior information is that Assumption 1

or Assumption 2 holds, the direct misclassification approach is equivalent to Horowitz and Manski’s

(1995) approach for drawing inference on Pr (x = j) , j ∈ X, and on features of the distribution of

x that respect stochastic dominance.

3.2 Constant Probability of Correct Report

Consider the case that, conditional on the value of x, there is constant probability that x is correctly

reported, for at least a subset of the values that x can take. Formally:

Assumption 3 Pr (w = j|x = j) = π ≥ 1− λ ≥ 0 ∀j ∈ X̃ ⊆ X,

where π is known only to lie in [1− λ, 1], and λ is strictly less than 1 if a nontrivial upper bound

on the probability of a data error is available.

There are various situations in which this assumption may be credible. For example, Poterba

and Summers (1995) use CPS data (with Reinterview Survey) and provide evidence (for the rein-

terviewed sub-sample) that the rate of correct report of employment status is similar for indi-

viduals who are employed or not in the labor force (Pr (w = j|x = j) ' 0.99), but much lower

for individuals who are unemployed (Pr (w = j|x = j) ' 0.86). Kane, Rouse, and Staiger (1999)
provide evidence (Table 5, p. 18) that self report of educational attainment is correct with sim-

ilar probabilities for individuals with no college, some college but no AA degree, and AA de-

gree (Pr (w = j|x = j) ' 0.92), and is higher for individuals with at least a bachelor degree

(Pr (w = j|x = j) ' 0.99). Assumption 3 may hold with X̃ = X when the misclassification is

generated by specific types of interviewer recording errors. For example, the interviewer may some-

time mark one box at random in the questionnaire. Additionally, in the special case of dichotomous

variables, some have argued that the misreporting of health disability is independent from true dis-

ability status (see Kreider and Pepper (2004) for a discussion of this issue), or that the misreporting

of workers’ union status is independent from true union status (see Bollinger (1996) for a discussion

of this issue). When this is the case, Assumption 3 holds.

In general, Assumption 3 does not place any restriction on Pr (w = i|x = j) , i 6= j, i, j ∈ X,

other than that the misreporting probabilities need to satisfyP
i6=j Pr (w = i|x = j) = 1− π , ∀j ∈ X̃
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When J = 2, this implies that the two off-diagonal elements of Π are equal; hence the only

unknown element of Π is π .

Suppose first that X̃ ⊂ X, and without loss of generality let X̃ ≡ {1, 2, . . . , h} , 2 ≤ h < J .

When this is the case, equation (1.1) can be rewritten as⎡⎢⎢⎢⎢⎢⎣
π π12 . . . π1J
π21 π . . . π2J
...

...
. . .

...

πJ1 πJ2 . . . πJJ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Pr (x = 1)

Pr (x = 2)
...

Pr (x = J)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
Pr (w = 1)

Pr (w = 2)
...

Pr (w = J)

⎤⎥⎥⎥⎥⎥⎦ (3.3)

where π ≥ 1−λ and, assuming that λ constitutes a uniform upper bound for all the misclassification
probabilities, πll ≥ 1− λ, ∀ l ∈

³
X − X̃

´
. Then HE [Π ] will be defined as

HE,3 [Π ] =
n
Π : πjj = π ≥ 1− λ, ∀j ∈ X̃; πll ≥ 1− λ, ∀ l ∈

³
X − X̃

´o
.

Let H3 [Π ] = HP [Π ] ∩ HE,3 [Π ], where HP [Π ] was defined in (2.4). Then one can im-

mediately calculate H [Px] and H {τ [Px]} using the nonlinear programming method described in
Section 2, with HE [Π ] = HE,3 [Π ].

It is natural to ask whether Assumption 3 does have identifying power. To answer this question,

in this section I consider the case that the researcher has a nontrivial upper bound on the probability

of data errors, i.e. that λ < 1, and compare the bounds on Pr (x = j) , j ∈ X, derived in Proposition

3, equation (3.2), with the extreme points obtained using the nonlinear programming method, with

HE [Π ] = HE,3 [Π ]. In Section 3.4 I consider the case in which x and w are binary (J = 2), and

show that Assumption 3 can have identifying power even when λ = 1.

Proposition 4 shows that if Pw
i > 0, for some i ∈ X̃\ {j} , the base case lower bound on

Pr (x = j) , j ∈ X̃, if informative, is never feasible when Assumption 3 (with X̃ ⊂ X) is maintained;

hence the lower bound on Pr (x = j) , j ∈ X̃ under Assumption 3 is strictly greater than that in

(3.2). For the case in which the base case upper bound on Pr (x = j) , j ∈ X̃ is informative,

Proposition 5 derives conditions under which such upper bound is not feasible when Assumption 3

(with X̃ ⊂ X) is maintained, and shows that when those conditions are satisfied, this upper bound

is strictly smaller than that in (3.2). When the base case lower and upper bounds (respectively)

are not informative, also the bounds on Pr (x = j) , for a certain j ∈ X, are not informative.

Proposition 4 (a) Suppose that Assumption 3 holds, with X̃ ⊂ X, and that Pw
j > λ. Then the

lower bound on Pr (x = j) , j ∈ X̃, is strictly greater than the base case lower bound in (3.2). The

base case lower bound in (3.2) is the sharp lower bound for Pr (x = k) , k ∈
³
X − X̃

´
.

(b) Suppose that Assumption 3 holds, with X̃ ⊂ X, and that Pw
j ≤ λ. Then the sharp lower bound

on Pr (x = j) , j ∈ X, coincides with the base case lower bound in (3.2), and is equal to 0. ¤
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Proposition 5 (a) Suppose that Assumption 3 holds, with X̃ ⊂ X, and that 0 < Pw
j < 1− λ.

If λ ≤ 1
2 , the upper bound on Pr (x = j) , j ∈ X̃, is strictly smaller than the base case upper bound

in (3.2) if and only if

∃ k ∈ X̃\ {j} : Pw
j + Pw

k > (1− λ) + Pw
j

λ

1− λ
. (3.4)

If λ > 1
2 , the upper bound on Pr (x = j) , j ∈ X̃, is strictly smaller than the base case upper bound

in (3.2) if

∃ k ∈ X̃\ {j} : Pw
k > λ. (3.5)

The base case upper bound in (3.2) is the sharp upper bound for Pr (x = k) , k ∈
³
X − X̃

´
.

(b) Suppose that Assumption 3 holds, with X̃ ⊂ X, and that Pw
j ≥ 1 − λ. Then the sharp upper

bound on Pr (x = j) , j ∈ X, coincides with the base case upper bound in (3.2), and is equal to 1.

¤

The proofs of Propositions 4-5, parts (a), are based on showing that there is no Π ∈ H3 [Π ] for

which the lower bound in (3.2) for Pr (x = j) , j ∈ X̃, solves system (3.3), and that when condition

(3.4) or condition (3.5) is satisfied, there is no Π ∈ H3 [Π ] for which the upper bound in (3.2) for

Pr (x = j) , j ∈ X̃, solve system (3.3). When the inference is on Pr (x = k) , k ∈
³
X − X̃

´
, we can

find a Π ∈ H3 [Π ] that allows for the base case bounds in (3.2) to solve system (3.3). The proofs

of Propositions 4-5, parts (b), are based on showing that when the bounds on Pr (x = j) , j ∈ X,

in (3.2) are not informative, one can find values of Π ∈ H3 [Π ] for which pxj = 0 and pxj = 1 solve

system (3.3).

The results in Propositions 4-5 can be explained as follows: only a subset X̃ of the equations

in system (1.1) are related between each other. Therefore, when drawing inference on Pr (x = j) ,

j ∈ X, an improvement on the base case bound in (3.2) can be achieved only for j ∈ X̃. Consider

now the case in which X̃ = X. In this case the results of Propositions 4-5 apply directly, with

X replacing X̃. Of course, the identifying power of Assumption 3 is the highest in this case. In

particular, inspection of Proposition 4 suggests that the lower bound for Pr (x = j) , j ∈ X, if

informative, improves for all j when Assumption 3 is maintained with X̃ = X.

A final consideration is relevant. Often the researcher might have prior information suggesting

that Assumption 3 holds, but not exactly. That is, she might have prior information that the

probability of correct report is only approximately constant: Pr (w = j|x = j) ≈ π , ∀ j ∈ X̃ ⊆ X.

Then it is natural to ask how much the probabilities of correct report can differ between each other,

for the results of Propositions 4-5 to still hold. For ease of exposition, consider the identification of

Pr (x = 1) , and let π11 = π.7 Molinari (2003) shows that as long as |πjj − π11| < λ, ∀ j ∈ X̃\ {1} ,
7When drawing inference on P (x = j) , j ∈ X̃, we can always define πjj = π, and look at πkk, k ∈ X̃\ {j}, as

deviations from π.
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and X̃ ⊂ X, or X̃ = X, the results of Proposition 4 continue to hold. A similar condition is derived

for the results of Proposition 5.

Example 6 in Section 3.4 illustrates the identifying power of Assumption 3, both for the case in

which X̃ ⊂ X and X̃ = X, by comparing the identification regions H [Pr (x = j)] , j ∈ X, H [Px]

and H [E (x)] obtained using the nonlinear programming method with HE [Π ] = HE,3 [Π ] with

those obtained when only Assumption 2 is maintained.

3.3 Monotonicity in Correct Reporting

Social psychology suggests that when survey respondents are asked questions relative to socially

and personally sensitive topics, they tend to underreport socially undesirable behaviors and at-

titudes, and overreport socially desirable ones. This suggestion is often supported by validation

studies. In the context of questions of the type described above, these studies often document that

Pr (w = j|x = j) ≥ Pr (w = j + 1|x = j + 1) , ∀j ∈ X̃ ⊂ X. This is the case for example when

survey respondents are asked about their participation in welfare programs, and j = 1 indicates non

participation, while j = 2 indicates participation, or when they are asked about their employment

status, and j = 1, 2 indicates, respectively, employed or not in the labor force, while j = 3 indicates

unemployed.

Suppose that the set X ≡ {1, 2, . . . , J} can be ordered according to the “social desirability” of
the values that x can take, with x = 1 being the most desirable, and x = J the least desirable.

Suppose further that the researcher believes that there is monotonicity in correct reporting. Then

she can maintain the following:

Assumption 4 Pr (w = j|x = j) ≥ Pr (w = j + 1|x = j + 1) , ∀ j ∈ X\ {J}, Pr (w = J |x = J) ≥
1− λ ≥ 0,

where λ is strictly less than 1 if a nontrivial upper bound on the probability of a data error is

available. When this assumption holds, HE [Π ] will be defined as

HE,4 [Π ] =
©
Π : πjj ≥ π(j+1)(j+1), ∀ j ∈ X\ {J} , πJJ ≥ 1− λ

ª
.

Let H4 [Π ] = HP [Π ] ∩ HE,4 [Π ], where HP [Π ] was defined in (2.4). Then we can calcu-

late H [Px] and H {τ [Px]} using the nonlinear programming method described in Section 2, with
HE [Π ] = HE,4 [Π ].

We are now left to verify that Assumption 4 does have identifying power. To accomplish this, we

again consider the case that λ < 1, and compare the results that we can obtain using the nonlinear

programming method when Assumption 4 is maintained, with those of Proposition 3. In Section
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3.4 I consider the case in which x and w are binary (J = 2), and show that Assumption 4 can have

identifying power even when λ = 1.

Suppose that Assumption 4 holds. Proposition 6 shows that the base case lower bound in

(3.2), when informative, is feasible for Pr (x = 1). However, for j ∈ X\ {1} if Pw
l > 0 for

some l ∈ {1, . . . , j − 1}, the base case lower bound in (3.2), when informative, is not feasible
for Pr (x = j) , and hence the lower bound under Assumption 4 is strictly greater than that in

(3.2). Regarding the base case upper bound in (3.2), the same results as those in Proposition 5

hold, with X̃ = {j, j + 1, . . . , J} . The proof of this Proposition derives almost directly from the

proofs of Propositions 4-5.

Proposition 6 Suppose that Assumption 4 holds.

a) Let Pw
j > λ. Then if j = 1, the base case lower bound in (3.2) is the sharp lower bound for

Pr (x = 1). The lower bound for Pr (x = j) , j ∈ X\ {1} , is strictly greater than the base case lower
bound in (3.2). The result of Proposition 4, part (b), is unchanged.

b) Let 0 < Pw
j < (1− λ). Then the same results as in Proposition 5 hold, with X̃ = {j, j + 1, . . . , J}.

The result of Proposition 5, part (b), is unchanged. ¤

Example 6 in Section 3.4 illustrates the identifying power of Assumption 4, by comparing the

identification regions obtained using the nonlinear programming method with HE [Π ] = HE,4 [Π ]

with those obtained when only Assumption 2 is maintained.

3.4 Dichotomous Variables and Numerical Examples

When x and w are dichotomous variables, the identifying power of Assumption 3 and Assumption

4 can be more easily appreciated, since the bounds on H [Px] can be derived explicitly. This

section shows how. It then provides numerical examples of the identification regions obtained

under Assumptions 2, 3 and 4, both for the case of J = 2 and J = 3.

Let X ≡ {1, 2}.8 The problem of misclassification of a dichotomous variable has received much

attention in the econometric, statistical, and epidemiological literature. It is in the context of

misclassified dichotomous variables that most of the precedents to the use of restrictions on the

misclassification probabilities take place.

To start, suppose that Assumption 3 hold. In the related literature it has often been assumed

that Pr (w = 1|x = 2) = Pr (w = 2|x = 1), and additionally that these misclassification probabil-
ities are less than 1

2 (see, e.g., Klepper (1988) and Card (1996)). Notice that with dichotomous

8 In the literature on dichotomous variables the two values that x can take are usually denoted {0, 1}. Here I use
{1, 2} to maintain the same notation as in the previous sections, where I denoted X ≡ {1, 2, . . . , J} , 2 ≤ J <∞.
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variables Assumption 3 implies that equation (1.1) can be rewritten as"
Pr (w = 1)

Pr (w = 2)

#
=

"
π 1− π

1− π π

#"
Pr (x = 1)

Pr (x = 2)

#
.

Hence, the identification region H [Px] can be inferred from the identification region

H [Pr (x = 1)] =
©
px1 : P

w
1 = π · px1 + (1− π) · (1− px1) , π ∈ H3 [Π ]

ª
.

where H3 [Π ] was defined in Example 2. Notice that if π = 1
2 , P

w
1 = 1

2 ; in this case, P (w|x) =
P (w), i.e. x and w are statistically independent, and obviously knowledge of P (w) does not provide

any information on P (x). If Pw
1 6= 1

2 , we know that π 6=
1
2 . The following Proposition characterizes

explicitly H [Pr (x = 1)].

Proposition 7 Let Assumption 3 hold, with X̃ = X ≡ {1, 2}.
a) If λ < 1

2 , then ⎧⎨⎩ H [Pr (x = 1)] =
h
Pw
1 ,min

³
Pw
1 −λ
1−2λ , 1

´i
if Pw

1 ≥ 0.5,

H [Pr (x = 1)] =
h
max

³
Pw
1 −λ
1−2λ , 0

´
, Pw
1

i
otherwise.

b) If λ ≥ 1
2 , then ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H [Pr (x = 1)] = [Pw
1 , 1] if Pw

1 > λ,

H [Pr (x = 1)] =
h
0,

Pw
1 −λ
1−2λ

i
∪ [Pw

1 , 1] if λ ≥ Pw
1 ≥ 1

2 ,

H [Pr (x = 1)] = [0, Pw
1 ] ∪

h
Pw
1 −λ
1−2λ , 1

i
if 12 > Pw

1 ≥ 1− λ,

H [Pr (x = 1)] = [0, Pw
1 ] if 1− λ > Pw

1 .

These identification regions are a subset of those in (3.2). ¤

The fact that if λ ≥ 1
2 , H [Pr (x = 1)] can be given by two disjoint intervals is a direct consequence

of the possible disconnectedness of H [Π ] arising when one assumes constant probability of correct

report, and described in Section 2 and in Example 2.

Suppose now that Assumption 4 hold. Also in this case the identification region H [Px] can be

inferred from the identification region

H [Pr (x = 1)] =
©
px1 : P

w
1 = π11 · px1 + (1− π22) · (1− px1) , (π11, π22) ∈ H4 [Π ]

ª
, (3.6)

where H4 [Π ] was defined in Example 3. Notice that again if π11 = π22 =
1
2 , P

w
1 =

1
2 ; in this case,

P (w|x) = P (w), i.e. x and w are statistically independent, and obviously knowledge of P (w)

does not provide any information on P (x). If Pw
1 6= 1

2 , we know that π11 and π22 cannot be jointly

equal to 1
2 . The following Proposition characterizes explicitly H [Pr (x = 1)].
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Proposition 8 Let Assumption 4 hold.

a) If λ < 1
2 , then⎧⎨⎩ H [Pr (x = 1)] =

h
max

³
Pw
1 −λ
1−λ , 0

´
,min

³
Pw
1 −λ
1−2λ , 1

´i
if Pw

1 ≥ 0.5,

H [Pr (x = 1)] =
h
max

³
Pw
1 −λ
1−λ , 0

´
, Pw
1

i
otherwise.

(3.7)

b) If λ ≥ 1
2 , then ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H [Pr (x = 1)] =
h
Pw
1 −λ
1−λ , 1

i
if Pw

1 > λ

H [Pr (x = 1)] = [0, 1] if λ ≥ Pw
1 ≥ 1

2

H [Pr (x = 1)] = [0, Pw
1 ] ∪

h
Pw
1 −λ
1−2λ , 1

i
if 12 > Pw

1 ≥ 1− λ

H [Pr (x = 1)] = [0, Pw
1 ] if 1− λ > Pw

1

. (3.8)

These identification regions are a subset of those in (3.2). ¤

Again, the fact that if λ ≥ 1
2 and Pw

1 < 1
2 , H [Pr (x = 1)] can be given by two disjoint inter-

vals is a direct consequence of the possible disconnectedness of H [Π ] arising when one assumes

monotonicity in correct reporting, and described in Section 2 and in Example 3.

The following numerical example illustrates the identifying power of Assumption 3 and Assump-

tion 4, with X = {1, 2}, by comparing the bounds in Propositions 7 and 8 with those in (3.2), and
showing how the bounds improve as λ gets closer to the true misclassification parameter.

Example 5 Let Pr (x = 1) = 0.3, and π = 0.9, so that Pw
1 = 0.34. Table 1 gives lower and

upper bounds on Pr (x = 1) , when Assumptions 2, 3 and 4 are maintained, as λ approaches 1−π .
Notice that the identification region for Pr (x = 1) , when Assumptions 3 and 4 are maintained, is

informative even when λ = 1.

To conclude this section, I illustrate the identifying power of Assumption 3 (both for the case

in which X̃ ⊂ X and X̃ = X) and Assumption 4, when J = 3. I compare the identification

regions H [Pr (x = j)] , j ∈ X, H [Px] and H [E (x)] obtained using the nonlinear programming

method with HE [Π ] = HE,3 [Π ] and with HE [Π ] = HE,4 [Π ] with those obtained when only

Assumption 2 is maintained.

Example 6 Let: X = {1, 2, 3}, λ = 0.2, π = 0.85, [Pr (x = j) , j ∈ X] = [0.3 0.6 0.1]T , and

suppose that π21 = 0.11, π12 = 0.13, π13 = 0.04, so that Pw = [0.34 0.55 0.11]T ; with these

values, E (x) = 1.8. Table 2 gives the identification regions for τ [Px] = Pr (x = j) , j ∈ X,

and for τ [Px] = E (x) , when Assumption 2 alone is maintained, when Assumptions 2 and 3 are
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jointly maintained with X̃ = X and with X̃ = {1, 2}, and when Assumptions 2 and 4 are jointly
maintained. The improvement in the upper bound on Pr (x = 1) comes from the second equation of

system (1.1); indeed Pw
1 +Pw

2 = 0.89 > 0.885 = (1− λ) + λ
1−λP

w
1 . Figure 2 plots the identification

regions H [Px] obtained under the different assumptions.

4 Estimation and Inference for the Distribution of Pension Plan

Types in the U. S.

To illustrate estimation of the bounds and construction of the confidence sets, I consider data on the

distribution of pension plan characteristics in the American population age 51− 61. The data are
based on household interviews obtained in the Health and Retirement Study (HRS), a longitudinal,

nationally representative study of older Americans, which in its base year of 1992 surveyed 12, 652

individuals from 7, 607 households, with at least one household member born between 1931 and

1941. The survey has been updated every two years since 1992, and in 1998 a new cohort of 2, 529

individuals born between 1942 and 1947 (so called “War Babies”) was added to the HRS sample.

I use data from the first HRS wave and from the War Babies wave, focusing on the information

collected on pension plan characteristics for people age 51 − 61 and employed at the time of the
survey. This provides two nationally representative cross-sections of the population of interest. The

question to be addressed is:

How did the distribution of pension plan types in the population of currently em-

ployed Americans, age 51− 61, change between 1992 and 1998?

Three pension plan types are possible: defined benefit (DB), defined contribution (DC), and

plans incorporating features of both (Both). Defined benefit and defined contribution plans differ

greatly in their characteristics. As described by Gustman, Mitchell, Samwick, and Steinmeier

(2000), in a defined benefit pension the benefit formula is specified by the plan sponsor, usually as

a function of the worker’s highest salary, years of service, and retirement age. After an initial period,

the worker gains a right to an eventual pension benefit at the plan’s retirement age. Typically such

plans reduce the benefit amount for retirement prior to the so-called normal retirement age. DB

plans are usually financed by employer (pre-tax) contributions. On the other hand, DC plans do

not specify the retirement benefit, but they set how much will be contributed into the account each

year the worker remains with the plan. Then the benefit payout is determined at retirement, as

a function of how much it accumulated in the worker’s account. The plan type can affect several

pension-related variables, including pension wealth and pension accrual, that is, the change in

pension wealth when a worker delays retirement by one year. For example, there are DB plans

in which an additional year of service is rewarded by greater retirement benefits up to the firm’s
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early retirement age. Then the benefit accrual profile may flatten out, and even become negative,

if retirement is delayed further. By contrast, DC plans tend to be actuarially neutral with regard

to the retirement age, rewarding delayed retirement more monotonically.

It is then of interest to learn how the distribution of pension plan types has changed over time,

as a preliminary step before studying the relation between pension incentives and retirement and

saving behavior. The HRS data can provide valuable information in this direction. However, there

is evidence that workers are particularly misinformed about their pension plans’ characteristics,

and it is therefore not obvious how to make use of their reported pension plans’ description to draw

the inference of interest. Gustman and Steinmeier (2001) linked data from the first HRS wave with

restricted data from Social Security Administration and employer provided pension plan descrip-

tion, and documented that individuals with matched data (approximately 51% of the entire HRS

sample, and 67% of currently employed respondents) approaching retirement age are remarkably

misinformed with regard to their pension plans’ characteristics. Their results are reported in Table

3, and suggest that overall, approximately 49% of the currently employed individuals with matched

data correctly identify their pension plan type, the remaining 51% providing a wrong report.

For the individuals in the first HRS wave without a matched pension (33% of the sample) it is

difficult to determine the true plan type: on one side, Gustman and Steinmeier (2001) document

that the sub-sample without a matched pension is different from the sub-sample with a matched

pension; on the other side, the evidence for the sub-sample with matched pension casts doubts on the

reliability of the self reports. Moreover, linked data are not available for individuals in subsequent

waves, or for individuals in the War Babies wave.9 Yet, the results of Gustman and Steinmeier’s

(2001) analysis provide information on the misreporting pattern, and such information can be

exploited through the direct misclassification approach to draw inference on how the distribution

of pension plan types for the population as a whole has changed between 1992 and 1998, using data

from the first HRS wave and from the War Babies wave.

In all that follows I will assume that the HRS respondents correctly report whether they are

covered by a pension,10 and I will take firm reported plan types to be the “true” plan types. Let

x = 1 if the individual has a DB plan, x = 2 if the individual has a DC plan, and x = 3 if the

individual has a plan combining features of both, so that X ≡ {1, 2, 3}. As before, w ∈ X denotes

the reported pension plan type. Let Pw,t ≡ [Prt (w = j) , j ∈ X] and Px,t ≡ [Prt (x = j) , j ∈ X]

9Additionally, employer provided pension plan descriptions are not publicly accessible by HRS users. In particular,

such data are not available for the analysis carried out in this paper.
10This assumption is based on Gustman and Steinmeier’s (2001) comparison between peoples’ report on their

pension coverage in both the 1992 and 1994 waves of the HRS. This comparison shows that 93% of the respondents

who declared to be covered by a pension or to be not covered by a pension in 1992, give the same answer in 1994.

Of the remaining 7%, approximately 80% are individuals who declared not to be covered by a pension in 1992, but

to be covered in 1994.
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denote, respectively, the vectors of fractions of reported pension plan types and true pension plan

types at time t = 1992, 1998. For the respondents in the first HRS wave, let sl = 1 denote the fact

that individual l ∈ L1992 has a matched pension plan description, sl = 0 otherwise, and denote by

Π 1
1992 the matrix of misclassification probabilities that maps the true pension plan types into the

reported types for individuals with matched pension plan descriptions. Let Π 0
1992 denote the matrix

of misclassification probabilities for the respondents in the first HRS wave without a matched plan

description, and let Π1998 denote the matrix of misclassification probabilities for the entire sample of

respondents in the War Babies wave. Table 3 reveals, up to statistical considerations, Π 1
1992. From

the HRS data and from Gustman and Steinmeier’s (2001) results we can learn Pw,1992, Pw,1998,

and [Pr1992 (x = j| s = 1) , j ∈ X]. These values are reported in Table 4, along with 95% bootstrap

confidence intervals.

One might expect the misclassification pattern reported by Gustman and Steinmeier (2001) to

hold also for the subset of respondents without matched pension plan descriptions. On the other

hand, one might expect that the misclassification structure mapping true pension plan types into

reported types changes over time, so that Π 1
1992 can help in constructing H [Π1998], but not reduce

this set to a singleton. However, one might as well be tempted to entertain assumptions strong

enough to achieve point identification of the quantity of interest. To test the credibility of these

conjectures, I will examine the following assumptions:

Assumption E1: No Selection. Π 0
1992 = Π

1
1992.

Assumption E2: No Selection and No Variation Over Time. Π1998 = Π
1
1992.

The first assumption states that the misreporting pattern is the same across respondents in

the first HRS wave with matched pension plan description and without matched pension plan

description. The second assumption states that the misreporting pattern for the respondents in

the War Babies wave is the same as that for the respondents with matched data in the first HRS

wave. When these assumptions are maintained, Π1992 and Π1998 are identified, and, since Π
1
1992

is nonsingular, one can use the equation px = Π−1 · Pw to attempt to learn [Prt (x = j) , j ∈ X] ,

t = 1992, 1998. Table 5 reports the results of such procedure, along with 95% bootstrap confidence

intervals. As we can see from the table, the data reject the assumption that Π1998 = Π
1
1992: the

vector obtained from solving
¡
Π 1
1992

¢−1 · Pw,1998 does not generate a valid probability measure.

In particular, the first element of the implied vector is negative, and its 95% confidence interval

does not cover the zero, and the last element is greater than one. Hence, point identification of

Px,1998 through Assumption E2 is not possible. On the other hand, the data do not reject the

assumption that Π 0
1992 = Π

1
1992, despite the possible selection problem. In all that follows I will

maintain Assumption E1 and focus the attention on the problem of inferringH
£
Px,1998

¤
. Of course,

Assumption E1 can be relaxed, and H
£
Px,1992

¤
can be estimated under weaker assumptions using

the direct misclassification approach.
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The main assumption that I will maintain throughout the entire analysis, and that I use to

exploit part of the information in Π 1
1992 to learn H

£
Px,1998

¤
, is the following:

Assumption E3: No Reduction in Awareness. πjj,1998 ≥ πjj,1992, ∀ j ∈ X.

This assumption amounts to say that the fraction of individuals correctly identifying their

pension plan type does not decline over time. This in turn implies that lower bounds on the

probability of correct report in 1992 provide lower bounds on the probability of correct report in

1998. Assumption E3 is motivated by the observation that in recent years the Social Security

Administration and the Department of Labor have increasingly expanded their efforts to improve

individuals’ knowledge about pensions and about retirement saving in general (see Gustman and

Steinmeier (2001) for a summary of recent interventions).

I now introduce two sets of assumptions, which I entertain along with Assumption E3 to con-

struct the set H [Π1998], and derive H
£
Px,1998

¤
. Of course, different empirical researchers might

hold disparate beliefs about which of the assumptions in Cases 1 and 2 hold, and moreover they

might bring to bear different prior information. However, the results of the analysis are interesting

both in that they show the functioning of the direct misclassification approach, as well as in that

they shed some light on the question of interest. The goal of the analysis is to learn the change in

the fraction of individuals in the US population approaching retirement age having a DB plan.

The identification regions that I obtain for H
£
Px,1998

¤
are plotted in Figure 3, along with their

95% Confidence Sets. The identification regions H [Pr1998 (x = j)] , j ∈ X, are reported in Table 6,

again with their 95% confidence intervals.

Case 1:

H [Π1998] = HP [Π ]∩{Π : π11 ≈ π22 ≥ 0.53, π22 ≥ π33 ≥ 0.34, π21 ≤ π12, π31 ≤ π13, π23 ≤ π13} .

Case 1 maintains Assumption E3, and builds on Assumption E1. Jointly, these assumptions

imply that the same pattern of correct report as observed for Π1992 holds also for the sample

of respondents in the War Babies wave, hence providing lower bounds on the probabilities of

correct report. Additionally, I also require constant probability of correct report for individuals

who truly have DB and DC plans. This assumption is motivated by observing, in Table 3, that

Pr (w = 1|x = 1, s = 1) ≈ Pr (w = 2|x = 2, s = 1). Finally, I make monotonicity assumptions on
some of the misclassification probabilities. In particular, Table 3 suggests that individuals who

truly have a plan incorporating features of both DB and DC classify their plan into the category

of DB plans much more often than individuals with DB plans report plans incorporating features

of both (0.45 vs. 0.27). Similarly, individuals who truly have a DC plan report a DB plan more

often than individuals with a DB plan report a DC one (0.26 vs. 0.15). Also, individuals who truly

have a plan incorporating features of both DB and DC report a DB plan more often than a DC

28



one (0.45 vs. 0.18). This seems to reveal a tendency of respondents to remarkably misreport in the

direction of DB plans; such tendency is incorporated in assuming π21 ≤ π12, π31 ≤ π13, π23 ≤ π13.

The first panel of Figure 3 shows the estimate of H
£
Px,1998

¤
obtained in Case 1. It is interesting

to observe that the estimated set displays nonconvexities, a feature that the nonlinear programming

estimator is capable to capture. The third panel of the figure displays the 95% confidence set of

H
£
Px,1998

¤
. For the construction of this confidence set, I estimated Pw,1998 using sample means,

and took as estimates of the lower bounds in HE [Π ] the values µ1,n, µ2,n in the (2,2) and (3,3)

entries of Table 3. While borrowed from Gustman and Steinmeier (2001), these estimates are

based on a validation data (respondents to the 1992 wave with matched pension plan descriptions)

independent from the 1998 data, and with n = 2, 907. For the construction of the confidence

ellipsoid for
h
Pw,1998
1 , Pw,1998

2 , µ1, µ2

i
I used κ = N

n = 1,124
2,907 . The estimates of Pr1992 (x = 1) and

H [Pr1998 (x = 1)] reported in Table 6 suggest that the fraction of individuals having a DB plan

should have declined between 1992 and 1998. However, the confidence intervals of the two estimates

do overlap; hence we cannot reject the hypothesis Pr1992 (x = 1) − Pr1998 (x = 1) < 0. This shows

that under relatively mild restrictions we can obtain a strong conclusion regarding our question of

interest, although more assumptions are needed to obtain statistical significance.

Case 2:

H [Π1998] = HP [Π ] ∩

⎧⎪⎪⎨⎪⎪⎩Π :
⎛⎜⎜⎝

π11 ≈ π22 ≥ π33 ≥ 0.53,
π21 ≤ π12, π31 ≤ π13, π23 ≤ π13,

π21 ≥ 0.10, πij ≥ 0.15 for all other i, j ∈ X, i 6= j.

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

Case 2 builds on Case 1, as it retains all the assumptions maintained there. However, it is

crucially set apart from the previous case, in that it requires a lower bound on each probability

of misclassification. This in turn implies that, given any true pension plan type, the probability

of correct report has to be necessarily less than one. This assumption is motivated by the large

amount of misreporting of pension plan types which appears in Table 3, and which is documented

at large by Gustman and Steinmeier (2001). Additionally, π33 is required to have the same lower

bound as π11 and π22. This is motivated by the large amount of information campaigns on DC

plans (in particular 401k) that has characterized the mid to late 1990s.

Under these assumptions, the estimate of H
£
Px,1998

¤
shrinks further. This allows one to con-

clude that the fraction of individuals having DB plans has decreased between 1992 and 1998; in

particular, Pr1992 (x = 1)−Pr1998 (x = 1) ≥ 0.14. This in turn implies that the fraction of individ-
uals having either DC plans or plans incorporating features of both has increased sharply between

1992 and 1998. While the confidence intervals for the parameters of interest do not overlap, so that

the assumption Pr1992 (x = 1)−Pr1998 (x = 1) < 0 can be rejected, we cannot reject the assumption
Pr1992 (x = 1) − Pr1998 (x = 1) = β for values of β in [0.06, 0.5]. The confidence set for Case 2 is
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constructed again by estimating Pw,1998 using sample means, and taking as estimate of the lower

bound for πjj , j = 1, 2, 3, in HE [Π ] the value µn in the (2,2) entry of Table 3. However the

lower bounds for the other parameters are treated as constant, so that the confidence ellipsoid is

constructed exclusively for the vector
h
Pw,1998
1 , Pw,1998

2 , µ
i
.

5 Extensions

The direct misclassification approach can be easily extended to drawing inference in presence of

multiple misclassified variables, regression with misclassified outcome, regression with misclassified

regressor, and jointly missing and misclassified outcomes. Below I list briefly the modifications of

the approach that will allow inference in each of these cases.

1. Two or More Misclassified Variables.

In this case, the researcher will simply have to redefine variables. Suppose that interest centers

on features of P
¡
x1, x2

¢
, x1 ∈ X1 ≡ {1, 2, . . . , J1} , x2 ∈ X2 ≡ {1, 2, . . . , J2} , 2 ≤ J1, J2 <∞, and

the researcher observes only
¡
w1, w2

¢
, a misclassified version of

¡
x1, x2

¢
. She can then construct

random variables s and r, taking values in S ≡ {1, 2, . . . , J1 · J2} , and such that s = (l − 1) · J2+ j

if x1 = j and x2 = l, and r = (k − 1) ·J2+ i if w1 = i and w2 = k. She can then write the analogue

of equation (1.1) for r and s, and use the method proposed here to draw the inference of interest.

2. Regressions.

(a) If interest centers on features of P (x| s = s0), where s ∈ S is a perfectly observable discrete

covariate with Pr (s = s0) > 0, and the researcher has prior information on Πs0 ≡ {Pr (w = i|x = j,

s = s0)}i,j∈X , the proposed method can be applied directly, with the event s = s0 conditioning all

the probabilities involved.

(b) Consider now the case that interest centers on features of P (y|x) , where y is a perfectly
observed outcome variable. The problem of regression with misclassified covariates has been widely

studied (e.g., Aigner (1973), Klepper (1988), Bollinger (1996), Card (1996), Kane, Rouse, and

Staiger (1999), Hu (2003), Mahajan (2003)), and point identified or interval identified estimators

have been proposed under specific sets of assumptions. The direct misclassification approach can be

used to estimate the smallest point and the largest point in the identification region of (for example)

a mean regression under any set of assumptions. Molinari (2003) shows how. Here I present ideas,

for the special case in which the probability of correct report is greater than 1
2 for each of the values

that x can take (and any additional assumption might hold). In this case we already discussed that

any Π ∈ H [Π ] is of full rank, so that px = Π−1 ·Pw. This implies that P (x|w) can be uniquely
expressed as a function of Π. First, suppose that H [Π ] is a singleton, so that P (w|x) is identified,
and therefore P (x) and P (x|w) are identified as well. P (y|w, x) and P (y|x) remain unknown,
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but knowledge of P (y|w) and P (x|w) imply restrictions on [P (y|w = i, x = j) , i, j ∈ X]. Hence,

for any i ∈ X, we can draw inference on E (y|w = i, x = j), j ∈ X, and then use this information,

knowledge of P (w|x) , and the Law of Total Probability to draw inference on E (y|x). In particular,
from the entire population, consider the sub-population with w = i. Horowitz and Manski (1995)

showed that the smallest feasible value of E (y|w = i, x = j) occurs if, within this sub-population,

the persons with x = j have the smallest values of y. Similarly, they showed that the largest

feasible value occurs if the persons with x = j have the largest values of y.11 The smallest value

of E (y|x = j) will then be given by the weighted sum of the smallest values of E (y|w = i, x = j)

obtained for each i ∈ X, with weights given by πij . Similarly, the largest value of E (y|x = j)

will be given by the weighted sum of the largest values of E (y|w = i, x = j) obtained for each

i ∈ X, again with weights given by πij . Consider now the (general) case in which H [Π ] is

not a singleton, so that P (w|x), and therefore P (x) and P (x|w) , are not identified. For given
Π ∈ H [Π ], px ∈ H [Px] and a feasible value of [Pr (x = j|w = i) , i, j ∈ X] are determined. Hence,

for each Π ∈ H [Π ], one can repeat the same argument as that above, and express the largest and

the smallest points in the identification regions for E (y|x = j) (derived for each Π ∈ H [Π ]) as

functions of Π. Taking the infimum and the supremum, respectively, of these smallest and largest

points for Π ∈ H [Π ] gives the smallest and the largest point in H [E (y|x = j)] , j ∈ X.

This same argument has been proposed by Dominitz and Sherman (2003), who studied the

problem of inferring the distribution of test scores for truly English proficient students (x = 1),

when only an imperfect indicator of English proficiency is available (w = 1). They used a mixture

model with verification, and assumed that students classified as English proficient (w = 1) are more

likely to be truly English proficient (x = 1) than students classified as limited English proficient

(w = 2). In terms of misclassification probabilities, this assumption translates into π11 ≥ Pw
1 .

3. Jointly Missing and Misclassified Data.

The data available to the empirical researcher are often not only error ridden, but also incom-

plete. Consider the example of survey respondents being asked about their pension plan type: not

only they can report DB, DC, or Both, but they can as well choose not to respond to the question.

Let w = J + 1 denote this outcome. Then system (1.1) can be rewritten as follows:⎡⎢⎢⎢⎢⎢⎣
Pr (w = 1)
...

Pr (w = J)

Pr (w = J + 1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
Pr (w = 1|x = 1) . . . Pr (w = 1|x = J)
...

. . .
...

Pr (w = J |x = 1) . . . Pr (w = J |x = J)

Pr (w = J + 1|x = 1) . . . Pr (w = J + 1|x = J)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
Pr (x = 1)
...

Pr (x = J)

⎤⎥⎥⎦ .
11Denoting by rk (·) the quantile function corresponding to P (y|w = k) , k ∈ X, these smallest and largest values

of E (y|w = i, x = j) correspond to the expectations of the observable distribution P (y|w = i), respectively right

truncated at ri (Pr (x = j|w = i)) and left truncated at ri (1− Pr (x = j|w = i)).
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This simply implies that the set H [Π ] is a set of rectangular matrices. The identification regions

H [Px] andH {τ [Px]} are still defined as in (2.2)-(2.3), and the nonlinear programming method can
be used to consistently estimate them. Of course, there will be additional constraints, one coming

from the (J + 1)−th equation in the above system, and the others from possible assumptions on the
relationship between misreporting and nonresponse. However the direct misclassification approach

can still be used to draw the inferences of interest.

6 Conclusions

This paper has studied the problem of drawing inference when a discrete variable is subject to

classification errors. This is a commonplace problem in surveys and elsewhere. The problem has

long been conceptualized through convolution and mixture models. This paper introduced the

direct misclassification approach. The approach is based on the observation that in the presence of

classification errors, the relation between the distribution of the “true” but unobservable variable

and its misclassified representation is given by a linear system of simultaneous equations, in which

the coefficient matrix is the matrix of misclassification probabilities.

While this matrix is unknown, validation studies, economic theory, cognitive and social psy-

chology, or knowledge of the circumstances under which the data have been collected can provide

information on the misclassification pattern that has transformed the “true” but unobservable vari-

able into the observable but possibly misclassified variable. The method introduced in this paper

shows how to transform such prior information into sets of restrictions on the (unknown) matrix

of misclassification probabilities, and exploit these restrictions to derive identification regions for

any real functional of the distribution of interest, using the linear system of simultaneous equations

directly. By contrast, mixture models do not allow the researcher to easily exploit this type of prior

information to learn features of the distribution of interest. Convolution models, as usually imple-

mented with the assumption of independence between measurement error and “true” variable, are

not suited to analyze errors in discrete data. The direct misclassification approach does not rely on

any specific set of assumptions, but it can incorporate into the analysis any prior information that

the researcher might have on the misreporting pattern. In some cases the implied identification

regions have a simple closed form solution, that allows for straightforward estimation using sample

analogs. When this is not the case, the identification regions can be estimated using the nonlinear

programming estimator introduced in this paper. Confidence sets that cover the true identification

region with probability at least equal to a prespecified confidence level can be constructed using a

simple procedure based on the inversion of a Wald statistic.
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A Misclassification Models and Mixture Models

Due to the pervasiveness of the problem, inference in the presence of error-ridden data has been

widely studied both in statistics and econometrics. Rather than focusing on equation (1.1) directly,

each of these fields has conceptualized the problem through two main models: mixture models and

convolution models. In what follows I show that, in the specific case of variables taking values in a

finite set X ≡ {1, 2, . . . , J} , 2 ≤ J <∞, these models can be formally expressed as misclassification
models.

When an analyst adopts a convolution model, she generally believes that the variable of interest

is affected by “chronic errors”, i.e. that the error distributions have no mass point at zero. She then

views the available data as realizations of a random variable w which measures the unobservable x

with errors in variables:

w ≡ x+ v,

where v is a random variable which represents the imperfection in the measurement of x. In this

case the relation between the observable distribution of w and the unobservable distribution of x

is given by

P (w) = P (x+ v) ,

P (x) = P (w − v) .

The analyst will assume that x and v are uncorrelated, or even independent, and that E (v) = 0.

When a variable with finite support is imperfectly classified, the assumption of independence

between measurement error and true variable cannot hold. Moreover, validation studies suggests

that a significant part of the observed data are error free. In terms of a convolution model, this

means that the error distribution has a mass point at zero. Once we introduce the mixture model,

it will become apparent that if this is the case, the convolution model can be treated as a mixture

model, and the results derived for the mixture model apply thoroughly.

When an analyst adopts a mixture model, she implicitly or explicitly assumes that while in

general x is well measured, occasional observations are afflicted with errors. She then views the

available data as realizations of a random variable w which is a contaminated measure of x:

w ≡ z · x+ (1− z) · v. (A.1)

Here v is a random variable whose distribution is of no interest, and the unobservable binary random

variable z indicates whether x or v is observed. When z = 1, realizations of x are observed and

w is said to be error free. When z = 0, realizations of v are observed and w is said to be a data

error. The relation between the observable distribution of w and the unobservable distribution of

33



x is given by

P (w) = Pr (z = 1)P (x| z = 1) + Pr (z = 0)P (v| z = 0) , (A.2)

P (x) = Pr (z = 1)P (x| z = 1) + Pr (z = 0)P (x| z = 0) . (A.3)

In order to make inference on features of P (x), it is often assumed that the error probability

Pr (z = 0) is known, or that it can be bounded non-trivially from above.

It is now easy to show that when the error distribution in a convolution model has a mass point

at zero, the convolution model can be treated as a mixture model. To see this, first let

w = x+ ṽ, (A.4)

where ṽ = 0 with probability 1 − p, ṽ = ε with probability p, and ε is a random variable with

possibly unknown distribution. Then one can express the model in (A.4) as a special case of the

model in (A.1) as follows:

w = zx+ (1− z) (x+ ε) ,

where Pr (z = 0) = p, and the contaminating random variable v which appeared in (A.1) has been

replaced by x+ ε.

When the data take values in the finite set X, the mixture model in (A.1) and the misclas-

sification model in (1.1) can be related as follows. Starting from equation (A.2), notice that,∀
i, j ∈ X,

Pr (w = i|x = j) =

(
Pr (z = 1|x = j) + Pr (z = 0|x = j) Pr (v = j|x = j, z = 0) if i = j,

Pr (z = 0|x = j) Pr (v = i|x = j, z = 0) if i 6= j.

(A.5)

Assumptions on P (z|x), typical of mixture models, translate immediately into assumptions for
the misclassification model. This will be rigorously proved below. However, prior information on

misclassification probabilities usually cannot be as easily incorporated in a mixture model.

To summarize, in the case of discrete variables with limited range, convolution models can be

treated as mixture models, and mixture models can be treated as misclassification models based

on equation (1.1). Equation (1.1) can therefore be used directly to draw inference on features of

P (x) and P (y|x).

A.1 Assumptions on Π and Assumptions in the Mixture Model

When using mixture models it is usually assumed availability of a non-trivial upper bound on the

probability of a data error. Hence, the following is maintained:
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Assumption 5 Pr (z = 0) ≤ λ < 1.

Additionally, often it is assumed that

Assumption 6 z ⊥ x.

Horowitz and Manski (1995) derive sharp bounds on P (x) and on features of this distribution

that respect stochastic dominance, when either Assumption 5 only, or both Assumptions 5-6 are

maintained. They refer to the first case as “corrupted sampling,” and to the second case as “con-

taminated sampling.” In Section 3 I mentioned that the assumptions maintained by Horowitz and

Manski (1995) imply Assumption 1 for the case of corrupted data, and Assumption 2 for the case

of contaminated data. Here I derive this result rigorously.

Proposition 9 a) Suppose that Assumption 5 holds. Then

JP
h=1

Pr (w = h, x = h) ≥ 1− λ. (A.6)

These bounds exhaust the implications of Assumption 5 on the structure of Π.

b) Suppose that Assumptions 5-6 jointly hold. Then

πjj ≡ Pr (w = j|x = j) = Pr (z = 1) + Pr (z = 0)Pr (v = j|x = j, z = 0) ≥ 1− λ, ∀j ∈ X. (A.7)

These bounds exhaust the implications of Assumptions 5-6 on the structure of Π.

Proof. Both for part a) and b), the proof is in two steps. First, I show that, given equation (A.1),

Assumption 5 and the joint Assumptions 5-6 imply, respectively, (A.6) and (A.7). Then I show

that for any Π such that:

1. there exists a column vector px =
h
px1 px2 . . . pxJ

i0
such that pxj ≥ 0, ∀ j ∈ X,

PJ
j=1 p

x
j =

1, and
PJ

j=1 πijp
x
j = Pw

i , ∀ i ∈ X,

2. (A.6) and (A.7) are satisfied,

one can construct random variables x ∈ X, v ∈ X, and z ∈ {0, 1} such that

Pw
i = Pr (z = 1) · Pr (x = i| z = 1) + Pr (z = 0) · Pr (v = i| z = 0) , ∀ i ∈ X,

with Pr (z = 0) ≤ λ both in case a) and b), and z ⊥ x in case b).

a) Corrupted Sampling.
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Step 1.

Let equation (A.1) and Assumption 5 hold. Then

JP
h=1

Pr (w = h, x = h) =
JP

h=1

Pr (w = h|x = h) Pr (x = h)

=
JP

h=1

[Pr (z = 1|x = h) + Pr (z = 0|x = h) Pr (v = h|x = h, z = 0)] Pr (x = h)

= Pr (z = 1) +
JP

h=1

Pr (v = h, x = h, z = 0) ≥ 1− λ,

where the first equality follows from Bayes Theorem, the second from equation (A.1), and the last

inequality follows from Assumption 5 and the fact that
JP

h=1

Pr (v = h, x = h, z = 0) ≥ 0.

Step 2.

Consider a matrix Π such that there exists a column vector px =
h
px1 px2 . . . pxJ

i0
, with

px ∈ ∆J−1, such that
PJ

j=1 πijp
x
j = Pw

i , ∀ i ∈ X, and πj ∈ ∆J−1 ∀j ∈ X, and
PJ

h=1 πhhp
x
h ≥ 1−λ.

Construct random variables z ∈ {0, 1} , x ∈ X, and v ∈ X such that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Pr (z = 1) + Pr (z = 0) = 1,

1− λ ≤ Pr (z = 1) ≤
JP

j=1
πjjp

x
j ,

Pr (z = 0, x = j) ≥
P
i6=j

πijp
x
j , ∀j ∈ X,

(A.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr (x = j, z = i) ≥ 0, ∀j ∈ X, i = 0, 1,

Pr (x = j, z = 0) + Pr (x = j, z = 1) = pxj , ∀j ∈ X,
JP

j=1
Pr (x = j, z = i) = Pr (z = i) , i = 0, 1,

(A.9)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pr (v = i, x = j, z = 0) = πij · pxj , ∀i, j ∈ X, i 6= j

Pr (v = j, x = j, z = 0) = πjjp
x
j − Pr (z = 1, x = j) , ∀i, j ∈ X, i 6= j,

Pr (v = i, z = 1) ≥ 0, ∀i ∈ X,
JP
i=1
Pr (v = i, z = 1) = Pr (z = 1) .

(A.10)

Notice that, given the first two equations in (A.8),

λ ≥ Pr (z = 0) ≥ 1−
JP

h=1

πhhp
x
h =

JP
h=1

(P
i6=h

πihp
x
h

)
,

so that the last equation in (A.8) is compatible with the previous two. Also, notice that, given (A.8),

Pr (v = i, x = j, z = 0) ∈ [0, 1] , ∀ i, j ∈ X; it is straightforward to verify that
PJ

i=1 Pr (v = i, x = j, z = 0) =
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Pr (x = j, z = 0) , ∀ j ∈ X. We are now left to show that given px and equations (A.8)-(A.10), the

implied P (v) is a valid probability measure, and P (v, z = 0) is such that Pw
i = Pr (x = i, z = 1)+

Pr (v = i, z = 0) , ∀ i ∈ X. First, notice that

JP
i=1
Pr (v = i, z = 0) =

JP
i=1

(
JP
j=1

Pr (v = i, x = j, z = 0)

)

=
JP
i=1

(P
j 6=i

πij · pxj + πiip
x
i − Pr (z = 1, x = i)

)
,

=
JP
i=1

Pw
i − Pr (z = 1) = 1− Pr (z = 1) = Pr (z = 0) ,

so that
PJ

i=1 Pr (v = i, z = 0) +
PJ

i=1 Pr (v = i, z = 1) = 1. Hence, the implied P (v) is a valid

probability measure. Now, consider

Pr (x = i, z = 1) + Pr (v = i, z = 0) = Pr (x = i, z = 1) +
P
j 6=i

πij · pxj + πiip
x
i − Pr (z = 1, x = i)

= πii · pxi +
P
j 6=i

πij · pxj = Pw
i ,∀i ∈ X.

Hence, the suggested distributions of x, v, and z can be used to construct a mixture model as the one

in (A.1), such that the observed vector [Pr (w = i) , i ∈ X] is a mixture of [Pr (x = i| z = 1) , i ∈ X] and

[Pr (v = i| z = 0) , i ∈ X], and Pr (z = 0) ≤ λ.

b) Contaminated Sampling.

Step 1.

Let equation (A.1) and Assumptions 5-6 jointly hold. Then

Pr (w = h|x = h) = Pr (z = 1) + Pr (z = 0)Pr (v = h|x = h, z = 0) ≥ 1− λ, ∀ h ∈ X,

where the first equality follows from the Law of Total Probability, Assumption 6, and equation (A.1),

and the last inequality follows from Assumption 5 and the fact that Pr (v = h|x = h, z = 0) ≥ 0,
∀ h ∈ X.

Step 2.

Consider a matrix Π such that πj ∈ ∆J−1 and πjj ≥ 1− λ ∀ j ∈ X, and for which there exists a

column vector px =
h
px1 px2 . . . pxJ

i0
such that px ∈ ∆J−1, and

PJ
j=1 πijp

x
j = Pw

i , ∀ i ∈ X.

Choose a random variable x such that:

Pr (x = j| z = 0) = Pr (x = j| z = 1) = pxj , ∀j ∈ X.

Construct random variables z ∈ {0, 1} and v ∈ X such that:

1− λ ≤ Pr (z = 1) ≤ πjj , ∀j ∈ X, (A.11)
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and, for any j ∈ X such that pxj > 0,

Pr (v = i|x = j, z = 0) =
πij

Pr (z = 0)
, ∀ i ∈ X, i 6= j, (A.12)

Pr (v = j|x = j, z = 0) =
πjj − Pr (z = 1)
Pr (z = 0)

. (A.13)

Notice that, for any j ∈ X such that pxj > 0, given (A.11), Pr (v = i|x = j, z = 0) ∈ [0, 1] , ∀ i ∈ X;

it is straightforward to verify that
PJ

i=1 Pr (v = i|x = j, z = 0) = 1, ∀ j ∈ X such that pxj > 0. We

are now left to show that given px and equations (A.12)-(A.13), the implied P (v| z = 0) is a valid
probability measure, and is such that Pw

i = Pr (z = 1) · pxi +Pr (z = 0) ·Pr (v = i| z = 0) , ∀ i ∈ X.

First, notice thatPJ
i=1 Pr (v = i| z = 0) =

PJ
i=1

nPJ
j=1 Pr (v = i|x = j, z = 0) · pxj

o
=

PJ
i=1

πii − Pr (z = 1)
Pr (z = 0)

· pxi +
PJ

i=1

½P
j 6=i

πij
Pr (z = 0)

· pxj
¾

=
PJ

i=1

πii · pxi +
P

j 6=i πij · pxj
Pr (z = 0)

− Pr (z = 1)
Pr (z = 0)

=

PJ
i=1 P

w
i

Pr (z = 0)
− Pr (z = 1)
Pr (z = 0)

=
1− Pr (z = 1)
Pr (z = 0)

= 1.

Hence, the implied P (v| z = 0) is a valid probability measure. Now, consider

Pr (z = 1) · pxi +Pr (z = 0) · Pr (v = i| z = 0)

= Pr (z = 1) · pxi +Pr (z = 0) ·
µ
πii − Pr (z = 1)
Pr (z = 0)

· pxi +
P

j 6=i
πij

Pr (z = 0)
· pxj
¶

= Pr (z = 1) · pxi + (πii − Pr (z = 1)) · pxi +
P

j 6=i πij · pxj
= πii · pxi +

P
j 6=i πij · pxj = Pw

i ,∀i ∈ X.

Hence, the suggested distributions of x, v, and z can be used to construct a mixture model as

the one in (A.1), such that the observed vector [Pr (w = i) , i ∈ X] is a mixture of [pxi , i ∈ X] and

[Pr (v = i| z = 0) , i ∈ X], x ⊥ z, and Pr (z = 0) ≤ λ. ¥

Notice that (A.6) and (A.7), respectively, correspond to Assumption 1 and Assumption 2, and

imply the same sets HE,1 [Π ] and HE,2 [Π ].

We are now ready to relate Assumptions 3 and 4 to corresponding assumptions for the mixture

model in (A.1). In all that follows, suppose that Assumptions 5-6 jointly hold.

Consider first Assumption 3, and suppose that in the mixture model one maintains the following:

Assumption 7 Pr (v = j|x = j, z = 0) = k ∀j ∈ X̃ ⊆ X, k ∈ [0, 1] .
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Then

π ≡ Pr (w = j|x = j) = Pr (z = 1) + kPr (z = 0) ≥ 1− λ, ∀j ∈ X̃ ⊆ X,

which coincides with Assumption 3.

Consider now Assumption 4, and suppose that in the mixture model one maintains the following:

Assumption 8 Pr (v = j|x = j, z = 0) ≥ Pr (v = j + 1|x = j + 1, z = 0) , ∀j ∈ X.

Then, by Assumption 8, ∀j ∈ X\ {J} ,

Pr (w = j|x = j) = Pr (z = 1) + Pr (z = 0)Pr (v = j|x = j, z = 0)

≥ Pr (z = 1) + Pr (z = 0)Pr (v = j + 1|x = j + 1, z = 0)

= Pr (w = j + 1|x = j + 1) ,

and, by Assumptions 5-6, Pr (w = J |x = J) ≥ 1− λ.This coincides with Assumption 4.

A.2 Mixture Model and Dichotomous Variables

Errors in dichotomous variables are often thought of in terms of false positives and false negatives.

Part of the literature dealing with error-ridden binary data using mixture models has therefore

formalized the problem as follows:

w = z · x+ (1− z) (1− x) . (A.14)

(See, for example, Copas (1988) and Horowitz and Manski (1997).) Compare (A.14) with (A.1):

while in (A.1) the contaminating variable is the unknown v, in (A.14) it is implicitly assumed that

v = 1 − x. Hence, when z = 0 the realization of w is exactly the opposite of the true realization

of x, while for a general mixture model it might still be the case that when drawing from v, one

draws a realization that is the same as that of x (compare with equation (A.5)). Moreover, with

equation (A.14), when z = 0 the realization of w is drawn from the distribution of 1− x.

This difference is not necessarily a mere formalism. Suppose that the researcher believes that

equation (A.14) correctly represents the relation between x and w; still, equation (A.14) does not

have any content per se. However, suppose that the researcher has previous information suggesting

that Assumptions 5-6 jointly hold. Then

Pr (w = j|x = j) = Pr (z = 1) + Pr (z = 0)Pr ((1− x) = j|x = j) = Pr (z = 1) , j = 0, 1, (A.15)

and Assumption 3 holds, with X̃ = X = {0, 1}. Hence, Proposition 7 applies, so that the identifi-
cation regions H [Pr (x = j)] , j = 0, 1, are subsets of those generally obtained when Assumptions

5-6 are maintained with the mixture model in (A.1).
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B Proofs of Propositions

B.1 Propositions in Section 2

B.1.1 Proposition 1

Proof. Let Π1 ∈ HP [Π ] . This means that ∃ ξ1 ∈ ∆J−1 such that Π1 ·ξ1 = Pw. Now observe that

for any ξ ∈ ∆J−1, Π̃ ·ξ = Pw. Hence, for any α ∈ (0, 1) we have that
³
αΠ1 + (1− α) Π̃

´
·ξ1 = Pw,

and therefore
³
αΠ1 + (1− α) Π̃

´
∈ HP [Π ] . To show that HP [Π ] is not star convex with respect

to any other of its elements, consider a matrix Π1 ∈ HP [Π ] with Π1 6= Π̃. Because Π1 6= Π̃,
it follows that there exists an i ∈ X such that not all elements of the i−th row of Π1 are equal
to Pw

i . Without loss of generality, let i = 1. Let π11j > Pw
1 > 0 (a similar argument works for

the case that π1j < Pw
1 ), and without loss of generality suppose j = 1. Construct Π2 as follows:

π21 = P
w, π1k = 1 ∀ k ∈ X\ {1} . Then Π2 ∈ HP [Π ] . Let Πα = αΠ1 + (1− α)Π. Then for any

α ∈ [0, 1− Pw
1 ) we have that Π

α /∈ HP [Π ] , because every element in the first row of the resulting

matrix is strictly greater than Pw
1 . ¥

B.1.2 Proposition 2

The calculations which follow will show that

sup
ξ∈∆J−1

|QN (ξ)−Q (ξ)| p−→ 0, and

sup
ξ∈∆J−1

|QN (ξ)−Q (ξ)|

N
= op (1) .

The consistency result then follows from Manski and Tamer (2002), Proposition 5.

For vectors of positive probabilities Pw and positive constants µ ≡
£
µ1, . . . , µq̄

¤
, let Q (ξ;Pw,µ)

denote the value of the objective function in the nonlinear programming problem (2.8)-(2.9). As

discussed in Section 2, this problem has always an optimal solution. Let
¡
v1,Π1

¢
be the maximizer

for (2.8)-(2.9) when Pw = Pw,1 and µ = µ1; we will show that a feasible vector can be constructed

with Pw = Pw,2 and µ = µ2. The strategy of this proof is similar to the one in Honore and Lleras-

Muney (2004), except that here some more complications arise due to the possible nonlinearity of

some of the constraints.

To simplify the notation, let q̄ = q, and assume that q1 components of µ are estimated for the

grater-than-or-equal constraints, q2 for the less-than-or-equal constraints, and q3 for the equality

constraints, q1 + q2 + q3 = q. Let

c1 = min

(
min
j

Pw,2
j

Pw,1
j

, min
l∈{1,...,q1}

µ2l
µ1l

, min
m∈{1,...,q2}

µ1q1+m
µ2q1+m

, min
s∈{1,...,q3}

µ2q1+q2+s
µ1q1+q2+s

, min
s∈{1,...,q3}

µ1q1+q2+s
µ2q1+q2+s

)
.
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This implies that 0 < c1 ≤ 1. Let Π̌ ≡ c1 ·Π1 ≥ 0, and

v̌j ≡ 1−
PJ

i=1 π̌ij = 1− c1
PJ

i=1 π
1
ij ≥ 1−

PJ
i=1 π

1
ij ≥ 0, j = 1, . . . , J

v̌J+j ≡ Pw,2
j −

PJ
i=1 π̌ijξj = Pw,2

j − c1
PJ

i=1 π
1
ijξj ≥

Pw,2
j

Pw,1
j

v1J+j ≥ 0, j = 1, . . . , J.

Notice that ¯̄
v̌j − v1j

¯̄
≤ J (1− c1) ,¯̄

v̌J+j − v1J+j
¯̄
≤ (1 + J)

µ
1− c1
c1

¶
.

We now turn our attention to the constraints defining HE [Π ] . Suppose first that fl (·) , gm (·)
and , hs (·) satisfy Assumption C1-(i). Observe that if fl

¡
Π1
¢
≥ µ1l we will have v12J+l = 0; if

fl
¡
Π1
¢
< µ1l we will have v

1
2J+l = µ1l − fl

¡
Π1
¢
. For l = 1, . . . , q1, let

v̌2J+l ≡

⎧⎪⎪⎨⎪⎪⎩
0 if fl

¡
Π1
¢
≥ µ1l and fl

¡
Π̌
¢
≥ µ2l ,

fl
¡
Π1
¢
− µ1l −

¡
fl
¡
Π̌
¢
− µ2l

¢
if fl

¡
Π1
¢
≥ µ1l and fl

¡
Π̌
¢
< µ2l ,

µ2l − fl
¡
Π̌
¢

if fl
¡
Π1
¢
< µ1l .

(B.1)

The suggested values of v̌2J+l are feasible. In fact, for l = 1, . . . , q, if fl
¡
Π1
¢
≥ µ1l the implied v̌2J+l

is obviously non-negative. If fl
¡
Π1
¢
< µ1l ,

v̌2J+l = µ2l − fl
¡
Π̌
¢
= µ2l − fl

¡
c1Π

1
¢
=

µ2l
µ1l
µ1l − crl1 fl

¡
Π1
¢
≥ crl1 v

1
2J+l ≥ 0,

where the third equality follows from Assumption C1-(i). Moreover, by Assumption C1-(i)

¯̄
v̌2J+l − v12J+l

¯̄
≤
¯̄
µ2l − µ1l

¯̄
+
¯̄
fl
¡
Π̌
¢
− fl

¡
Π1
¢¯̄
≤M

µ
1− c1
c1

¶
+ max

Π∈[0,1]J2
|fl (Π)| · (1− crl1 ) ,

where max
Π∈[0,1]J2

|fl (Π)| is bounded because fl (·) is a continuous function on a compact set.

Regarding the less-than-or-equal constraints, observe that under Assumption C1 a monotone

transformation of gm (Π) and µq1+m leaves the constraint unaltered. Hence without loss of generality

when gm (·) satisfies Assumptions C1-(i), we can let rm = 1.
Now, notice that if gm

¡
Π1
¢
≤ µ1q1+m we will have v12J+q1+m = 0; if gm

¡
Π1
¢
> µ1q1+m we will

have v12J+q1+m = gm
¡
Π1
¢
− µ1q1+m. For m = 1, . . . , q2, let

v̌2J+q1+m ≡

⎧⎪⎪⎨⎪⎪⎩
0 if gm

¡
Π1
¢
≤ µ1q1+m and gm

¡
Π̌
¢
≤ µ2q1+m,

µ1q1+m − gm
¡
Π1
¢
+
³
1
c21
gm
¡
Π̌
¢
− µ2q1+m

´
if gm

¡
Π1
¢
≤ µ1q1+m and gm

¡
Π̌
¢
> µ2q1+m,

1
c21
gm
¡
Π̌
¢
− µ2q1+m if gm

¡
Π1
¢
> µ1q1+m.
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This choice of v̌2J+q1+m satisfies the constraint in (2.9). In fact, if gm
¡
Π̌
¢
≤ µ2q1+m the constraint

is satisfied with v̌2J+q1+m = 0, and in the other cases

µ2q1+m − gm
¡
Π̌
¢
+ v̌2J+q1+m ≥ µ2q1+m − gm

¡
Π̌
¢
+

µ
1

c21
gm
¡
Π̌
¢
− µ2q1+m

¶
=

µ
1

c21
− 1
¶
gm
¡
Π̌
¢
≥ 0,

where the last inequality follows because by Assumption C1 gm (·) is non-negative on [0, 1]J
2

and

0 < c1 ≤ 1 by construction. Notice also that the suggested values of v̌2J+q1+m are feasible. In fact,
for m = 1, . . . , q2, if gm

¡
Π1
¢
≤ µ1q1+m the implied v̌2J+q1+m is obviously non-negative, because

1
c21
gm
¡
Π̌
¢
≥ gm

¡
Π̌
¢
. On the other hand, recalling that by construction c1 ≤ min

m∈{1,...,q2}

µ1q1+m
µ2q1+m

, if

gm
¡
Π1
¢
> µ1q1+m,

v̌2J+q1+m =
1

c21
gm
¡
Π̌
¢
− µ2q1+m =

1

c21
gm
¡
c1Π

1
¢
− µ2q1+m =

1

c1
gm
¡
Π1
¢
− µ2q1+m ≥

1

c1
v12J+q1+m ≥ 0

Moreover, by Assumption C1-(i)

¯̄
v̌2J+q1+m − v12J+q1+m

¯̄
≤
¯̄
µ2q1+m − µ1q1+m

¯̄
+

¯̄̄̄
1

c21
gm
¡
Π̌
¢
− gm

¡
Π1
¢¯̄̄̄
≤
µ
1− c1
c1

¶Ã
M + max

Π∈[0,1]J2
gm (Π)

!
,

where max
Π∈[0,1]J2

gm (Π) is bounded because gm (·) is a continuous function on a compact set.

Suppose now that fl (·) , gm (·) and , hs (·) satisfy Assumption C1-(ii). Then letting v̌2J+l be

defined as in (B.1) and defining

v̌2J+q1+m ≡

⎧⎪⎪⎨⎪⎪⎩
0 if gm

¡
Π1
¢
≤ µ1q1+m and gm

¡
Π̌
¢
≤ µ2q1+m,

µ1q1+m − gm
¡
Π1
¢
+
³

1
ct+11

gm
¡
Π̌
¢
− µ2q1+m

´
if gm

¡
Π1
¢
≤ µ1q1+m and gm

¡
Π̌
¢
> µ2q1+m,

1
ct+11

gm
¡
Π̌
¢
− µ2q1+m if gm

¡
Π1
¢
> µ1q1+m.

where t is the degree of the polynomial, one can repeat similar calculations as above, showing that

these choices of v̌2J+l and v̌2J+q1+m are feasible, satisfy the constraints in (2.9), and are such that

¯̄
v̌2J+l − v12J+l

¯̄
≤

µ
1− c1
c1

¶
M + const ·

Pt
j=1

³
1− cj1

´
¯̄
v̌2J+q1+m − v12J+q1+m

¯̄
≤

µ
1− c1
c1

¶
M + const ·

Pt
j=1

Ã
1− cj1
cj1

!

Finally, observe that for the equality constraints the same calculations as above can be applied to

hk (Π) ≥ µq1+q2+k and hk (Π) ≤ µq1+q2+k, k = 1, . . . , q3.

Hence, letting r = max
µ
t,max

l
rl

¶
for each ξ, Q

¡
ξ;Pw,2,µ2

¢
≥Q

¡
ξ;Pw,1,µ1

¢
−const·(1− c1)

−const · (1− cr1) −const ·
³
1−c1
c1

´
−const ·

³
1−cr1
cr1

´
. Interchanging the role of Pw,1 and Pw,2 we get
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Q
¡
ξ;Pw,1,µ1

¢
≥ Q

¡
ξ;Pw,2,µ2

¢
−const·(1− c2) −const·(1− cr2) −const·

³
1−c2
c2

´
−const·

³
1−cr2
cr2

´
,

where

c2 = min

(
min
j

Pw,1
j

Pw,2
j

, min
l∈{1,...,q1}

µ1l
µ2l

, min
m∈{1,...,q2}

µ2q1+m
µ1q1+m

, min
s∈{1,...,q3}

µ2q1+q2+s
µ1q1+q2+s

, min
s∈{1,...,q3}

µ1q1+q2+s
µ2q1+q2+s

)
with 0 < c2 ≤ 1, so that¯̄

Q
¡
ξ;Pw,2,µ2

¢
−Q

¡
ξ;Pw,1,µ1

¢¯̄
≤ const · (1− c1) + const · (1− c2) + const · (1− cr1)+

+ const ·
µ
1− cr1
cr1

¶
+ const (1− cr2) + const ·

µ
1− c1
c1

¶
+ const ·

µ
1− c2
c2

¶
+ const ·

µ
1− cr2
cr2

¶
.

Finally, under Assumption C2 the estimators Pw
N (as defined in (2.6)) and µl.n are root-N consistent

and asymptotically normal, so that sup
ξ∈∆J−1

|QN (ξ)−Q (ξ)| = Op

³
N−1

2

´
.

¥

B.2 Propositions in Section 3

I first introduce and prove a Lemma that will be useful for the proof of some of the following

Propositions.

Lemma 1 Suppose that Assumption 2 holds, and that Pw
j > λ, j ∈ X. Then

Pw
j −λ
1−λ is an admissible

value of pxj , and therefore solves the j−th equation of system (1.1), if and only if the following

conditions jointly hold: (a) πjj = 1, and (b) either πji = λ or pxi = 0, ∀ i ∈ X\ {j} , andP
i6=j πjip

x
i = λ

1−Pw
j

1−λ . ¤

Proof. For
Pw
j −λ
1−λ > 0 to be an admissible value of pxj , the j−th equation of system (1.1) requires

that

πjj
Pw
j − λ

1− λ
+
P
i6=j

πjip
x
i = Pw

j , (B.2)

and
P

i6=j p
x
i =

1−Pw
j

1−λ . By Assumption 2, πji ∈ [0, λ], ∀ i ∈ X\ {j} and πjj ∈ [1− λ, 1]. Notice

that it is possible for πji = λ, ∀ i ∈ X\ {j} , because the πji are not related across i. (Recall that
1− πkk =

P
l 6=k πlk ≤ λ, ∀ k ∈ X.) Therefore,

πjj
Pw
j − λ

1− λ
+
P
i6=j

πjip
x
i ≤ πjj

Pw
j − λ

1− λ
+ λ

P
i6=j

pxi

= πjj
Pw
j − λ

1− λ
+ λ

1− Pw
j

1− λ
≤

Pw
j − λ

1− λ
+ λ

1− Pw
j

1− λ
= Pw

j

Hence, equation (B.2) can be satisfied if and only if πjj = 1, and
P

i6=j πjip
x
i = λ

1−Pw
j

1−λ . For the last

equality to hold, we need that either πji = λ, ∀ i ∈ X\ {j} , or that for any i such that πji < λ,

pxi = 0. Notice that we must have at least one value of p
x
i > 0, because p

x
j =

Pw
j −λ
1−λ < 1. ¥
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B.2.1 Proposition 3

Proof

a) Assumption 1 holds.

Given Assumption 1, we can define H1 [Π ] as follows:

H1 [Π ] =

(
Π : πj ∈ ∆J−1 and pxj ≥ 0 ∀ j ∈ X,

Pw ∈ conv {π1,π2, . . . ,πJ} , and
PJ

h=1 πhhp
x
h ≥ 1− λ

)
.

Without loss of generality, suppose that we are interested in characterizing the identification region

H [Pr (x = 1)]. For the first equation of system (1.1) to be satisfied we need

px1 = Pw
1 −

JP
j=2

π1jp
x
j + px1

JP
i=2

πi1

From the definition of H1 [Π ] we know that

λ ≥ 1−
PJ

h=1 πhhp
x
h =

PJ
h=1

nP
i6=h πihp

x
h

o
≥
PJ

j=2 π1jp
x
j + px1

PJ
i=2 πi1

Hence from the first equation of system (1.1) we can learn that px1 ≥ max {Pw
1 − λ, 0} , and px1 ≤

min {1, Pw
1 + λ} . If Pw

1 > λ, the lower bound is achieved for
PJ

j=2 π1jp
x
j = λ and

PJ
i=2 πi1p

x
1 = 0.

If Pw
1 < 1− λ, the upper bound is achieved for

PJ
j=2 π1jp

x
j = 0 and

PJ
i=2 πi1p

x
1 = λ. We are now

left to show that we can find values of pxj ∈ X\ {1} and Π ∈ H1 [Π ] such that the corresponding

px ∈ H [P (x)].

a.1.1) Upper Bound, with Pw
1 < 1− λ.

Let π11 =
Pw
1

(Pw
1 +λ)

, πjj = 1, j ∈ X\ {1} , πij = 0, i, j ∈ X\ {1} , i 6= j, and define πi1, i ∈ X\ {1} ,
as follows:

if ∃ j > 1 : Pw
j ≥ λ, πi1 =

⎧⎪⎨⎪⎩
λ

(Pw
1 +λ)

for i = j = min {k = 2, . . . , J : Pw
k ≥ λ}

0, ∀ i ∈ X, i 6= {1, j} .

if Pw
j < λ,∀j ∈ X\ {1} , πi1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pw
2

(Pw
1 +λ)

for i = 2,

min

½
λ

(Pw
1 +λ)

−
i−1P
k=2

Pw
k

(Pw
1 +λ)

,
Pw
i

(Pw
1 +λ)

¾ ⎧⎪⎨⎪⎩
for i ∈ X\ {1, 2} ,

i :
i−1P
k=2

Pw
k

(Pw
1 +λ)

≤ λ,

0

⎧⎪⎨⎪⎩
for i ∈ X\ {1, 2} ,

i :
i−1P
k=2

Pw
k

(Pw
1 +λ)

> λ.

It is easy to show that the suggested Π belongs to H1 [Π ] , and allows for px1 = Pw
1 + λ and the

implied pxj , j ∈ X\ {1} to solve system (1.1). Hence, px1 = Pw
1 + λ is a feasible value of Pr (x = 1)

44



given the maintained assumptions. To show that px1 = Pw
1 + λ is the sharp upper bound on

Pr (x = 1), take any ε > 0, and let px1 = Pw
1 +λ+ ε. Then, using again the first equation of system

(1.1), we have

Pw
1 + λ+ ε = Pw

1 −
PJ

j=2 π1jp
x
j +

PJ
i=2 πi1p

x
1 ,

but the right hand side of the above expression is necessarily less than or equal to Pw
1 + λ. This

immediately shows that there exists no value of Π ∈ H1 [Π ] for which px1 = Pw
1 + λ + ε solves

system (1.1), and therefore it is not a feasible value of Pr (x = 1).

a.1.2) Upper Bound, with Pw
1 ≥ 1− λ.

In this case the upper bound is not informative, but just set equal to 1. Let px1 = 1; this in turn

implies pxj = 0, ∀ j ∈ X\ {1}. Let
PJ

i=2 πi1 = 1 − Pw
1 ≤ λ, and πi1p

x
1 = πi1 = Pw

i ≤ λ, ∀ i ∈ X,

i 6= 1. It is straightforward to verify that the suggested Π ∈ H1 [Π ] , and allows for px1 = 1, and the

implied pxj = 0, ∀ j ∈ X\ {1} , to solve system (1.1). Hence px1 = 1 is a feasible value of Pr (x = 1)

given the maintained assumptions.

a.2.1) Lower Bound, with Pw
1 > λ.

Let px2 = Pw
2 + λ, and π12 =

λ
px2
, π22 = 1 − λ

px2
, and πjj = 1, ∀ j ∈ X\ {2} , so that πi2 = 0, ∀

i ∈ X\ {2} , and πij = 0, ∀ i, j ∈ X, i 6= j, [i j] 6= [1 2] . Then it is straightforward to verify that
the suggested Π ∈ H1 [Π ], and allows for px1 = Pw

1 − λ and the implied pxj , j ∈ X\ {1} to solve
system (1.1). Hence Pw

1 − λ is a feasible value of Pr (x = 1) given the maintained assumptions. To

show that px1 = Pw
1 − λ is the sharp lower bound on Pr (x = j), take any 0 < ε ≤ Pw

1 − λ, and let

px1 = Pw
1 − λ− ε. Then, using again the first equation of system (1.1), we have

Pw
1 − λ− ε = Pw

1 −
JP

j=2
π1jp

x
j +

JP
i=2

πi1p
x
1 ,

but the right hand side of the above expression is necessarily greater than or equal to Pw
1 − λ.

Hence, there exists no value of Π ∈ H1 [Π ] for which px1 = Pw
1 − λ − ε solves system (1.1), and

therefore it is not a feasible value of Pr (x = 1).

a.2.2) Lower Bound, with Pw
1 ≤ λ.

Then the lower bound is not informative, but just set equal to 0. Let px1 = 0; this in turn impliesPJ
j=2 p

x
j = 1. Let π12 = π13 = . . . = π1J = Pw

1 . Then
PJ

j=2 π1jp
x
j = Pw

1 . Moreover
PJ

j=2 P
w
j

= 1 − Pw
1 ≥ 1 − λ, hence Pw

j ≤ 1 − Pw
1 for each j ∈ X\ {1}. Let πjj = 1 − Pw

1 , ∀ j ∈ X\ {1} ,
and πij = 0, ∀ i, j ∈ X, i 6= j, i 6= 1. Then pxj =

Pw
j

1−Pw
1
≤ 1, j ∈ X\ {1}, and

PJ
j=2 p

x
j = 1. It

follows that when Pw
1 ≤ λ, there exist values of Π ∈ H1 [Π ] for which px1 = 0 and the implied pxj ,

j ∈ X\ {1} solve system (1.1), and hence it’s a feasible value of Pr (x = 1) given the maintained

assumptions.

a.3) The all interval between the extreme points is feasible.
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To prove the claim we need to distinguish four cases: (1) λ ≤ Pw
1 ≤ 1−λ; (2) Pw

1 ≤ min {λ, 1− λ} ;
(3) Pw

1 ≥ max {λ, 1− λ} ; (4) 1− λ < Pw
1 < λ. Here we describe in great detail the proof for case

(1); the other cases can be proved using similar arguments. See Molinari (2003) for a detailed proof

of all cases.

(1) Consider the case λ ≤ Pw
1 ≤ 1− λ. It then follows that

Pw
1 − λ ≤ px1 ≤ Pw

1 + λ.

Let px1 = Pw
1 +(1− 2α)λ, for any α ∈ (0, 1). We want to show that we can find values of pxj ∈ X\ {1}

and Π ∈ H1 [Π ] such that the corresponding px ∈ H [P (x)]. We need to distinguish two sub-cases:

1. If α ≤ 1
2 , let π11 =

Pw
1

Pw
1 +(1−2α)λ

, πij = 0, ∀i = 1, . . . , J, j = 2, . . . , J. Choose πj1 and pxj ,

j ∈ X\ {1} , as follows:

(a) if ∃ j : Pw
j ≥ 1−

Pw
1

Pw
1 +(1−2α)λ

,

πk1 =

⎧⎨⎩ 1− Pw
1

Pw
1 +(1−2α)λ

for k = j = min {i = 2, . . . , J : Pw
i ≥ λ}

0, ∀k ∈ X, k 6= {1, j} .

(b) if Pw
j < 1− Pw

1
Pw
1 +(1−2α)λ

,∀j ∈ X\ {1} ,

πk1 =

⎧⎨⎩ Pw
2 for k = 2

min
n
1− Pw

1
Pw
1 +(1−2α)λ

−
Pk−1

i=2 πi1, P
w
k

o
∀k ∈ X\ {1, 2} ,

pxj = Pw
j − πj1 (P

w
1 + (1− 2α)λ) .

2. If α > 1
2 , let πjj = 1, ∀j ∈ X\ {2} , π22 = Pw

2
Pw
2 +(2α−1)λ

, π11 =
(2α−1)λ

Pw
2 +(2α−1)λ

, and px2 =

Pw
2 + (2α− 1)λ.

b) Assumption 2 holds.

Given Assumption 2, we can define H2 [Π ] as follows:

H2 [Π ] =
©
Π : πj ∈ ∆J−1 and πjj ≥ 1− λ and pxj ≥ 0 ∀ j ∈ X, Pw ∈ conv {π1,π2, . . . ,πJ}

ª
.

Without loss of generality, suppose that we are interested in characterizing the identification region

H [Pr (x = 1)].

For the first equation of system (1.1) to be satisfied, we need π11p
x
1 +

PJ
j=2 π1jp

x
j = Pw

1 ,wherePJ
j=2 p

x
j = 1 − px1 . From the definition of H2 [Π ] we know that π1j ≤ λ, ∀j ∈ X\ {1} , and

π11 ≥ 1− λ. Let
PJ

j=2 π1jp
x
j ≤ π̄ · (1− px1), where, given the above constraints, π̄ ∈ [0, λ] . Then

px1 =
Pw
1 − π̄

π11 − π̄
,

and px1 is well defined as long as π11 6= π̄. We now need to distinguish a few cases.
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1. If Pw
1 < min {λ, 1− λ}, one can pick π̄ = Pw

1 < λ, and px1 = 0 will be the lower bound. As for

the upper bound, when Pw
1 < 1−λ ≤ π11, by the first equation of system (1.1) π̄ ≤ Pw

1 ≤ π11,

and px1 is decreasing in both π11 and π̄. Hence the upper bound is achieved for π11 = 1− λ,

and π̄ = 0, and will be given by px1 =
Pw
1

1−λ .

2. If λ ≤ Pw
1 ≤ 1− λ, by the first equation of system (1.1) π̄ ≤ Pw

1 ≤ π11, and px1 is decreasing

in both π11 and π̄. Hence the upper bound is achieved for π11 = 1− λ, and π̄ = 0, and will

be given by px1 =
Pw
1

1−λ , and the lower bound is achieved for π11 = 1, and π̄ = λ, and is given

by px1 =
Pw
1 −λ
1−λ .

3. If 1− λ ≤ Pw
1 ≤ λ, pick π̄ = Pw

1 ≤ λ, and px1 = 0 will be the lower bound. Pick π11 = Pw
1 ≥

1− λ, and px1 = 1 will be the upper bound.

4. If Pw
1 > max {λ, 1− λ} , pick π11 = Pw

1 ≥ 1 − λ, and px1 = 1 will be the upper bound. As

for the lower bound, when Pw
1 > λ ≥ π̄, by the first equation of system (1.1) π̄ ≤ Pw

1 ≤ π11,

and px1 is decreasing in both π11 and π̄. Hence the lower bound is achieved for π11 = 1, and

π̄ = λ, and will be given by px1 =
Pw
1 −λ
1−λ .

To summarize, from the first equation of system (1.1) we can learn that px1 ≥ max
n
Pw
1 −λ
1−λ , 0

o
and

px1 ≤ min
n
1,

Pw
1

1−λ

o
. If Pw

1 > λ, the lower bound is achieved for π11 = 1 and π̄ = λ. If Pw
1 < 1− λ,

the upper bound is achieved for π11 = 1− λ and π̄ = 0. We are now left to show that we can find

values of pxj ∈ X\ {1} and Π ∈ H2 [Π ] such that for any px1 ∈
h
max

n
Pw
1 −λ
1−λ , 0

o
,min

n
1,

Pw
1

1−λ

oi
the

corresponding px ∈ H [P (x)]. We will first show that this holds for the extreme points, and then

that it holds for any point in the closed interval between the lower and the upper bound.

b.1.1) Upper Bound, with Pw
1 < 1− λ.

Let π11 = 1− λ and πjj = 1, ∀ j > 1. Then the system reduces to(
(1− λ)

Pw
1

1−λ = Pw
1

πj1
Pw
1

1−λ + pxj = Pw
j , j = 2, . . . , J

where
PJ

j=2 πj1 = λ, and
PJ

j=2 P
w
j > λ. Choose πk1, k ∈ X\ {1}, as follows:

if ∃ j : Pw
j ≥ λ, πk1 =

⎧⎨⎩ λ for k = j = min {i = 2, . . . , J : Pw
i ≥ λ}

0, ∀k ∈ X, k 6= {1, j} .

if Pw
j < λ,∀j ∈ X\ {1} , πk1 =

⎧⎨⎩ Pw
2 for k = 2

min
n
λ−

Pk−1
i=2 πi1, P

w
k

o
∀k ∈ X\ {1, 2} .

. (B.3)

It is easy to show that the suggested Π belongs to H2 [Π ] , and allows for px1 =
Pw
1

1−λ and the implied

pxj , j ∈ X\ {1} to solve system (1.1). Hence, px1 =
Pw
1

1−λ is a feasible value of Pr (x = 1) given the
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maintained assumptions. To show that px1 =
Pw
1

1−λ is the sharp upper bound on Pr (x = 1), take any

ε > 0, and let px1 =
Pw
1

1−λ + ε. Then, we see immediately that there is no π11 ∈ [1− λ, 1] for which

the first equation of system (1.1) can be satisfied: even if we let π1j = 0, ∀ j 6= 1, j ∈ X, we would

need π11 = 1− λPw
1 +(1−λ)ε

Pw
1 +(1−λ)ε

< 1−λ to achieve
³

Pw
1

1−λ + ε
´
π11 = Pw

1 . Hence, there exists no value of

Π ∈ H2 [Π ] for which px1 =
Pw
1

1−λ + ε solves system (1.1), and therefore it is not a feasible value of

Pr (x = 1).

b.1.2) Upper Bound, with Pw
1 ≥ 1− λ.

In this case the upper bound is not informative, but just set equal to 1. Let px1 = 1; this in turn

implies pxj = 0, ∀ j ∈ X\ {1}. Let πj1 = Pw
j , j = 1, . . . , J. It is straightforward to verify that this

Π ∈ H2 [Π ], and obviously allows for px1 = 1 and the implied p
x
j = 0, ∀ j ∈ X\ {1} , to solve system

(1.1). Hence px1 = 1 is a feasible value of Pr (x = 1) given the maintained assumptions.

b.2.1) Lower Bound, with Pw
1 > λ.

Let πj1 = 0, ∀ j ∈ X\ {1} , and π12 = . . . = π1J = λ; then the first equation of system (1.1) is

satisfied, and the implied Π ∈ H2 [Π ]. Let pxj =
Pw
j

1−λ ≥ 0, j ∈ X\ {1}. It is straightforward to
verify that system (1.1) is satisfied. Hence px1 =

Pw
1 −λ
1−λ is a feasible value for Pr (x = 1) given the

maintained assumptions. To show that px1 =
Pw
1 −λ
1−λ is the sharp lower bound on Pr (x = 1), take any

0 < ε ≤ Pw
1 −λ
1−λ , and let p

x
1 =

Pw
1 −λ
1−λ − ε. Then, we see immediately that there is no π11 ∈ [1− λ, 1]

for which the first equation of system (1.1) can be satisfied: even if we let π1j = λ, ∀ j 6= 1, j ∈ X,

we would need π11 =
Pw
1 −λ−λ(1−λ)ε
Pw
1 −λ−(1−λ)ε

> 1 to achieve
³
Pw
1 −λ
1−λ − ε

´
π11 + λ

³
1−Pw

1
1−λ + ε

´
= Pw

1 . Hence,

there exists no value of Π ∈ H2 [Π ] for which px1 =
Pw
1 −λ
1−λ − ε solves system (1.1), and therefore it

is not a feasible value of Pr (x = 1).

b.2.2) Lower Bound, with Pw
1 ≤ λ.

Let px1 = 0; this in turn implies
PJ

j=2 p
x
j = 1. Let π1j = Pw

1 and πjj = 1 − Pw
1 ∀ j > 1. Then

pxj =
Pw
j

1−Pw
1
≥ 0, j ∈ X\ {1}, and

PJ
j=2 p

x
j = 1. It follows that when Pw

1 ≤ λ, there exist values of

Π ∈ H2 [Π ] for which px1 = 0 and the implied pxj , j ∈ X\ {1}, solve system (1.1), and hence it’s a

feasible value of Pr (x = 1) given the maintained assumptions.

b.3) The all interval between the extreme points is feasible.

To prove the claim we need to distinguish four cases: (1) λ ≤ Pw
1 ≤ 1−λ; (2) Pw

1 ≤ min {λ, 1− λ} ;
(3) Pw

1 ≥ max {λ, 1− λ} ; (4) 1− λ < Pw
1 < λ. Here we describe in great detail the proof for case

(1); the other cases can be proved using similar arguments. See Molinari (2003) for a detailed proof

of all cases.

(1) Consider the case λ ≤ Pw
1 ≤ 1 − λ. It then follows that Pw

1 −λ
1−λ ≤ px1 ≤

Pw
1

1−λ . Let p
x
1 =

Pw
1 −αλ
1−λ ,

for any α ∈ (0, 1). We want to show that we can find values of pxj ∈ X\ {1} and Π ∈ H2 [Π ] such

that the corresponding px ∈ H [P (x)]. Let π11 = 1− λ (1− α) , π1j = αλ, ∀j ∈ X\ {1} , πij = 0,
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∀ i, j ∈ X\ {1} , i 6= j. Choose πj1 and pxj , j ∈ X\ {1} , as follows:

if ∃ j : Pw
j ≥ λ (1− α) , πk1 =

⎧⎨⎩ λ (1− α) for k = j = min {i = 2, . . . , J : Pw
i ≥ λ}

0, ∀k ∈ X, k 6= {1, j} .

if Pw
j < λ (1− α) ,∀j ∈ X\ {1} , πk1 =

⎧⎨⎩ Pw
2 for k = 2

min
n
λ (1− α)−

Pk−1
i=2 πi1, P

w
k

o
∀k ∈ X\ {1, 2} ,

pxj =
1

1− αλ

µ
Pw
j − πj1 ·

Pw
1 − αλ

1− λ

¶
.

¥

B.2.2 Proposition 4

Proof. (a) Suppose, without loss of generality, that X̃ = {1, 2, . . . , h} , 2 ≤ h < J , and consider

Pr (x = 1). By Lemma 1, for Pw
1 −λ
1−λ > 0 to solve the first equation of system (1.1), we need

π11 = π = 1, and either π1i = λ or pxi = 0, ∀ i ∈ X\ {1} , with
PJ

i=2 π1ip
x
i = λ

1−Pw
1

1−λ . Since π22 = π

by assumption, and π = 1, we have that π12 = 0; hence, for the first equation in system (1.1) to

hold, we need px2 = 0. Consider the second equation in system (1.1): when the first equation of the

system holds, the second reduces to PJ
i=3 π2ip

x
i = Pw

2

However, for each i ∈ X\ {1}, if π1i = λ, it follows that π2i = 0, since
P

k 6=l πkl = 1 − πll ≤ λ,

∀ l ∈ X. On the other hand, if π1i < λ, for the first equation in system (1.1) to hold it must be

the case that pxi = 0. Hence,
PJ

i=3 π2ip
x
i = 0. Therefore, since P

w
2 > 0, the lower bound in (3.2)

is not feasible for Pr (x = 1), because the second equation of system (1.1) is not satisfied. Notice

now that repeating the same argument for each of equations 3 to h in system (1.1), will imply, by

a symmetry argument, that Pr (x = 1) cannot achieve the lower bound in (3.2).

For k ∈
¡
X − X̄

¢
, Pr (x = k) can achieve the lower bound in (3.2). Consider for example

Pr (x = J). Let πJJ = 1, and πJi = λ, ∀ i ∈ X\ {J}. Then the last equation of system (1.1) is

satisfied. These values of πJi, i ∈ X, imply that π = 1−λ, and that pxj =
Pw
j

1−λ for each j ∈ X\ {J}.
It is obvious that the suggested Π ∈ H3 [Π ], and the implied pxj solves system (1.1).

(b). Suppose that Pw
1 ≤ λ, and that px1 = 0. Then

PJ
j=2 p

x
j = 1, and pxj ≥ 0 ∀ j = 2, . . . , J . Then

the proof of Proposition 3, part b.2.2), applies, with π = 1−Pw
1 , π12 = π13 = . . . = π1J = Pw

1 , and

πij = 0, ∀i, j ∈ X, i 6= j, i 6= 1. Hence, it follows that px1 = 0 is a value consistent with Assumption
3 if Pw

1 ≤ λ. ¥
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B.2.3 Proposition 5

Proof. (a) Suppose, without loss of generality, that X̃ = {1, 2, . . . , h} , 2 ≤ h < J , and consider

Pr (x = 1). For px1 =
Pw
1

1−λ < 1 to be admissible in the first equation of system (1.1), we need

π = 1−λ and
PJ

j=2 π1jp
x
j = 0. Since πjj = π, ∀j ∈ X̃, the second equation of the system becomes:

π21
Pw
1

1− λ
+ (1− λ) px2 +

JP
j=3

π2jp
x
j = Pw

2 ,

where
PJ

j=3 p
x
j = 1 −

Pw
1

1−λ − px2 . Let
PJ

j=3 π2jp
x
j = π̄ ·

³
1− Pw

1
1−λ − px2

´
, where π̄ ∈ [0, λ], since the

constraints πij ≤ 1− π ≤ λ, ∀ i 6= j ∈ X̃, and πlk ≤ λ, ∀ l 6= k ∈
³
X − X̃

´
, allow for π1j = 0 or

π1j = λ, ∀j = 2, . . . , J. It follows that

px2 =
Pw
2 − π̄ − (π21 − π̄)

Pw
1

1−λ
1− λ− π̄

.

Notice that px2 must lie in
h
0, 1− Pw

1
1−λ

i
. We need to distinguish three cases.

1. 1− λ− π̄ > 0. Then

Pw
2 − π̄ − (π21 − π̄)

Pw
1

1−λ
1− λ− π̄

≥ 0⇐⇒ π21 ≤ π̄ + (Pw
2 − π̄)

(1− λ)

Pw
1

,

and we can always find values of π21, π̄ ∈ [0, λ] for which this inequality is satisfied. For
px2 ≤ 1−

Pw
1

1−λ we need

Pw
2 − π̄ − (π21 − π̄)

Pw
1

1−λ
1− λ− π̄

≤ 1− Pw
1

1− λ
⇐⇒ π21 ≥

λ− 1 + Pw
1 + Pw

2

Pw
1

(1− λ) .

As long as there exist values of π21 ≤ λ that satisfy the above inequality, the upper bound in

(3.2) will be admissible. However,

λ− 1 + Pw
1 + Pw

2

Pw
1

(1− λ) > λ⇐⇒ Pw
1 + Pw

2 > (1− λ) + Pw
1

λ

1− λ
.

Hence, we can reject the upper bound in (3.2) if

Pw
1 + Pw

2 > (1− λ) + Pw
1

λ

1− λ
. (B.4)

2. 1 − λ − π̄ = 0. Then π21 =
Pw
1 +P

w
2 −(1−λ)
Pw
1

(1− λ) . Hence, we can reject the upper bound in

(3.2) if condition (B.4) is satisfied.
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3. 1− λ− π̄ < 0. Then

Pw
2 − π̄ − (π21 − π̄)

Pw
1

1−λ
1− λ− π̄

≥ 0⇐⇒ π21 ≥ π̄ + (Pw
2 − π̄)

(1− λ)

Pw
1

.

As long as there exist values of π21 ≤ λ that satisfy the above inequality, the upper bound in

(3.2) will be admissible. However,

π̄ + (Pw
2 − π̄)

(1− λ)

Pw
1

> λ⇐⇒ Pw
2 > π̄ +

Pw
1 (λ− π̄)

1− λ

Hence, given that by assumption πij ≤ λ, ∀ i 6= j, i, j ∈ X, we can reject the upper bound in

(3.2) if Pw
2 > λ. For px2 ≤ 1−

Pw
1

1−λ we need

Pw
2 − π̄ − (π21 − π̄)

Pw
1

1−λ
1− λ− π̄

≤ 1− Pw
1

1− λ
⇐⇒ π21 ≤

λ− 1 + Pw
1 + Pw

2

Pw
1

(1− λ)

As long as there exist values of π21 ≥ 0 that satisfy the above inequality, the upper bound in
(3.2) will be admissible. However,

λ− 1 + Pw
1 + Pw

2

Pw
1

(1− λ) < 0⇐⇒ Pw
1 + Pw

2 < (1− λ)

Hence, we can reject the upper bound in (3.2) if one of the following holds: (i) Pw
2 > λ, or

(ii) Pw
1 + Pw

2 < (1− λ) .

Finally, notice that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if λ ≤ 1
2 , (1− λ− πij) > 0, ∀ i 6= j, i, j ∈ X,

if λ > 1
2 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pw
2 > λ =⇒

(
Pw
1 + Pw

2 > (1− λ) + Pw
1

λ
1−λ ,

Pw
1 + Pw

2 > (1− λ)

Pw
1 + Pw

2 < (1− λ) =⇒
(

Pw
1 + Pw

2 < (1− λ) + Pw
1

λ
1−λ ,

Pw
2 < λ

.

When λ ≤ 1
2 , condition (B.4) is necessary and sufficient to define the cases in which the upper

bound in (3.2) is not feasible. When λ > 1
2 , it can still be the case that (1− λ− π̄) > 0 (but it

does not need to be). If Pw
2 > λ, (B.4) is implied, and the upper bound in (3.2) is not feasible. If

Pw
1 + Pw

2 < (1− λ), then condition (B.4) is not satisfied, and if (1− λ− π̄) > 0, the upper bound

in (3.2) can be feasible. Hence, when λ ≥ 1
2 , P

w
2 > λ is a sufficient condition for the upper bound

in (3.2) to be not feasible.

Notice now that repeating the same argument for each of equations 3 to h in system (3.3), and

solving each one of them, respectively, for px3 , p
x
4 , . . . , p

x
h as we did in equation 2 for p

x
2 , will imply,

by a symmetry argument, that if λ ≤ 1
2 , the upper bound in (3.2) can be rejected if and only if

Pw
1 + Pw

j > (1− λ) + Pw
1

λ

1− λ
, some j ∈ X̃\ {1} ,
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while if λ > 1
2 , the upper bound in (3.2) can be rejected if

Pw
j > λ, some j ∈ X̃\ {1} .

Equations h + 1 to J in system (3.3) do not imply any additional conditions under which the

upper bound in (3.2) is not feasible. Indeed, let k ∈
³
X − X̃

´
; then

π21
Pw
1

1− λ
+ πkkp

x
k +

P
j∈X\{2,k}

πkjp
x
j = Pw

k .

Let πkk = 1, and, by the same argument as above, let
P

j∈X\{2,k}
πkjp

x
j = π̄

³
1− Pw

1
1−λ − pxk

´
, where

π̄ must lie in [0, λ] . Then

pxk =
Pw
k − π21

Pw
1

1−λ − π̄
³
1− Pw

1
1−λ

´
1− π̄

,

where 1 − π̄ ≥ 1 − λ > 0. It is straightforward to verify that we can find values of π21, π̄ ∈ [0, λ]
for which pxk ∈

h
0, 1− Pw

1
1−λ

i
. For example, if Pw

k ≤ 1 −
Pw
1

1−λ , let π̄ = π21 = 0, so that pxk = Pw
k . If

Pw
k > 1− Pw

1
1−λ and Pw

k > λ, let π̄ = π21 = λ, so that pxk =
Pw
k −λ
1−λ ≤ 1−

Pw
1

1−λ .

(b) Suppose that Pw
1 > 1 − λ, and that px1 = 1. Then pxj = 0 ∀ j = 2, . . . , J . Then pick

π = Pw
1 (notice that Pw

1 > 1 − λ, hence the proposed value of π is admissible), and πj1 = Pw
j

∀j = 2, 3, . . . , J . Since Pw
1 > 1 − λ, it follows that Pw

j < λ ∀j = 2, 3, . . . , J , hence the proposed

values of πj1, ∀j = 2, 3, . . . , J, are admissible, and therefore px1 = 1 is admissible, and hence it is

the upper bound. ¥

B.2.4 Proposition 6

Proof.

a) Lower Bound.

Suppose, that j > 1, and without loss of generality consider Pr (x = 2). By Lemma 1, for px2 =
Pw
2 −λ
1−λ > 0 to solve the second equation of system (1.1), we need π22 = 1, and either π2i = λ or

pxi = 0, ∀ i ∈ X\ {2} , with
P

i6=2 π2ip
x
i = λ

1−Pw
2

1−λ . Since π22 ≤ π11 by assumption, and π22 = 1, we

have that π11 = 1; hence, the first equation of system (1.1) reduces toPJ
i=3 π1ip

x
i = Pw

1

However, for each i ∈ X\ {1, 2}, if π2i = λ, it follows that π1i = 0, since
P

k 6=l πkl = 1− πll ≤ λ, ∀
l ∈ X. On the other hand, if π2i < λ, for the second equation in system (1.1) to hold it must be

the case that pxi = 0. Hence,
PJ

i=3 π1ip
x
i = 0. Therefore, since P

w
1 > 0, the lower bound in (3.2) is

not feasible for Pr (x = 2). Notice now that repeating the same argument for Pr (x = 3), will imply
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that Pr (x = 3) cannot achieve the lower bound in (3.2). Similarly, Pr (x = j) cannot achieve the

lower bound in (3.2).

Consider now Pr (x = 1), and let π11 = 1, and π1i = λ, ∀ i ∈ X\ {1}. Then the first equation
of system (1.1) is satisfied. Let pxj =

Pw
j

1−λ and πjj = 1− λ for each j ∈ X\ {1}. It is obvious that
the suggested Π ∈ H4 [Π ], and the implied pxj solves system (1.1).

b) Upper Bound.

First, let j = 1, and Pw
1 < (1− λ). Then, as shown in the proof of Proposition 5, for px1 =

Pw
1

1−λ we

need π11 = 1− λ and
PJ

i=2 π1ip
x
i = 0. But by Assumption 4, π11 ≥ π22 ≥ . . . ≥ πJJ ≥ 1− λ, and

therefore for px1 =
Pw
1

1−λ to solve the first equation of system (1.1) we need πjj = 1 − λ, ∀ j ∈ X,

and we are back to the case of constant probability of correct report, with X̃ = X; the result of

Proposition 5 part (b) applies. Now let j > 1, and Pw
j < (1− λ). Then, again, for pxj =

Pw
j

1−λ we

need πjj = 1−λ and
P

i6=j πjip
x
i = 0. But by Assumption 4, πjj ≥ π(j+1)(j+1) ≥ . . . ≥ πJJ ≥ 1−λ,

and therefore we need πkk = 1− λ, ∀ k ∈ {j, j + 1, . . . , J}, and we are back to the case of constant
probability of correct report, with X̃ = {j, j + 1, . . . , J}; the result of Proposition 5 applies. ¥

B.2.5 Proposition 7

Proof. With dichotomous variables, px1 (π) =
Pw
1 −(1−π)
π−(1−π) =

1
2

h
2Pw

1 −1
2π−1 + 1

i
, π ∈ H3 [Π ]. Hence,

1. If λ < 1
2 Pw

1 ≥ 1
2 , then 1− π ≤ Pw

1 ≤ π and ∂px1 (π)
∂π ≤ 0. Hence the lower bound on Pr (x = 1)

will be achieved for π = 1 and the upper bound for π = max (1− λ,Pw
1 ) .

2. If λ ≥ 1
2 Pw

1 ≥ 1
2 , then for p

x
1 ∈ [0, 1] we need one of the following: (a) 1 − π ≤ Pw

1 ≤ π

=⇒ π ≥ Pw
1 ≥ 1

2 ; or (b) π ≤ Pw
1 ≤ 1 − π =⇒ π ≤ 1 − Pw

1 < 1
2 ; additionally, we need

π ≥ 1− λ. Hence, the feasible values of π are given by π ∈ [1− λ, 1− Pw
1 ] ∪ [Pw

1 , 1] . Notice

that if λ < Pw
1 , the feasible values of π are given by π ∈ [Pw

1 , 1] , and px1 is decreasing in π;

therefore the lower bound is achieved for π = 1 and the upper bound for π = Pw
1 . When

λ > Pw
1 , for values of π ∈ [Pw

1 , 1] the previous result applies. For values of π ∈ [1− λ, 1− Pw
1 ]

px1 is decreasing in π; therefore the upper bound is achieved for π = 1−λ and the lower bound
for π = 1− Pw

1 .

3. If λ < 1
2 Pw

1 < 1
2 , then 1− π ≤ Pw

1 ≤ π and ∂px1 (π)
∂π ≥ 0. Hence the lower bound on Pr (x = 1)

will be achieved for π = 1−min (λ, Pw
1 ) and the upper bound for π = 1.

4. If λ ≥ 1
2 Pw

1 < 1
2 , then for p

x
1 ∈ [0, 1] we need one of the following: (a) 1 − π ≤ Pw

1 ≤ π

=⇒ π ≥ 1 − Pw
1 > 1

2 ; or (b) π ≤ Pw
1 ≤ 1 − π =⇒ π ≤ Pw

1 < 1
2 ; additionally, we need

π ≥ 1− λ. Hence, the feasible values of π are given by π ∈ [1− λ,Pw
1 ] ∪ [1− Pw

1 , 1] . Notice

that if 1− λ > Pw
1 , the feasible values of π are given by π ∈ [1− Pw

1 , 1] , and px1 is increasing
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in π; therefore the lower bound is achieved for π = 1 − Pw
1 and the upper bound for π = 1.

When 1 − λ < Pw
1 , for values of π ∈ [1− Pw

1 , 1] the previous result applies. For values of

π ∈ [1− λ, Pw
1 ] p

x
1 is increasing in π; therefore the upper bound is achieved for π = Pw

1 and

the lower bound for π = 1− λ.

To show that these bounds are a subset of those in (3.2), assume that Pw
1 ≥ 0.5 (a similar argument

goes for the other case). If λ < 1
2 , consider the lower bound; then Pw

1 ≥ max
³
Pw
1 −λ
1−λ , 0

´
. Indeed,

Pw
1 > 0; on the other hand, if Pw

1 > λ, then Pw
1 − λPw

1 − Pw
1 + λ = λ (1− Pw

1 ) ≥ 0. Consider
now the upper bound; then min

³
Pw
1 −λ
1−2λ , 1

´
≤ min

³
Pw
1

1−λ , 1
´
. Indeed, if both sides are equal to 1 the

equality is trivially satisfied; hence, suppose Pw
1 < 1−λ. Then Pw

1 −λ
1−2λ < 1, since Pw

1 −λ−(1− 2λ) =
Pw
1 − (1− λ) < 0 (similarly, note that if Pw

1 −λ
1−2λ < 1, also Pw

1
1−λ < 1). Compare Pw

1 −λ
1−2λ and Pw

1
1−λ :

Pw
1

1− λ
− Pw

1 − λ

1− 2λ =
λ (1− λ)− λPw

1

(1− 2λ) (1− λ)
> 0 if Pw

1 < 1− λ

Hence, Pw
1

1−λ >
Pw
1 −λ
1−2λ if Pw

1
1−λ < 1. If λ ≥ 1

2 and Pw
1 > λ, the bound in (3.2) is given by

h
Pw
1 −λ
1−λ , 1

i
,

and the same argument as above works (in particular, Pw
1 ≥

Pw
1 −λ
1−λ ). If λ ≥ Pw

1 ≥ 1
2 ≥ 1− λ, then

the bound in (3.2) is given by [0, 1] . ¥

B.2.6 Proposition 8

Proof. In this case, px1 (π) =
Pw
1 −(1−π22)

π11−(1−π22) , (π11, π22) ∈ H4 [Π ]. Hence,

1. If λ < 1
2 , 1 − π22 ≤ Pw

1 ≤ π11, and px1 (π) is increasing in π22 and decreasing in π11. Hence

the lower bound is achieved for π22 = 1− λ and π11 = 1. The upper bound is achieved with

π22 = π11, since π11 bounds π22 from above. Hence if Pw
1 ≥ 1

2 , the upper bound is achieved

for π11 = π22 = max (1− λ, Pw
1 ) . If P

w
1 < 1

2 , the upper bound is achieved for π11 = π22 = 1.

2. If λ ≥ 1
2 and Pw

1 < 1
2 , either 1 − π22 ≤ Pw

1 ≤ π11 or 1 − π22 ≥ Pw
1 ≥ π11. Hence, either

π11 ∈ [1− Pw
1 , 1] and π22 ∈ [1− Pw

1 , π11] , or π11 ∈ [1− λ, Pw
1 ] and π22 ∈ [1− λ, π11] . In the

first case case px1 is increasing in π22 and decreasing in π11; the lower bound is achieved for

π11 = 1, π22 = 1−Pw
1 . The upper bound is achieved with π22 = π11 = 1. In the second case px1

is decreasing in π22 and increasing in π11; the lower bound is achieved with π22 = π11 = 1−λ.
The upper bound is achieved with π11 = Pw

1 and π22 = 1− λ.

3. If λ ≥ 1
2 and Pw

1 ≥ 1
2 , consider the following two cases. If λ > Pw

1 then π11 = π22 = 1− Pw
1

are admissible values, and the implied px1 = 0. Also, π11 = Pw
1 is an admissible value, and

the implied px1 = 1. If λ < Pw
1 then π11 ∈ [Pw

1 , 1] , π22 ∈ [1− λ, π11] and 1− π22 ≤ Pw
1 ≤ π11.

Then px1 is decreasing in π11 and increasing in π22. Hence the lower bound is achieved for

π11 = 1 and π22 = 1− λ, and the upper bound is achieved with π22 = π11 = Pw
1 . ¥
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Table 1: Identifying Power of Assuming Monotonicity in Correct Reporting or Constant Probability

of Correct Report vs. Base-Case, with Dichotomous Variables, for Different Values of λ

Maintained Assumptions

Base-Case Monotonicity in Constant Probability of

Correct Reporting Correct Report

λ H [Pr (x = 1)] H [Pr (x = 1)] H [Pr (x = 1)]

1.000 [0, 1] [0, 0.34] ∪ [0.66, 1] [0, 0.34] ∪ [0.66, 1]
0.750 [0, 1] [0, 0.34] ∪ [0.82, 1] [0, 0.34] ∪ [0.82, 1]
0.400 [0.00, 0.57] [0.00, 0.34] [0.00, 0.34]

0.250 [0.12, 0.45] [0.12, 0.34] [0.18, 0.34]

0.100 [0.27, 0.38] [0.27, 0.34] [0.30, 0.34]

Table 2: Identifying Power of Assuming Monotonicity in Correct Reporting or Constant Probability

of Correct Report vs. Base-Case

Maintained Assumptions Exact Value

Monotonicity in Constant Probability

Base-Case Correct of Correct Report

Reporting X̃ = {1, 2} X̃ = X

Pr (x = 1) [0.180, 0.425] [0.180, 0.415] [0.235, 0.415] [0.235, 0.415] 0.3

Pr (x = 2) [0.434, 0.687] [0.525, 0.687] [0.525, 0.687] [0.551, 0.687] 0.6

Pr (x = 3) [0.000, 0.138] [0.000, 0.138] [0.000, 0.138] [0.000, 0.137] 0.1

E (x) [1.575, 1.955] [1.585, 1.955] [1.585, 1.899] [1.585, 1.899] 1.8

Table 3: Percentage with Self Reported Plan Type Conditional on Firm Report of Plan Type, for

Respondents Reporting Pension Coverage on Current Job with a Matched Employer Plan Descrip-

tion. Sample Size: 2,907. Source: Gustman and Steinmeier (2001), Table 6C.

Provider Report

Self Report DB DC Both

DB 0.56 0.26 0.45

DC 0.15 0.54 0.18

Both 0.27 0.18 0.35

Don’t Know 0.02 0.02 0.02
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Table 4: True Fractions of Pension Plan Types for the Subset of Respondents with Matched Data

for 1992, as Calculated by Gustman and Steinmeier (2001), Table 6A, and Reported Fractions of

Pension Plan Types for 1992 and 1998 (Author’s Calculations).

t = 1992 t = 1992 t = 1998

Point Bootstrap Point Bootstrap Point Bootstrap

Est. 95% C. I. Est. 95% C. I. Est. 95% C. I.

Prt (x = 1| s = 1) 0.48 [0.46, 0.50] Prt (w = 1) 0.42 [0.41, 0.44] 0.28 [0.25, 0.30]

Prt (x = 2| s = 1) 0.21 [0.19, 0.22] Prt (w = 2) 0.32 [0.31, 0.33] 0.38 [0.35, 0.41]

Prt (x = 3| s = 1) 0.31 [0.29, 0.33] Prt (w = 3) 0.26 [0.24, 0.27] 0.34 [0.31, 0.37]

Sample Size n = 2, 907 Sample Size N = 4, 354 N = 1, 124

Table 5: Implications of Assumption E1 - No Selection - and Assumption E2 - No Selection and

No Variation Over Time - for the Identification Regions of [Prt (x = j) , j ∈ X] , t = 1992, 1998

Maintained t = 1992 : No Selection t = 1998 : No Selection and

Assumptions: No Variation Over Time

Point Estimate Bootstrap 95% C. I Point Estimate Bootstrap 95% C. I.

0.30 [0.27, 0.50] −0.86 [−1.76,−0.42]¡
Π 1
1992

¢−1 ·Pw,t 0.39 [0.37, 0.45] 0.48 [0.30, 0.62]

0.31 [0.07, 0.35] 1.38 [0.89, 2.38]

Sample Size N = 4, 354 N = 1, 124

Table 6: Identification Regions in Cases 1-2 for Pr1998 (x = j) , and Point Estimates for

Pr1992 (x = j)

Maintained H [Prt (x = 1)] H [Prt (x = 2)] H [Prt (x = 3)]

Assumptions: Estimate 95% CI 95% CI 95% CI 95% CI 95% CI

t = 1992 0.42 [0.40, 0.50] 0.27 [0.25, 0.30] 0.31 [0.22, 0.34]

Case 1, 1998 [0.00, 0.42] [0.00, 0.44] [0.11, 0.72] [0.10, 0.87] [0.00, 0.89] [0.00, 0.91]

Case 2, 1998 [0.00, 0.28] [0.00, 0.34] [0.35, 0.61] [0.28, 0.80] [0.11, 0.50] [0.00, 0.67]

Sample size N = 4, 354 for 1992, N = 1, 124 for 1998
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Figure 2: Comparison of the Identification Power of Different Assumptions for H[Px]
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Figure 3: Identification Regions and Confidence Sets for H[Px,1998] Under Different Assumptions
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