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Abstract

A new �rst order asymptotic theory for heteroskedasticity-autocorrelation (HAC) robust
tests based on nonparametric covariance matrix estimators is developed. The bandwidth of the
covariance matrix estimator is modeled as a �xed proportion of the sample size. This leads to
a distribution theory for HAC robust tests that explicitly captures the choice of bandwidth and
kernel. This contrasts with the traditional asymptotics (where the bandwidth increases slower
than the sample size) where the asymptotic distributions of HAC robust tests do not depend on
the bandwidth or kernel. Finite sample simulations show that the new approach is more accurate
than the traditional asymptotics. The impact of bandwidth and kernel choice on size and power
of t-tests is analyzed. Smaller bandwidths lead to tests with higher power but greater size
distortions and large bandwidths lead to tests with lower power but less size distortions. Size
distortions across bandwidths increase as the serial correlation in the data becomes stronger.
A new data dependent bandwidth is proposed in light of these results. Within a group of
popular kernels, it shown that the Bartlett kernel has approximately the highest power and the
quadratic spectral (QS) kernel has the lowest power regardless of the bandwidth. However, the
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is a trade-o¤ between size distortions and power.
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1 Introduction

We provide a new and improved approach to the asymptotics of hypothesis testing in time series

models with �arbitrary,� i.e. unspeci�ed, serial correlation and heteroskedasticity. Our results

are general enough to apply to stationary generalized of method of moments (GMM) models.

Heteroskedasticity and autocorrelation consistent (HAC) estimation and testing in these models

involves calculating an estimate of the spectral density at zero frequency of the estimating equa-

tions or moment conditions de�ning the estimator. Important contributions to the development

of these techniques include White (1984), Newey and West (1987), Gallant (1987), Gallant and

White (1988), Andrews (1991), Andrews and Monahan (1992), Hansen (1992), Robinson (1998)

and de Jong and Davidson (2000). We stress at the outset that we are not proposing new estima-

tors or test statistics; rather we focus on improving the asymptotic distribution theory for existing

techniques. Our results, however, do provide some guidance on the choice of HAC estimator.

Conventional asymptotic theory for HAC estimators is well established and has proved useful

in providing practical formulas for estimating asymptotic variances. The ingenious �trick� is the

assumption that the variance estimator depends on a fraction of sample autocovariances, with

the number of sample autocovariances going to in�nity, but the fraction going to zero as the

sample size grows. Under this condition it has been shown that well-known HAC estimators of

the asymptotic variance are consistent. Then, the asymptotic distribution of estimated coe¢ cients

can essentially be derived assuming the variance is known. That is, sampling variance of the

variance estimator does not appear in the �rst order asymptotic distribution theory of test statistics

regarding parameters of interest. While this is an extremely productive simplifying assumption that

leads to standard asymptotic distribution theory for tests, the accuracy of the resulting asymptotic

theory if often less than satisfactory. In particular there is a tendency for HAC robust tests to over

reject (sometimes substantially) under the null hypothesis in �nite samples; see Andrews (1991),

Andrews and Monahan (1992), and the July 1996 special issue of Journal of Business and Economic

Statistics for evidence.

There are two main sources of �nite sample distortions. The �rst source is inaccuracy via the

central limit theorem approximation to the sampling distribution of parameters of interest. This

becomes a serious problem for data that has strong or persistent serial correlation. The second

source is the sampling variability of the HAC estimate of the asymptotic variance and is the focus

of this paper. This sampling variability can be substantial and depends on the choice of certain

tuning parameters (kernel and bandwidth). Appealing to a consistency result for the asymptotic

variance estimator does not capture this important source of sampling variability.

The assumption that the fraction of the sample autocovariances used in calculating the asymp-

totic variance goes to zero as the sample size goes to in�nity is a clever technical assumption that
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substantially simpli�es asymptotic calculations. However, in practice there is a given sample size

and some fraction of sample autocovariances is used to estimate the asymptotic variance. Even if a

practitioner chooses the fraction based on a rule such that the fraction goes to zero as the sample

size grows, it does not change the fact that a positive fraction is being used for a particular data

set. The implications of this simple observation have been eloquently summarized by Neave (1970,

p.70) in the context of spectral density estimation:

�When proving results on the asymptotic behavior of estimates of the spectrum of a

stationary time series, it is invariably assumed that as the sample size T tends to in�nity,

so does the truncation point M , but at a slower rate, so that M=T tends to zero. This

is a convenient assumption mathematically in that, in particular, it ensures consistency

of the estimates, but it is unrealistic when such results are used as approximations to

the �nite case where the value of M=T cannot be zero�.

Based on this observation, Neave (1970) derived an asymptotic approximation for the sampling

variance of spectral density estimates under the assumption that M=T is a constant and showed

that his approximation was more accurate than the standard approximation.

In this paper, we e¤ectively generalize the approach of Neave (1970) for zero frequency nonpara-

metric spectral density estimators (HAC estimators). We derive the entire asymptotic distribution

(rather than just the variance) of these estimators under the assumption that M = bT where

b 2 (0; 1] is a constant. We show that under this assumption, asymptotic variance estimators con-
verge to a limiting random matrix that is proportional to the unknown asymptotic variance and

has a limiting distribution that depends on the kernel (through the second derivative of the kernel)

and b. Under this alterative asymptotics, HAC robust test statistics computed in the usual way

are shown to have limiting distributions that are pivotal but depend on the kernel and b.

While the assumption that the proportion of sample autocovariances remains �xed as the sample

size grows is a better re�ection of practice in reality, that alone does not justify the new asymptotic

theory. In fact, our asymptotic theory leads to two important innovations for HAC robust testing.

First, our asymptotic theory provides a better approximation of the sampling distribution of HAC

robust tests by providing a more accurate approximation of the sampling distribution of the asymp-

totic variance estimator. Whereas the standard approach approximates the sampling variability of

the asymptotic variance using the true variance by appealing to a consistency result, our approach

approximates this sampling variability by a random variable that depends on the kernel and band-

width. Second, our asymptotic theory permits a local asymptotic power approximation for HAC

robust tests that depends on the kernel and bandwidth. We can theoretically analyze how the

choices of kernel and bandwidth a¤ect the power of HAC robust tests. As far as we know, we are

the �rst authors to examine the theoretical relationship between test power and kernel/bandwidth
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choice. Such an analysis is not possible under the standard �rst order asymptotics because local

asymptotic power does not depend on the choice of kernel or bandwidth. Because of this fact, the

existing HAC robust testing literature has focused instead on minimizing the asymptotic truncated

MSE of the asymptotic variance estimators when choosing the kernel and bandwidth. For the

analysis of HAC robust tests, this is not a completely satisfying situation as noted by Andrews

(1991, p.828):

�If one wants to use [a covariance matrix variance estimator] in forming a test

statistic involving [an estimator of the parameter of interest], however, the suitability

of the truncated MSE criterion is less clear. A weak argument in its favor is that

the asymptotics typically used with such test statistics treat the estimated covariance

matrix as though it equals its probability limit. In consequence, in many cases the closer

is the covariance matrix estimator to its probability limit, as measured, for example,

by truncated MSE, the better is the asymptotic approximation. ... On the other hand,

there are cases where the deviation of another part of a test statistic from its limiting

behavior is o¤set by the deviation of another part of the statistic from its limiting

behavior. In such cases, the argument above breaks down.�

Additional discussion of this point is given by Cushing and McGarvey (1999, p. 80) and Simono¤

(1993) provides an illustrative example.

Because we are approaching the distribution theory of HAC robust testing using a perspec-

tive that di¤ers from the conventional approach, we think it is important to stress here that an

important purpose of asymptotic theory is to provide approximations to sampling distributions.

While sampling distributions can be obtained exactly under precise distributional assumptions by

a change of variables, this approach often requires di¢ cult if not impossible calculations that may

be required on a case by case basis. A unifying approach, giving results applicable in a wide variety

of settings, must involve approximations. The usual approach is to consider asymptotic approxima-

tions. Whether these are useful in any particular setting is a matter of how well the approximation

mimics the exact sampling distribution. Although exact comparisons can be made is simple cases,

typically, this approximation is most e¢ ciently assessed by �nite sample Monte Carlo experiments,

and that is our approach here. This point is emphasized by Barndor¤-Nielsen and Cox (1989, p.

ix)

�The approximate arguments are developed by supposing that some de�ning quan-

tity, often a sample size but more generally an amount of information, becomes large:

it must be stressed that this is a technical device for generating approximations whose

adequacy always needs assessing, rather than a �physical�limiting notion.�
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The main contributions of this paper can be outlined as follows.

1. The new distribution theory provides a better approximation to sampling distributions com-

pared to the conventional asymptotics. Therefore, the new asymptotic approximations should

be used for any choice of kernel and bandwidth when calculating HAC robust tests.

2. Finite sample simulations using the new asymptotic critical values show that size distortions

are reduced when large bandwidths are used. This is especially true when the data has strong

positive serial correlation. Based on this result we propose a new and sensible data dependent

bandwidth. Among the Bartlett, Parzen and quadratic spectral (QS) kernels, the QS kernel

leads to tests with the least size distortions and the Bartlett kernel leads to tests with the

most size distortions.

3. A local asymptotic power analysis shows that power of the tests is higher for small band-

widths than for large bandwidths. Among a group of popular kernels, the Bartlett kernel is

approximately the most powerful whereas the QS and Daniell kernels are the least powerful.

4. There is a clear trade-o¤ in bandwidth and kernel choice between size and power.

The remainder of the paper is organized as follows. Section 2 lays out the GMM framework

and reviews standard results. Section 3 introduces the new asymptotic theory. Section 4 analyzes

the performance of the new asymptotic theory in terms of size distortions and local asymptotic

power. The impact of the choice of bandwidth and kernel is analyzed. Section 5 gives concluding

comments. Proofs and some formulas are given in two appendices.

The following notation is used throughout the paper. The symbol) denotes weak convergence,

Bj(r) denotes a j vector of standard Brownian motions (Wiener processes) de�ned on r 2 [0; 1],eBj(r) = Bj(r) � rBj(1) denotes a j vector of standard Brownian bridges, and [rT ] denotes the
integer part of rT for r 2 [0; 1].

2 Inference in GMM Models: The Standard Approach

We present our results in the GMM framework noting that this covers maximum likelihood estima-

tion (preferred when feasible) and estimating equation methods (Heyde, 1997). Since the in�uential

work of Hansen (1982), GMM is widely used in virtually every �eld of economics. Heteroskedas-

ticity or autocorrelation of unknown form is often an important speci�cation issue especially in

macroeconomics and �nancial applications. Typically the form of the correlation structure is not

of direct interest (if it is, it should be modeled directly). What is desired is an inference procedure

that is robust to the form of the heteroskedasticity and serial correlation. HAC covariance matrix

estimators were developed for exactly this setting.
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Suppose we are interesting in estimating the p � 1 vector of parameters, � 2 � � Rp. Let �0
denote the true value of �, and assume �0 is an interior point �. Let vt denote a vector of observed

data and assume that q moment conditions hold that can be written as

E[f(vt; �0)] = 0; t = 1; 2; :::; T; (1)

where f(�) is a q � 1 vector of functions with q � p. The moment conditions given by (1) are

often derived from economic models and for �xed data, vt, f(�) can be regarded as an injection
f : �! Rq. The expectation is taken over the endogenous variables in vt, and may be conditional

on exogenous elements of vt. There is no need in what follows to make this conditioning explicit in

the notation. The idea behind GMM is to �nd a value of � that satis�es as closely as possible the

empirical analog of (1). De�ne

gt(�) = T
�1

tX
j=1

f(vj ; �);

where gT (�) = T�1
PT
t=1 f(vt; �) is the sample analog to (1). When q > p there is usually no

solution, b�T ; to the equation gT (b�T ) = 0, so instead we minimize the weighted sum of squares (and

cross products) of the moments to de�ne

b�T = argmin
�2�

gT (�)
0WT gT (�) (2)

where WT is a q � q positive de�nite weighting matrix. Alternatively, b�T can also be de�ned as an
estimating equations estimator, the solution to the p �rst order conditions associated with (2)

GT (b�T )0WT gT (b�T ) = 0; (3)

where Gt(�) = T�1
Pt
j=1 @f(vj ; �)=@�

0. Of course, when the model is exactly identi�ed and q = p,

an exact solution to gT (b�T ) = 0 is attainable and the weighting matrixWT is irrelevant. Application

of the mean value theorem implies that

gt(b�T ) = gt(�0) +Gt(b�T ; �0; �T )(b�T � �0) (4)

where Gt(b�T ; �0; �T ) denotes the q � p matrix whose ith row is the corresponding row of Gt(�(i)T )
where �

(i)
T = �i;T �0+(1��i;T )b�T for some 0 � �i;T � 1 and �T is the q� 1 vector with ith element

�i;T .

In order to focus on the new asymptotic theory for tests, we avoid listing primitive assumptions

and make rather high-level assumptions on the GMM estimator b�T . Lists of su¢ cient conditions for
these to hold can be found in Hansen (1982) and Newey and McFadden (1994). Our assumptions

are:

Assumption 1 p lim b�T = �0:
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Assumption 2 T�1=2
P[rT ]
t=1 f(vt; �0) = T 1=2g[rT ](�0) ) �Bq(r) where ��0 = 
 =

P1
j=�1 �j ;

�j = E[f(vt; �0); f(vt�j ; �0)0] and � can be any matrix square root of 
.

Assumption 3 p limG[rT ](b�T ) = rG0 and p limG[rT ](b�T ; �0; �T ) = rG0 uniformly in r 2 [0; 1]

where G0 = E[@f(vt; �0)=@�0].

Assumption 4 WT is positive semi-de�nite and p limWT = W1 where W1 is a matrix of con-

stants.

While we will not claim these assumptions are weak, they hold in wide generality for the models

seen in economics, and with the exception of Assumption 2 they are fairly standard. Assumption

2 requires that a functional central limit theorem hold for T 1=2gt(�0). This is stronger than the

central limit theorem for T 1=2gT (�0) that is required for asymptotic normality of b�T . However,
consistent estimation of the asymptotic variance of b�T requires an estimate of 
. Conditions for
consistent estimation of 
 are typically stronger than Assumption 2 and often imply Assumption 2.

For example, Andrews (1991) requires that f(vt; �0) is a mean zero fourth order stationary process

that is � �mixing. Phillips and Durlauf (1986) show that Assumption 2 holds under the weaker
assumption that f(vt; �0) is a mean zero, 2 + � order stationary process (for some � > 0) that is

� � mixing: Thus our assumptions are slightly weaker than those usually given for asymptotic
testing in HAC-estimated GMM models.

Under our assumptions b�T is asymptotically normally distributed, as recorded in the following
lemma which is proved in the appendix.

Lemma 1 Under Assumptions 1 - 4, as T !1,

T 1=2(b�T � �0)) �(G00W1G0)
�1��Bp(1) � N(0; V );

where ����0 = G00W1��0W1G0 and V = (G00W1G0)�1����0(G00W1G0)�1:

In practice the hard part involved in using this result for inference is the need for a consistent

estimator of ��0 = 
. The other pieces of V can be easily estimated (i.e. (G00W1G0)�1 can be

estimated by [GT (b�T )0WTGT (b�T )]�1). If a consistent estimator, b
, of 
 can be found, then V can

be consistently estimated by

bV = [GT (b�T )0WTGT (b�T )]�1GT (b�T )0WT
b
WTGT (b�T )[GT (b�T )0WTGT (b�T )]�1: (5)

The HAC literature builds on the time series literature of consistent estimation of spectral

densities to suggest consistent estimators of 
, and therefore of V . The widely used class of

nonparametric estimators of 
 take the form

b
 = T�1X
j=�(T�1)

k(j=M)b�j (6)
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with

b�j = T�1 TX
t=j+1

f(vt; b�T )f(vt�j ; b�T )0 for j � 0;
b�j = T�1 TX

t=�j+1
f(vt+j ; b�T )f(vt; b�T )0 for j < 0;

where k(x) is a kernel function k : R ! R satisfying k(x) = k(�x), k(0) = 1, jk(x)j � 1, k(x)

continuous at x = 0 and
R1
�1 k

2(x)dx < 1. Often k(x) = 0 for jxj > 1 so M �trims�the sample

autocovariances and acts as a truncation lag. Some popular kernel functions do not truncate, and

M is often called a bandwidth parameter in those cases. For kernels that truncate, the cuto¤ at

jxj = 1 is arbitrary and is essentially a normalization. For kernels that do not truncate, an implicit
normalization must be made since the weights generated by the kernel k(x) and bandwidth, M are

the same as those generated by kernel k(ax) with bandwidth aM . Therefore, there is an interaction

between bandwidth and kernel choice. We focus on kernels that yield positive de�nite b
 for the
obvious practical reasons.

Standard asymptotic analysis can proceed under the additional assumption that M ! 1 and

M=T ! 0 as T !1. This assumption on the rate at which M grows has little to do with econo-

metric practice; rather it is an ingenious technical assumption allowing an estimable asymptotic

approximation to the asymptotic distribution of b�T to be calculated. Under this assumption, b
 has
been shown to be a consistent estimator which in turn delivers a consistent estimator of V through

(5). The di¢ culty in practice for this approach is that any choice of M for a given sample size, T ,

can be made consistent with the above rate requirement. Although the rate requirement can been

re�ned if one is interested in minimizing the MSE of b
 (e.g. M must increase at rate T 1=3 for the

Bartlett kernel), these re�nements do not deliver speci�c choices for M . This fact has long been

recognized in the spectral density and HAC literatures and data dependent methods for choosing

M have been proposed. See Andrews (1991) and Newey and West (1994). The basic idea in those

papers is to chooseM to minimize the truncated MSE of b
. Because the MSE of b
 depends on the
serial correlation structure of f(vt; �0); the practitioner must estimate the serial correlation struc-

ture of f(vt; �0) either nonparametrically or with an �approximate�parametric model. While data

dependent methods are a signi�cant improvement over the basic case for empirical implementation,

the practitioner is still faced with either a choice of approximating parametric model or the choice

of bandwidth in a preliminary nonparametric estimation problem. See den Haan and Levin (1997)

for details and additional practical challenges.

An alternative to the nonparametric approach has been advocated by den Haan and Levin

(1997,1998). They propose estimating 
 by �tting a VAR model to f(vt; b�T ). If the VAR, specif-
ically the lag length, is correctly speci�ed, the resulting estimator of 
 is consistent. A �more

7



robust�approach, achieving essentially the same generality as the nonparametric approach, can be

obtained by constructing an asymptotic theory that has the lag length increasing with the sample

size at a suitable rate. Of course, consistency in this case requires assumptions on the growth in lag

length with respect to sample size; a result as theoretically delicate as the nonparametric results

based on the growth in M as T grows.

We conclude this section by pointing out a simple fact about the standard approach to HAC

robust testing that helps motivate the remainder of the paper. Because the focus in the standard

theory is on obtaining consistent estimates of 
, the asymptotic approximation used for tests of �0
is the same regardless of what speci�c kernel or bandwidth is used in practice. It is well known

that the choice of kernel and, especially, bandwidth can greatly a¤ect the sampling behavior ofb
: Hence, these choices can greatly a¤ect the sampling distribution of tests of �0. Therefore, it
is desirable to have an asymptotic approximation that explicitly re�ects the choice of kernel and

bandwidth as such an asymptotics is likely to be more accurate. In the next section we show that

such an asymptotic theory can be developed.

3 A New Asymptotic Theory

3.1 Distribution of b
 when M = bT

Rather than focus on the rate at which M must increase for b
 to be consistent or the rate that M
must increase to minimize MSE(b
), we instead take M and T as given and show that there exists

a useful asymptotic approximation for the sampling distribution of b
 that explicitly re�ects M

given T . Suppose the asymptotic behavior of b
 is derived under the assumption that b = M=T is
held constant as T goes to1. In other words, suppose the bandwidth is modeled asM = bT where

b 2 (0; 1] is �xed. To avoid any confusion in later developments, we denote by b
M=bT estimators

of 
 given by (6) with M = bT . The corresponding estimator of the asymptotic variance of b�T
follows from (5) and is denoted by bVM=bT . The limiting distribution of b
M=bT can be written in

terms of Qi(b), an i� i random matrix that takes on one of three forms depending on the second

derivative of the kernel. The following de�nition gives the forms of Qi(b):

De�nition 1 Let the i�i random matrix, Qi(b) be de�ned as follows. If k(x) is twice continuously
di¤erentiable everywhere,

Qi(b) = �
Z 1

0

Z 1

0

1

b2
k00(

r � s
b
) eBi(r) eBi(s)0drds:

If k(x) is continuous, k(x) = 0 for jxj � 1; and k(x) is twice continuously di¤erentiable everywhere
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except for jxj = 1,

Qi(b) = �
ZZ

jr�sj<b

1

b2
k00(

r � s
b
) eBi(r) eBi(s)0drds

+
k0�(1)

b

Z 1�b

0

� eBi(r + b) eBi(r)0 + eBi(r) eBi(r + b)0� dr:
where k0�(1) = limh�!0 [(k(1)� k(1� h)) =h], i.e. k0�(1) is the derivative of k(x) from the left at

x = 1. If k(x) is the Bartlett kernel (see the formula appendix)

Qi(b) =
2

b

Z 1

0

eBi(r) eBi(r)0dr � 1
b

Z 1�b

0

� eBi(r + b) eBi(r)0 + eBi(r) eBi(r + b)0� dr:
For clarity, we �rst consider the asymptotic distribution of b
M=bT for the case of exactly identi�ed

models.

Theorem 1 (Exactly Identi�ed Models) Suppose that q = p. Let b 2 (0; 1] be a constant. Let Qp(b)
be given by De�nition 1 for i = p. Then, under Assumptions 1-4, as T !1;

b
M=bT ) �Qp(b)�
0:

Several useful observations can be made regarding this theorem. As expected, b
M=bT is not a

consistent estimator. However, b
M=bT converges to a matrix of random variables (rather than

constants) that is proportional to 
 through � and �0. These limiting random variables depend on

the kernel through k00(x) and k0�(1) and on the bandwidth through b but are otherwise nuisance

parameter free. Because of the asymptotic proportionality to 
, nuisance parameter free asymptotic

distributions can be obtained for tests of �0 when using b
M=bT (details are given below). Therefore,

it is possible to obtain a �rst order asymptotic distribution theory that explicitly captures the

choice of kernel and bandwidth. Note that Theorem 1 generalizes results obtained by Kiefer and

Vogelsang (2002)b and Kiefer and Vogelsang (2002)a where the focus was b = 1.

When q > p and the model is overidenti�ed, the limiting expressions for b
M=bT are more com-

plicated and asymptotic proportionality to 
 no longer holds. This was established for the special

case of b = 1 by Vogelsang (2003). This does not mean, however, that valid testing is not possible

when using b
M=bT in overidenti�ed models because the required asymptotic proportionality does

holds for GT (b�T )0WT
b
M=bTWTGT (b�T ), the middle term in bVM=bT . The following theorem provides

the relevant result.

Theorem 2 (Over-identi�ed Models) Suppose that q > p. Let b 2 (0; 1] be a constant. Let Qp(b)
be given by De�nition 1 for i = p. Let �� = G00W1�. Under Assumptions 1-4, as T !1;

GT (b�T )0WT
b
M=bTWTGT (b�T )) ��Qp(b)�

�0:
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This theorem shows that GT (b�T )0WT
b
M=bTWTGT (b�T ) is asymptotically proportional to ����0 and

otherwise only depends on the random matrix Qp(b). It directly follows that bV is asymptotically

proportional to V , and asymptotically pivotal tests can be obtained.

3.2 Inference using b
M=bT

We now examine the limiting null distributions of tests regarding �0 when the bandwidth is modeled

as M = bT . Consider the hypotheses

H0 : r(�0) = 0

H1 : r(�0) 6= 0

where r(�) is an m� 1 vector (m � p) of continuously di¤erentiable functions with �rst derivative
matrix, R(�) = @r(�)=@�0. Applying the delta method to Lemma 1 we obtain

T 1=2r(b�T )) �R(�0)V 1=2Bp(1) � N(0; VR); (7)

where VR = R(�0)V R(�0)0. Using (7) one can construct a Wald-type test of the null hypothesis or

a t-test in the case of m = 1. We consider the Wald-type test

F �b = Tr(
b�T )0 �R(b�T )bVM=bTR(b�T )0��1 r(b�T )=m;

which, except for the m in the denominator, is the Wald-type statistic that would usually be used

in practice. When m = 1 a t-statistic can be computed as

t�b =
T 1=2r(b�T )q

R(b�T )bVM=bTR(b�T )0 :
Often, the signi�cance of individual statistics are of interest which leads to t-statistics of the form

t�b =
b�iT

se(b�iT ) ;
where se(b�i) = q

T�1 bV iiM=bT and
bV iiM=bT is the i

th diagonal element of the bVM=bT matrix. The

formulas for t�b are the same as in the standard approach.

Note that some kernels, including the Tukey-Hanning, allow negative variance estimates. In

this case some convention must be adopted in calculating the denominator of the test statistics.

Equally arbitrary conventions include re�ection of negative values through the origin or setting

negatives to a small positive value. We see no merit in using a kernel allowing negative estimated

variances absent a compelling argument in a speci�c case. Nevertheless, we have experimented

with the Tukey-Hanning and trapezoid kernels and results not reported here do not support their

consideration over a kernel guaranteeing positive variance estimates.

The following theorem provides the asymptotic null distributions of F �b and t
�
b .
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Theorem 3 Let b 2 (0; 1] be a constant and suppose M = bT . Let Qi(b) be given by De�nition 1

for i = m. Then, under Assumptions 1-4 and H0, as T !1;

F �b ) Bm(1)
0Qm(b)

�1Bm(1)=m;

if m = 1;

t�b )
B1(1)p
Q1(b)

:

Theorem 3 shows that when the bandwidth is modeled as a constant proportion of the sample size,

asymptotically pivotal tests are obtained. And, the asymptotic distributions re�ect the choices

of kernel and bandwidth. This contrasts asymptotic results under the standard approach where

F �b would have a limiting �
2
m=m distribution and t�b would have a N(0; 1) limiting distribution

regardless of the choice of M and k(x). It is natural to expect that the new asymptotics given

by Theorem 3 provide a more accurate approximation in �nite samples than the traditional as-

ymptotics. Heuristically, the traditional asymptotics approximates the random variable, b
, by a
constant whereas our asymptotics approximates it with the random variable Qm(b). While this

new approximation is not guaranteed to be better, it usually is better as we show in Section 4.

3.3 Asymptotic Critical Values

The limiting distributions given by Theorem 3 are nonstandard. Analytical forms of the densities are

not available with the exception of t�b for the case of the Bartlett kernel with b = 1 (see Abadir and

Paruolo, 2002 and Kiefer and Vogelsang, 2002b). However, because the limiting distributions are

simple functions of standard Brownian motions, critical values are easily obtained using simulations.

We provide critical values for the t�b statistic for a selection of popular kernels (see the formula

appendix for formulas for the kernels). To save space, additional critical values for the F �b test will

be made available in a follow-up paper.

For each kernel we give right tail critical values for t�b (left tail critical values follow by symmetry

around zero) for b = 0:02; 0:04; :::0:98; 1:0. The critical values are tabulated in Tables I through V.

The critical values were calculated via simulation methods using 50,000 replications. Normalized

partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to approximate the standard Brown-

ian motions in the respective distributions given by Theorem 3. In practice, given the kernel and

bandwidth, M , we recommend that the critical value corresponding to b =M=T be used. Critical

values can be interpolated for values of b that fall between the values on the grid.

Two patterns in the critical values are worth noting. First, for small values of b, the critical

values are close to the critical values of a standard normal for each of the kernels. This is not

surprising given that the standard asymptotics has b going to zero. Second, as b increases, the

critical values increase in magnitude suggesting that sampling variation in t�b increases as the

11



bandwidth grows. This suggests that power may be lower with larger bandwidths. This intuition

is con�rmed in Section 4.

4 Choice of Kernel and Bandwidth and Performance

In this section we analyze the choice of kernel and bandwidth on the performance of HAC robust

tests. We focus on accuracy of the asymptotic approximation under the null and on local asymptotic

power. We focus on simple models for clarity. As far as we know, our analysis is the �rst to

theoretically explore the e¤ects of kernel and bandwidth choice on power of HAC robust tests.

4.1 Accuracy of the Asymptotic Approximation under the Null

The way to evaluate the accuracy of an asymptotic approximation to a null distribution, or indeed

any approximation, is to compare the approximate distribution to the exact distribution. Some-

times this can be done analytically; more commonly the comparison can be made by simulation.

We argued above that our approximation to the distribution of HAC robust tests was likely to be

better than the usual approximation, since ours takes into account the randomness in the estimated

variance. However, as noted, that argument is unconvincing in the absence of evidence on the ap-

proximation�s performance. We provide results for three popular positive de�nite kernels: Bartlett,

Parzen and QS. Results for the Bohman and Daniell kernel are similar and are not reported here.

The simulations were based on the following two simple regression models

yt = �1 + ut; (8)

yt = �1 + �2xt + ut; (9)

where ut = �ut�1 + �t; �t � i:i:d: N(0; 1), u0 = 0, xt is a scalar AR(1) process given by xt =

0:5xt�1 + "t, "t � i:i:d: N(0; 1), x0 = 0. �t and "t are assumed to be uncorrelated with each

other. Model (8) is sometimes called a simple location model. This model provides the simplest

environment in which to do the analysis. We generated data according to models (8) and (9)

with �1 = 0 and �2 = 0, and we analyzed t-statistics for testing H0 : �1 � 0 in model (8)

and testing H0 : �2 � 0 in model (9). We report results for sample sizes T = 50; 100; 200 and

� = �0:8;�0:5;�0:3; 0:0; 0:3; 0:5; 0:7; 0:9; 0:95. We report results without prewhitening and with
AR(1) prewhitening. In all cases 10,000 replications were used.

For each kernel, several di¤erent bandwidth choices were used. The �rst set of bandwidths are

deterministic and are given by M = bT for b = 0:1; 0:25; 0:35; 0:5; 0:65; 0:75; 0:9; 1:0: The second

bandwidth is the data dependent bandwidth proposed by Andrews (1991) based on the VAR(1)

plug-in formula. For a given kernel, we denote this bandwidth by cM and the corresponding value

12



for b is denoted by bb = cM=T: The third bandwidth is a new data dependent bandwidth de�ned as
fM = min(jb�j; 1)T;

where b� is obtained from the regression of but on but�1 and but are the least squares residuals. This
bandwidth leads to a value of b denoted by eb = fM=T = min(jb�j; 1). The motivation for this
bandwidth is given below.

A t-statistic computed using cM with rejection probabilities based on N(0; 1) critical values is

denoted by tbb: This statistic is the benchmark for the standard approach. We can also use the new
asymptotic critical values for this t-statistic and we denote that test by t�bb . For each replication,
the critical value used for t�bb corresponds to the realized value of bb: A t-statistic computed using fM
with rejection probabilities based on the new asymptotic critical values is denoted by t�eb : For each
replication, the critical value used is for t�eb corresponds to the realized value of eb. The t-statistics
computed using �xed values of b are denoted by t�b with rejection probabilities computed using the

new asymptotic critical values.

The empirical null rejection probabilities are given in Tables VI through VIII for the simple

location model (8) and in Tables IX through XI for the two variable regression model (9). In all

cases, the nominal level is 0.05. The third and �fth columns of each table report the average, across

the 10,000 replications, of the data dependent bandwidths measured as proportions of the sample

sizes, i.e. averages of bb and eb.
Several interesting patterns can be seen in the tables. First, when the errors have positive serial

correlation (� > 0), rejection probabilities are closer to 0.05 for t�bb than tbb. The di¤erences can be
quite large as seen for the Bartlett kernel in the simple location model (Table VIII). When the serial

correlation is negative (� < 0), t�bb tends to under-reject relative to tbb although this is no longer true
when prewhitening is used. These patterns strongly suggest that even if the bandwidth is chosen

using traditional methods, the new asymptotic approximation should be used as it is more accurate

for the economically relevant case of positive serial correlation.

Second, use of the new data dependent bandwidth, fM further improves the accuracy of the

approximation as seen by the results for t�eb . The reason (and motivation) for why eb delivers a more
accurate test can be seen in the patterns of the tests with �xed b: Notice that, regardless of kernel,

empirical rejection probabilities tend to get closer to 0.05 as b increases. This is especially true

for strong positive serial correlation. The new data dependent bandwidth is designed to exploit

this pattern. When serial correlation is weak (b� close to zero), eb does not have to be large to give
an accurate test. But, when serial correlation is strong (b� close to one), eb is much bigger, thus
reducing the tendency to over-reject. Because it is usually not known in practice just how strong

the serial correlation is, and because it is not obvious how one would generalize the formula for fM
for unknown error structure, a conservative approach with respect to minimizing the tendency to
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over-reject is to use b = 1:

Third, comparison across kernels indicates that the QS kernel delivers tests with the most

accurate asymptotic approximation. This is generally true regardless of model, sample size or

bandwidth choice. This may be related to the fact that the QS kernel minimizes the MSE ofb
: However, the MSE optimality of the QS kernel only holds when used with the appropriate

bandwidth rule. Here, the QS kernel performs well regardless of the bandwidth choice.

Fourth, whereas prewhitening tends to reduce the over-rejection problem of tbb; it does not always
improve matters for t�bb and t�eb : See, for example, the Bartlett and QS kernels in the simple location
model (Tables VIII and IX). This seemingly paradoxical result is easy to explain. If we focus on

the �xed b statistics, we see that prewhitening reduces the tendency to over-reject across the board

(both models, all kernels and all T ). However, for small values of b, the tendency to over-reject

stays relatively large with prewhitening. Because prewhitening removes most of serial correlation,bb and eb tend to be close to zero and the tests over-reject. What is needed is a larger bandwidth
when using prewhitening.

Fifth, all of the asymptotic approximations tend to become less accurate as � approaches one.

This is expected because the accuracy of the central (and functional central) limit theorem approx-

imation deteriorates as the model approaches a nonstationary border. But, this source of distortion

cannot explain the large di¤erences in rejection probabilities between tbb and t�bb when � � 0:7. The
reason is that there is an additional source of distortion for tbb that is not present for t�bb . Recall
that the asymptotic critical values become larger for t�b as b approaches one. This suggests that

sampling variability in HAC robust t-tests increases as the bandwidth increases. Notice from the

tables that for a given sample size, the Andrews (1991) data dependent bandwidth increases as �

approaches one. For the Parzen kernel, it can become quite large. Because under the traditional

approach, the critical values are the same regardless of bandwidth used in practice, rejection prob-

abilities will increase as the bandwidth increases. Therefore, part of the over-rejection problem of

the traditional approach is caused by the invariance of the traditional �rst order asymptotics with

respect to bandwidth choice.

4.2 Local Asymptotic Power

For the purposes of keeping size distortions small, the preceding subsection suggested that a) large

bandwidths should be used and b) the QS kernel dominates the Bartlett and Parzen kernel. The

other suitable metric by which to judge the choice of kernel and bandwidth is power. In this section

we compare power of HAC robust t-tests using a local asymptotic power analysis. Our analysis

permits comparison of power across bandwidths and across kernels. Such a comparison is not

possible using the traditional �rst order asymptotics because local asymptotic power is the same

for all bandwidths and kernels.
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For clarity, we restrict attention to linear regression models. Given the results in Theorem 1,

the derivations in this section are very simple extensions of results given by Kiefer and Vogelsang

(2002)b. Therefore, details are kept to a minimum. Consider the regression model

yt = x
0
t�0 + ut (10)

with �0 and xt p � 1 vectors. In terms of the general model we have f(vt; �0) = xt (yt � x0t�0).
Without loss of generality, we focus on �i0, one element of �; and consider null and alternative

hypotheses

H0 : �i0 � 0

H1 : �i0 = cT
�1=2

where c > 0 is a constant. If the regression model satis�es Assumptions 1 through 4, then we can

use the results of Theorem 1 and results from Kiefer and Vogelsang (2002)b to easily establish that

under the local alternative, H1, as T !1;

t�b )
� +B1(1)p
Q1(b)

; (11)

where � = c=
p
V ii, V ii is the ith diagonal element of V; and Q1(b) is given by De�nition 1 for i = 1:

Asymptotic power curves can be computed for given bandwidths and kernels by simulating the

asymptotic distribution of t�b based on (11) for a range of values for � and computing rejection

probabilities with respect to the relevant null critical value. Using the same simulation methods as

for the asymptotic critical values, local asymptotic power was computed for � = 0; 0:2; 0:4; :::; 4:8; 5:0

using 5% asymptotic null critical values.

The power results are reported in two ways. Figures 1-8 plot power across the kernels for a

given value of b. Figures 9-13 plot power across values of b for a given kernel. Figures 1-8 show that

for small bandwidths, power is essentially the same across kernels. As b increases, it becomes clear

that the Bartlett kernel has the highest power while the QS and Daniell kernels have the lowest

power. If power is the criterion used to choose a test, then the Bartlett kernel is the best choice

within this set of �ve kernels. If we compare the Bartlett, Parzen and QS kernels, we see that the

power ranking of these kernels is the reverse of their ranking based on accuracy of the asymptotic

approximation under the null.

Figures 9-13 show how the choice of bandwidth a¤ects power. Regardless of the kernel, power

is highest for small bandwidths and lowest for large bandwidths and power is decreasing in b: These

�gures also show that power of the Bartlett kernel is least sensitive to b whereas power of the

QS and Daniell kernels is the most sensitive to b. Again, power rankings of b are the opposite of

rankings of b based on accuracy of the asymptotic approximation under the null.
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5 Conclusions

We have provided a new approach to the asymptotic theory of HAC robust testing. Our results

are general enough to apply to stationary models estimated by GMM. In our approach, the ratio

of bandwidth to sample size is held constant when deriving the asymptotic behavior of the relevant

covariance matrix estimator (i.e. zero frequency spectral density estimator) . In standard asymp-

totics, this ratio is sent to zero. Our approach improves upon two well known problems with the

standard approach. First, as has been well documented in the literature, the standard asymptotic

approximation of the sampling behavior of tests is often poor. Second, the kernel and bandwidth

choice do not appear in the approximate distribution, leaving the standard theory silent on the

choice of kernel and bandwidth with respect to properties of the tests. Our theory leads to approx-

imate distributions that explicitly depend on the kernel and bandwidth. The new approximation

performs much better and gives insight into the choice of kernel and bandwidth with respect to

test behavior.

The new approximations should be used for HAC robust test statistics for any choice of kernel

and bandwidth. Our approximation is an unambiguous improvement over the standard approxi-

mation in most cases considered. We show that size distortions are reduced when large bandwidths

are used, but so is asymptotic power. Generally there is a trade-o¤ in bandwidth and kernel choice

between size (the accuracy of the approximation) and power. Among a group of popular kernels,

the QS kernel leads to the least size distortion, while the Bartlett kernel leads to tests with highest

power (and generally acceptable size distortion when large bandwidths are used). We also give an

alternative simple rule for data dependent bandwidth selection. While this new bandwidth rule is

as arbitrary as any other, it has intuitive appeal and appears to perform well.

6 Appendix: Proofs

We �rst de�ne some relevant functions and derive preliminary results before proving the lemma

and theorems. De�ne the functions

k� (x) = k
�x
b

�
;

Kij = k

�
i� j
bT

�
= k�

�
i� j
T

�
;

�2Kij = (Kij �Ki;j+1)� (Ki+1;j �Ki+1;j+1) ;

D�T (r) = T
2

��
k�
�
[rT ] + 1

T

�
� k�

�
[rT ]

T

��
�
�
k�
�
[rT ]

T

�
� k�

�
[rT ]� 1
T

���
:

Notice that

T 2�2Kij = �D�T
�
i� j
T

�
:
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Because k(r) is an even function around r = 0,D�T (�r) = D�T (r). If k�00(r) exists then limT!1D�T (r) =
k�00(r) by the de�nition of the second derivative. If k�00(r) is continuous, then D�T (r) converges to

k�00(r) uniformly in r. De�ne the stochastic process

XT (r) = GT (b�T )0WTT
1=2g[rT ](�0):

It directly follows from Assumptions 2, 3 and 4 that

XT (r)) G00W1�Bq(r) � ��Bp(r): (12)

Proof of Lemma 1: Setting t = T , multiplying both sides of (4) by GT (b�T )0WT , and using the

�rst order condition GT (b�T )0WT gT (b�T ) = 0 gives
0 = GT (b�T )0WT gT (�0) +GT (b�T )0WTGT (b�T ; �0; �T )(b�T � �0): (13)

Solving (13) for (b�T � �0) and scaling by T 1=2 gives
T 1=2(b�T � �0) = �[G0T (b�T )WTGT (b�T ; �0; �T )]�1G0T (b�T )WTT

1=2gT (�0)

= �[GT (b�T )0WTGT (b�T ; �0; �T )]�1XT (1): (14)

Because p limGT (b�T )0WTGT (b�T ; �0; �T ) = G00W1G0 by Assumptions 3 and 4, it follows from (12)

that

T 1=2(b�T � �0)) �
�
G00W1G0

��1
��Bp(r):

The proof of Theorem 1 follows the same arguments as the proof for Theorem 2 and is omitted.

Proof of Theorem 2: De�ne the random process

eXT (r) = GT (b�T )0WTT
1=2g[rT ](b�T ):

Plugging in for g[rT ](b�T ) using (4) gives
eXT (r) = XT (r) +GT (b�T )0WTG[rT ](b�T ; �0; �T )T 1=2(b�T � �0)

= XT (r)�GT (b�T )0WTG[rT ](b�T ; �0; �T ) hGT (b�T )0WTGT (b�T ; �0; �T )i�1XT (1);
using (14). It directly follows from Assumptions 3 and 4 and (12) that

eXT (r)) ��Bp(r)� rG00W1G0
�
G00W1G0

��1
��Bp(1)

= �� (Bp(r)� rBp(1)) � �� eBp(r): (15)
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Straightforward algebra gives

b
M=bT =

T�1X
j=�(T�1)

k

�
j

bT

� b�j = T�1 TX
i=1

TX
j=1

f(vj ; b�T )Kijf(vj ; b�T )0:
Using algebraic arguments similar to those used by Kiefer and Vogelsang (2002)b, it is straightfor-

ward to show that

b
M=bT = T
�1

T�1X
i=1

T�1X
j=1

�2KijTgi(b�T )Tgj(b�T )0
+ gT (b�T ) T�1X

i=1

(KTi �KT;i+1)Tgi(b�T )0 +
0@ TX
j=1

f(vj ; b�T )KjT
1A gT (b�T )0: (16)

Using (16) it directly follows that

GT (b�T )0WT
b
M=bTWTGT (b�T )

= T�1
T�1X
i=1

T�1X
j=1

�2KijGT (b�T )0WTTgi(b�T )Tgj(b�T )0WTGT (b�T )
= T�2

T�1X
i=1

T�1X
j=1

T 2�2KijGT (b�T )0WTT
1=2gi(b�T )T 1=2gj(b�T )0WTGT (b�T )

= T�2
T�1X
i=1

T�1X
j=1

�D�T
�
i� j
T

�
GT (b�T )0WTT

1=2gi(b�T )T 1=2gj(b�T )0WTGT (b�T ) (17)

where the second and third terms of (16) vanish because from (3) we have

GT (b�T )0WTTgT (b�T ) = 0;
T gT (b�T )0WTGT (b�T ) = 0:

The rest of proof is divided into three cases.

Case 1: k(x) is twice continuously di¤erentiable. Using (17) it follows that

GT (b�T )0WT
b
M=bTWTGT (b�T )

= �
Z 1

0

Z 1

0
D�T (r � s)GT (b�T )0WTT

1=2g[rT ](b�T )T 1=2g[sT ](b�T )0WTGT (b�T )drds
= �

Z 1

0

Z 1

0
D�T (r � s) eXT (r) eXT (s)0drds

) ���
Z 1

0

Z 1

0
k�00(r � s) eBp(r) eBp(s)0drds��0;
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using the continuous mapping theorem. The �nal expression is obtained using k�00(x) = 1
b2
k00(xb ).

Case 2: k(x) is continuous, k(x) = 0 for jxj � 1; and k(x) is twice continuously di¤erentiable

everywhere except for jxj = 1: Let 1(�) denote the indicator function. Noting that �2Kij = 0 for
ji�jj > [bT ] and �2Kij = �k�

�
b� 1

T

�
for ji�jj = [bT ]; break up the double sum in the second line

of the expression for GT (b�T )0WT
b
M=bTWTGT (b�T ) into three pieces corresponding to ji� jj < [bT ],

ji� jj = [bT ], and ji� jj > [bT ] to obtain

GT (b�T )0WT
b
M=bTWTGT (b�T ) =

T�2
T�1X
i=1

T�1X
j=1

1 (ji� jj < [bT ])T 2�2KijGT (b�T )0WTT
1=2gi(b�T )T 1=2gj(b�T )0WTGT (b�T )

� Tk�
�
b� 1

T

�
T�1

T�[bT ]�1X
i=1

GT (b�T )0WTT
1=2gi+[bT ](b�T )T 1=2gi(b�T )0WTGT (b�T )

� Tk�
�
b� 1

T

�
T�1

T�[bT ]�1X
j=1

GT (b�T )0WTT
1=2gj(b�T )T 1=2gj+[bT ](b�T )0WTGT (b�T ):

It directly follows that

GT (b�T )0WT
b
M=bTWTGT (b�T ) =

�
ZZ

jr�sj<b
D�T (r�s) eXT (r) eXT (s)0drds�Tk��b� 1

T

�Z 1�b

0

� eXT (r + b) eXT (r)0 + eXT (r) eXT (r + b)0� dr:
Let k�0_(b) denote the �rst derivative of k

�(x) from the left at x = b. By de�nition

k0�(1)

b
= k�0_(b) = lim

T!1

�
�Tk�

�
b� 1

T

��
:

Therefore, by the continuous mapping theorem

GT (b�T )0WT
b
M=bTWTGT (b�T )dr )

��

"
�
ZZ

jr�sj<b
k�00(r � s) eBp(r) eBp(s)0drds+ k�0_(b)Z 1�b

0

� eBp(r + b) eBp(r)0 + eBp(r) eBp(r + b)0� dr#��0:
Case 3: k(x) is the Bartlett kernel. It is easy to calculate that for the Bartlett kernel, �2Kij = 2

bT

for ji� jj = 0, �2Kij = � 1
bT for ji� jj = [bT ] and �

2Kij = 0 otherwise. Therefore we have

GT (b�T )0WT
b
M=bTWTGT (b�T ) =
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2

bT

T�1X
i=1

GT (b�T )0WTT
1=2gi(b�T )T 1=2gi(b�T )0WTGT (b�T )

� 1

bT

T�[bT ]�1X
i=1

GT (b�T )0WTT
1=2gi+[bT ](b�T )T 1=2gi(b�T )0WTGT (b�T )

� 1

bT

T�[bT ]�1X
j=1

GT (b�T )0WTT
1=2gj(b�T )T 1=2gj+[bT ](b�T )0WTGT (b�T )

=
2

b

Z 1

0

eXT (r) eXT (r)0dr � 1
b

Z 1�b

0

� eXT (r + b) eXT (r)0 + eXT (r) eXT (r + b)0� dr
) ��

�
2

b

Z 1

0

eBp(r) eBp(r)0dr � 1
b

Z 1�b

0

� eBp(r + b) eBp(r)0 + eBp(r) eBp(r + b)0� dr���0:
Proof of Theorem 3: We only give the proof for F � as the proof for t� follows using similar

arguments. Applying the delta method to the result in Lemma 1 and using the fact that Bq(1) is

a vector of independent standard normal random variables gives

T 1=2r(b�T )) �R(�0)
�
G00W1G0

��1
G00W1�Bq(1)

� �R(�0)
�
G00W1G0

��1
��Bp(1)

� ���Bm(1); (18)

where ��� is the matrix square root of R(�0) (G00W1G0)
�1 ����0 (G00W1G0)

�1R(�0)0: Using the

results in Theorem 2, it directly follows that

R(b�T )bVM=bTR(b�T )0 = R(b�T ) hGT (b�T )0WTGT (b�T ; �0; �T )i�1GT (b�T )0WT
b
M=TWTGT (b�T )

�
h
GT (b�T )0WTGT (b�T ; �0; �T )i�1R(b�T )0

) R(�0)
�
G00W1G0

��1
��Qp(b)�

�0 �G00W1G0
��1

R(�0)
0

� ���Qm(b)���0; (19)

where we use the fact that

R(�0)
�
G00W1G0

��1
�� eBp(r) = R(�0) �G00W1G0

��1
�� (Bp(r)� rBp(1))

� ��� (Bm(r)� rBm(1))

= ��� eBm(r):
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Using (18) and (19) it directly follows that

F � = Tr(b�T )0 �R(b�T )bVM=bTR(b�T )0��1 r(b�T )=m
= T 1=2r(b�T )0 �R(b�T )bVM=TR(b�T )0��1 T 1=2r(b�T )=m
) (���Bm(1))

0 ����Qm(b)���0��1 (���Bm(1)) =m
� Bm(1)0Qm(b)�1Bm(1)=m;

which completes the proof.

7 Appendix: Kernel Formulas

The formulas for the kernels analyzed in this paper are

Bartlett k(x) =

�
1� jxj for jxj � 1;
0 otherwise;

Parzen k(x) =

8<:
1� 6x2 + 6jxj3 for jxj � 1

2 ;
2(1� jxj)3 for 1

2 � jxj � 1
0 otherwise;

Bohman k(x) =

�
(1� jxj) cos(�x) + sin(� jxj)=� for jxj � 1;

0 otherwise;

Quadratic Spectral (QS) k(x) =
25

12�2x2

�
sin(6�x=5)

6�x=5
� cos(6�x=5)

�
;

Daniell k(x) =
sin(�x)

�x
:
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Table I: Asymptotic Critical Values for t�b Using Bartlett Kernel

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
90% 1.323 1.343 1.368 1.390 1.414 1.442 1.469 1.498 1.529 1.563
95% 1.690 1.731 1.772 1.813 1.861 1.902 1.944 1.988 2.030 2.081

97.5% 2.018 2.072 2.125 2.179 2.235 2.296 2.355 2.417 2.481 2.553
99% 2.377 2.459 2.537 2.627 2.709 2.792 2.882 2.961 3.051 3.140

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
90% 1.587 1.615 1.644 1.674 1.709 1.737 1.767 1.796 1.830 1.865
95% 2.124 2.179 2.222 2.274 2.324 2.367 2.412 2.459 2.505 2.556

97.5% 2.617 2.678 2.736 2.805 2.878 2.930 2.999 3.067 3.129 3.192
99% 3.229 3.315 3.385 3.476 3.580 3.707 3.791 3.858 3.942 4.038

b = 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.6
90% 1.901 1.931 1.963 1.994 2.022 2.053 2.086 2.117 2.149 2.183
95% 2.601 2.651 2.696 2.739 2.781 2.828 2.872 2.913 2.956 3.007

97.5% 3.253 3.318 3.382 3.447 3.514 3.567 3.636 3.684 3.740 3.783
99% 4.111 4.212 4.306 4.399 4.480 4.567 4.645 4.711 4.762 4.831

b = 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
90% 2.211 2.242 2.272 2.297 2.325 2.359 2.389 2.418 2.450 2.477
95% 3.048 3.082 3.124 3.162 3.198 3.245 3.291 3.330 3.367 3.408

97.5% 3.834 3.880 3.934 3.995 4.054 4.101 4.153 4.208 4.260 4.312
99% 4.912 4.981 5.041 5.124 5.190 5.279 5.333 5.376 5.445 5.493

b = 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.0
90% 2.506 2.533 2.560 2.591 2.618 2.649 2.678 2.706 2.733 2.740
95% 3.444 3.494 3.537 3.579 3.616 3.654 3.692 3.727 3.764 3.764

97.5% 4.367 4.417 4.470 4.524 4.568 4.617 4.664 4.713 4.764 4.771
99% 5.554 5.609 5.672 5.724 5.782 5.868 5.933 5.998 6.058 6.090

Notes: The critical values for b = 1 are analytical (see Abadir and Paruolo, 2002 and Kiefer and
Vogelsang, 2002b). The remaining critical values were calculated via simulation methods using
50,000 replications. Normalized partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to
approximate the standard Brownian motions in the respective distributions given by Theorem 3.
The bandwidth is given by M = bT .
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Table II: Asymptotic Critical Values for t�b Using Parzen Kernel

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
90% 1.312 1.334 1.353 1.373 1.393 1.410 1.433 1.451 1.475 1.498
95% 1.678 1.716 1.748 1.773 1.811 1.846 1.885 1.922 1.962 1.994

97.5% 2.000 2.046 2.089 2.135 2.180 2.226 2.274 2.323 2.374 2.433
99% 2.352 2.422 2.487 2.547 2.629 2.706 2.777 2.847 2.931 3.012

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
90% 1.522 1.545 1.568 1.596 1.623 1.649 1.676 1.700 1.727 1.755
95% 2.035 2.071 2.112 2.151 2.193 2.231 2.277 2.322 2.371 2.425

97.5% 2.488 2.544 2.596 2.659 2.734 2.793 2.856 2.925 2.997 3.065
99% 3.114 3.190 3.272 3.349 3.432 3.512 3.619 3.709 3.814 3.916

b = 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.6
90% 1.783 1.812 1.844 1.875 1.905 1.939 1.968 2.000 2.030 2.064
95% 2.471 2.518 2.561 2.607 2.655 2.709 2.766 2.824 2.876 2.936

97.5% 3.130 3.195 3.262 3.331 3.401 3.476 3.559 3.638 3.723 3.805
99% 4.037 4.157 4.277 4.402 4.519 4.640 4.769 4.886 4.997 5.123

b = 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
90% 2.101 2.134 2.171 2.203 2.238 2.271 2.302 2.337 2.377 2.412
95% 2.997 3.049 3.112 3.166 3.220 3.276 3.332 3.394 3.454 3.515

97.5% 3.879 3.957 4.051 4.132 4.216 4.301 4.390 4.468 4.570 4.673
99% 5.259 5.407 5.587 5.734 5.867 5.981 6.138 6.300 6.431 6.556

b = 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.0
90% 2.450 2.490 2.525 2.561 2.605 2.642 2.681 2.723 2.764 2.807
95% 3.587 3.650 3.711 3.775 3.833 3.903 3.960 4.031 4.098 4.179

97.5% 4.764 4.846 4.932 5.019 5.130 5.233 5.324 5.422 5.543 5.649
99% 6.686 6.841 7.012 7.181 7.332 7.495 7.667 7.863 7.991 8.162

Notes: The critical values were calculated via simulation methods using 50,000 replications. Nor-
malized partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to approximate the standard
Brownian motions in the respective distributions given by Theorem 3. The bandwidth is given by
M = bT .
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Table III: Asymptotic Critical Values for t�b Using Bohman Kernel

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
90% 1.238 1.326 1.354 1.380 1.400 1.422 1.444 1.467 1.493 1.518
95% 1.589 1.708 1.748 1.787 1.827 1.866 1.906 1.948 1.986 2.027

97.5% 1.902 2.040 2.097 2.147 2.198 2.250 2.300 2.357 2.421 2.483
99% 2.232 2.413 2.498 2.575 2.664 2.740 2.815 2.904 2.992 3.101

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
90% 1.542 1.569 1.599 1.628 1.655 1.684 1.712 1.742 1.772 1.805
95% 2.069 2.114 2.156 2.201 2.243 2.296 2.349 2.400 2.456 2.508

97.5% 2.544 2.603 2.671 2.747 2.812 2.886 2.958 3.038 3.108 3.179
99% 3.193 3.274 3.366 3.453 3.557 3.653 3.754 3.874 4.008 4.143

b = 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.6
90% 1.838 1.873 1.909 1.940 1.975 2.007 2.044 2.083 2.120 2.158
95% 2.557 2.604 2.656 2.713 2.774 2.839 2.904 2.966 3.023 3.087

97.5% 3.247 3.334 3.409 3.487 3.582 3.660 3.752 3.846 3.922 4.027
99% 4.261 4.388 4.528 4.651 4.778 4.905 5.046 5.184 5.371 5.541

b = 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
90% 2.195 2.230 2.268 2.305 2.347 2.387 2.427 2.469 2.504 2.544
95% 3.147 3.209 3.266 3.332 3.396 3.462 3.535 3.610 3.677 3.747

97.5% 4.122 4.209 4.305 4.390 4.495 4.599 4.694 4.790 4.881 4.979
99% 5.683 5.835 5.998 6.145 6.288 6.428 6.575 6.740 6.918 7.078

b = 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.0
90% 2.587 2.629 2.674 2.720 2.762 2.811 2.856 2.899 2.936 2.982
95% 3.811 3.878 3.951 4.023 4.103 4.175 4.246 4.314 4.389 4.460

97.5% 5.075 5.170 5.280 5.405 5.521 5.646 5.756 5.875 5.997 6.111
99% 7.264 7.433 7.608 7.796 7.956 8.118 8.285 8.471 8.637 8.778

Notes: The critical values were calculated via simulation methods using 50,000 replications. Nor-
malized partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to approximate the standard
Brownian motions in the respective distributions given by Theorem 3. The bandwidth is given by
M = bT .
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Table IV: Asymptotic Critical Values for t�b Using Daniels Kernel

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
90% 1.325 1.360 1.387 1.424 1.460 1.492 1.530 1.572 1.614 1.662
95% 1.700 1.754 1.807 1.869 1.930 1.982 2.054 2.117 2.191 2.281

97.5% 2.036 2.102 2.184 2.261 2.356 2.461 2.566 2.669 2.784 2.902
99% 2.408 2.529 2.638 2.775 2.921 3.069 3.265 3.408 3.561 3.799

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.40
90% 1.708 1.753 1.802 1.859 1.920 1.974 2.032 2.092 2.157 2.212
95% 2.360 2.466 2.549 2.642 2.749 2.856 2.951 3.059 3.161 3.260

97.5% 3.039 3.185 3.328 3.487 3.614 3.770 3.944 4.107 4.267 4.403
99% 4.005 4.210 4.425 4.702 4.964 5.202 5.484 5.837 6.134 6.450

b = 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.6
90% 2.276 2.333 2.402 2.473 2.544 2.614 2.685 2.751 2.833 2.911
95% 3.366 3.480 3.594 3.720 3.844 3.975 4.105 4.239 4.369 4.505

97.5% 4.579 4.751 4.959 5.139 5.357 5.580 5.802 6.031 6.285 6.493
99% 6.802 7.117 7.430 7.769 8.136 8.459 8.805 9.083 9.401 9.826

b = 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
90% 2.988 3.059 3.138 3.215 3.302 3.399 3.495 3.576 3.672 3.769
95% 4.634 4.761 4.896 5.040 5.167 5.313 5.470 5.630 5.816 5.970

97.5% 6.723 6.974 7.220 7.451 7.663 7.873 8.106 8.356 8.610 8.837
99% 10.181 10.489 10.950 11.281 11.583 11.996 12.419 12.734 13.248 13.658

b = 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.0
90% 3.866 3.961 4.059 4.156 4.257 4.349 4.443 4.546 4.653 4.750
95% 6.138 6.281 6.447 6.625 6.779 6.935 7.129 7.327 7.508 7.680

97.5% 9.095 9.341 9.597 9.827 10.068 10.367 10.642 10.904 11.167 11.386
99% 14.015 14.487 14.875 15.400 15.820 16.256 16.805 17.363 17.862 18.225

Notes: The critical values were calculated via simulation methods using 50,000 replications. Nor-
malized partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to approximate the standard
Brownian motions in the respective distributions given by Theorem 3. The bandwidth is given by
M = bT .
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Table V: Asymptotic Critical Values for t�b Using QS Kernel

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
90% 1.329 1.363 1.401 1.438 1.473 1.516 1.562 1.607 1.655 1.706
95% 1.708 1.761 1.826 1.893 1.960 2.027 2.093 2.173 2.261 2.341

97.5% 2.041 2.115 2.197 2.285 2.388 2.485 2.598 2.714 2.844 2.989
99% 2.409 2.533 2.666 2.806 2.958 3.138 3.324 3.455 3.650 3.851

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
90% 1.760 1.814 1.866 1.931 1.995 2.057 2.122 2.193 2.266 2.330
95% 2.442 2.539 2.627 2.732 2.856 2.966 3.074 3.189 3.297 3.417

97.5% 3.127 3.252 3.407 3.573 3.729 3.892 4.067 4.239 4.420 4.609
99% 4.075 4.335 4.576 4.797 5.092 5.403 5.690 6.010 6.351 6.656

b = 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.6
90% 2.396 2.471 2.547 2.624 2.707 2.782 2.863 2.945 3.033 3.118
95% 3.553 3.670 3.816 3.947 4.081 4.217 4.358 4.498 4.646 4.797

97.5% 4.788 4.979 5.178 5.404 5.657 5.875 6.133 6.365 6.653 6.882
99% 6.991 7.337 7.661 8.038 8.357 8.724 9.117 9.448 9.785 10.210

b = 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80
90% 3.203 3.281 3.370 3.454 3.550 3.651 3.747 3.843 3.948 4.054
95% 4.935 5.073 5.210 5.369 5.531 5.685 5.864 6.039 6.219 6.398

97.5% 7.139 7.366 7.648 7.921 8.154 8.399 8.649 8.886 9.130 9.376
99% 10.590 10.998 11.373 11.781 12.178 12.679 13.110 13.514 13.962 14.447

b = 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.0
90% 4.158 4.260 4.364 4.474 4.575 4.682 4.781 4.892 5.000 5.112
95% 6.576 6.742 6.915 7.095 7.271 7.451 7.642 7.854 8.058 8.245

97.5% 9.660 9.932 10.211 10.481 10.760 11.044 11.359 11.632 11.928 12.195
99% 14.892 15.382 15.838 16.344 16.776 17.259 17.848 18.394 18.909 19.516

Notes: The critical values were calculated via simulation methods using 50,000 replications. Nor-
malized partial sums of 1,000 i:i:d: N(0; 1) random deviates were used to approximate the standard
Brownian motions in the respective distributions given by Theorem 3. The bandwidth is given by
M = bT .
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Table VI: Empirical Null Rejection Probabilities in Simple Location Model
5% Nominal Level, 10,000 Replications

yt = �1 + ut, ut = �ut�1 + �t, �t � i:i:d: N(0; 1), u0 = 0
H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .051 .019 .23 .023 .77 .008 .018 .020 .022 .023 .022 .023 .023
-.5 .049 .031 .10 .037 .49 .029 .037 .037 .038 .038 .039 .038 .039
-.3 .050 .036 .07 .042 .30 .039 .042 .042 .043 .044 .043 .043 .043
.0 .060 .053 .03 .053 .12 .049 .048 .048 .048 .050 .049 .048 .049
.3 .085 .074 .06 .060 .27 .064 .056 .057 .056 .056 .055 .055 .055
.5 .104 .082 .10 .065 .45 .080 .066 .065 .064 .063 .062 .062 .062
.7 .135 .099 .15 .079 .64 .116 .084 .081 .081 .078 .078 .078 .078
.9 .220 .157 .29 .135 .81 .234 .159 .144 .135 .132 .134 .136 .136
.95 .288 .204 .36 .183 .85 .303 .224 .202 .187 .183 .182 .183 .183

Panel B: Parzen Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .049 .036 .09 .046 .77 .036 .046 .047 .045 .045 .046 .046 .045
-.5 .051 .038 .08 .047 .49 .041 .046 .049 .048 .048 .048 .047 .046
-.3 .052 .040 .07 .046 .30 .044 .047 .049 .048 .049 .049 .048 .047
.0 .061 .052 .06 .054 .12 .051 .049 .050 .049 .049 .049 .050 .048
.3 .081 .065 .12 .057 .27 .067 .054 .052 .050 .051 .051 .049 .049
.5 .097 .070 .19 .059 .45 .087 .062 .058 .055 .053 .052 .052 .052
.7 .129 .079 .32 .065 .64 .133 .082 .072 .065 .063 .060 .060 .059
.9 .225 .116 .62 .099 .81 .261 .171 .144 .120 .106 .099 .094 .091
.95 .291 .146 .73 .131 .85 .328 .243 .207 .172 .151 .140 .129 .123

Panel C: QS Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .049 .037 .04 .046 .77 .048 .045 .045 .046 .046 .047 .045 .045
-.5 .050 .038 .04 .047 .49 .049 .049 .048 .048 .047 .047 .047 .047
-.3 .050 .040 .04 .046 .30 .049 .048 .048 .048 .048 .048 .049 .049
.0 .060 .051 .03 .053 .12 .050 .050 .049 .048 .048 .048 .049 .049
.3 .079 .066 .06 .055 .27 .056 .051 .051 .049 .049 .051 .051 .050
.5 .094 .071 .09 .056 .45 .067 .054 .053 .051 .052 .053 .053 .053
.7 .123 .079 .16 .059 .64 .092 .064 .060 .058 .057 .054 .055 .056
.9 .221 .115 .34 .084 .81 .201 .118 .098 .087 .084 .082 .081 .079
.95 .294 .141 .43 .105 .85 .275 .173 .138 .116 .107 .105 .101 .099
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Table VI: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .067 .061 .03 .060 .09 .056 .053 .051 .048 .046 .046 .043 .042
-.5 .063 .059 .02 .057 .06 .053 .052 .050 .050 .048 .048 .047 .047
-.3 .064 .060 .01 .058 .04 .053 .052 .051 .050 .049 .049 .048 .047
.0 .066 .064 .01 .062 .02 .053 .052 .051 .051 .050 .049 .048 .048
.3 .071 .068 .01 .065 .04 .055 .052 .052 .051 .051 .050 .049 .049
.5 .075 .071 .02 .067 .06 .059 .055 .054 .053 .052 .051 .050 .050
.7 .088 .083 .02 .077 .08 .071 .063 .060 .059 .058 .056 .055 .055
.9 .138 .132 .03 .121 .10 .115 .098 .092 .089 .086 .086 .085 .084
.95 .180 .174 .03 .158 .10 .154 .131 .123 .117 .112 .108 .105 .103

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .068 .059 .05 .061 .09 .057 .055 .054 .050 .048 .047 .043 .042
-.5 .064 .057 .05 .059 .06 .054 .052 .053 .051 .050 .049 .047 .045
-.3 .065 .058 .04 .060 .04 .054 .052 .052 .050 .049 .050 .048 .045
.0 .066 .062 .03 .063 .02 .055 .051 .051 .049 .049 .050 .049 .046
.3 .070 .066 .04 .066 .04 .056 .052 .052 .049 .049 .049 .048 .045
.5 .075 .068 .05 .068 .06 .061 .053 .053 .050 .049 .049 .048 .047
.7 .087 .080 .05 .079 .08 .073 .063 .058 .054 .052 .051 .050 .049
.9 .137 .128 .06 .123 .10 .120 .100 .090 .081 .076 .074 .069 .067
.95 .178 .169 .06 .162 .10 .161 .135 .123 .110 .099 .093 .085 .081

Panel F: QS Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .067 .059 .03 .059 .09 .055 .051 .048 .044 .037 .033 .028 .026
-.5 .063 .056 .02 .057 .06 .054 .050 .050 .046 .042 .039 .034 .031
-.3 .064 .058 .02 .059 .04 .053 .050 .050 .046 .043 .040 .036 .033
.0 .066 .062 .02 .061 .02 .052 .050 .050 .047 .044 .042 .038 .036
.3 .070 .066 .02 .064 .04 .053 .049 .050 .046 .045 .042 .039 .037
.5 .074 .069 .02 .066 .06 .055 .050 .050 .047 .046 .043 .039 .037
.7 .087 .081 .03 .075 .08 .065 .054 .052 .050 .048 .045 .041 .038
.9 .137 .128 .03 .114 .10 .108 .081 .073 .066 .060 .055 .049 .044
.95 .178 .170 .03 .150 .10 .145 .110 .096 .081 .069 .063 .055 .050
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Table VII: Empirical Null Rejection Probabilities in Simple Location Model
5% Nominal Level, 10,000 Replications

yt = �1 + ut, ut = �ut�1 + �t, �t � i:i:d: N(0; 1), u0 = 0
H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .048 .025 .14 .034 .79 .024 .030 .032 .034 .034 .033 .034 .034
-.5 .046 .034 .07 .044 .50 .038 .041 .044 .046 .045 .044 .044 .044
-.3 .047 .038 .04 .046 .30 .044 .044 .047 .049 .048 .047 .047 .046
.0 .056 .053 .02 .051 .08 .049 .048 .050 .052 .051 .050 .050 .050
.3 .079 .070 .04 .055 .28 .058 .053 .054 .056 .053 .053 .053 .054
.5 .091 .075 .06 .059 .47 .067 .058 .058 .059 .057 .057 .055 .057
.7 .112 .085 .10 .065 .67 .084 .068 .066 .066 .065 .064 .064 .064
.9 .174 .123 .20 .099 .86 .172 .112 .105 .099 .097 .098 .100 .100
.95 .232 .163 .29 .137 .90 .247 .168 .151 .138 .136 .137 .136 .137

Panel B: Parzen Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .044 .036 .05 .051 .79 .046 .050 .047 .049 .050 .050 .050 .050
-.5 .047 .040 .05 .050 .50 .047 .050 .048 .050 .051 .051 .051 .050
-.3 .049 .042 .04 .049 .30 .048 .050 .049 .050 .051 .051 .051 .050
.0 .057 .051 .03 .051 .08 .052 .051 .050 .051 .051 .052 .051 .050
.3 .073 .061 .07 .054 .28 .058 .052 .051 .051 .051 .052 .052 .051
.5 .084 .063 .11 .054 .47 .066 .055 .052 .053 .053 .053 .052 .051
.7 .102 .071 .19 .058 .67 .092 .064 .059 .058 .057 .057 .055 .054
.9 .170 .094 .45 .073 .86 .195 .116 .097 .082 .077 .074 .072 .071
.95 .236 .120 .63 .097 .90 .273 .179 .152 .125 .111 .104 .096 .093

Panel C: QS Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .047 .040 .03 .048 .79 .050 .049 .051 .051 .049 .049 .049 .048
-.5 .046 .041 .02 .050 .50 .051 .050 .053 .051 .050 .049 .048 .049
-.3 .047 .042 .02 .050 .30 .051 .051 .052 .051 .050 .050 .050 .049
.0 .056 .052 .02 .051 .08 .051 .051 .052 .051 .050 .051 .051 .051
.3 .073 .063 .04 .053 .28 .053 .052 .053 .052 .051 .050 .051 .051
.5 .082 .064 .06 .054 .47 .056 .053 .054 .053 .051 .051 .052 .051
.7 .100 .071 .09 .054 .67 .069 .058 .058 .054 .053 .052 .052 .052
.9 .165 .092 .22 .066 .86 .140 .081 .073 .069 .065 .064 .064 .064
.95 .230 .119 .34 .082 .90 .212 .124 .102 .089 .085 .082 .082 .081
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Table VII: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .059 .056 .01 .055 .06 .053 .051 .053 .052 .049 .048 .048 .047
-.5 .058 .056 .01 .054 .04 .051 .050 .053 .053 .050 .049 .049 .049
-.3 .057 .056 .01 .055 .03 .051 .051 .053 .053 .051 .051 .049 .049
.0 .058 .057 .01 .057 .01 .051 .050 .052 .052 .051 .050 .049 .049
.3 .060 .059 .01 .057 .03 .052 .050 .051 .053 .050 .049 .049 .049
.5 .064 .062 .01 .059 .04 .054 .051 .052 .052 .050 .050 .049 .050
.7 .071 .069 .01 .064 .06 .058 .053 .054 .053 .051 .051 .050 .050
.9 .104 .101 .01 .091 .07 .083 .072 .070 .068 .064 .064 .063 .062
.95 .141 .138 .01 .126 .07 .117 .100 .095 .089 .085 .085 .083 .083

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .060 .055 .03 .054 .06 .054 .054 .051 .052 .050 .050 .048 .045
-.5 .059 .055 .02 .056 .04 .053 .053 .051 .053 .052 .051 .051 .049
-.3 .058 .055 .02 .056 .03 .053 .052 .052 .052 .051 .051 .050 .050
.0 .058 .056 .01 .057 .01 .053 .052 .052 .051 .051 .051 .050 .050
.3 .060 .057 .02 .058 .03 .053 .052 .051 .051 .050 .050 .050 .049
.5 .064 .060 .02 .059 .04 .053 .052 .051 .051 .050 .050 .050 .049
.7 .071 .067 .03 .065 .06 .058 .054 .052 .052 .050 .050 .049 .048
.9 .103 .099 .03 .093 .07 .086 .072 .067 .062 .059 .057 .052 .051
.95 .140 .136 .03 .130 .07 .122 .103 .093 .082 .076 .072 .068 .066

Panel F: QS Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .059 .055 .01 .054 .06 .054 .052 .052 .047 .043 .039 .034 .030
-.5 .058 .055 .01 .055 .04 .054 .053 .052 .050 .048 .045 .039 .035
-.3 .057 .055 .01 .055 .03 .053 .053 .053 .051 .048 .046 .040 .037
.0 .058 .056 .01 .057 .01 .052 .052 .052 .050 .048 .046 .042 .039
.3 .060 .058 .01 .057 .03 .051 .051 .052 .050 .047 .045 .041 .039
.5 .064 .060 .01 .058 .04 .051 .051 .052 .050 .046 .044 .040 .038
.7 .070 .067 .01 .063 .06 .054 .050 .051 .048 .045 .043 .038 .036
.9 .104 .099 .01 .086 .07 .075 .062 .058 .051 .047 .046 .043 .040
.95 .140 .137 .02 .121 .07 .108 .083 .073 .065 .059 .054 .048 .044
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Table VIII: Empirical Null Rejection Probabilities in Simple Location Model
5% Nominal Level, 10,000 Replications

yt = �1 + ut, ut = �ut�1 + �t, �t � i:i:d: N(0; 1), u0 = 0
H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .042 .029 .09 .038 .79 .029 .036 .038 .038 .038 .038 .038 .039
-.5 .042 .036 .04 .044 .50 .042 .044 .044 .044 .044 .045 .046 .046
-.3 .044 .039 .03 .045 .30 .045 .046 .045 .046 .046 .046 .047 .046
.0 .051 .049 .01 .049 .06 .048 .048 .047 .047 .047 .048 .049 .048
.3 .067 .061 .03 .050 .29 .053 .050 .049 .049 .049 .049 .049 .049
.5 .075 .066 .04 .052 .49 .055 .051 .051 .051 .052 .050 .051 .051
.7 .087 .071 .06 .054 .68 .064 .056 .056 .055 .055 .054 .055 .055
.9 .129 .096 .14 .073 .88 .109 .078 .076 .072 .073 .073 .073 .074
.95 .173 .124 .22 .097 .93 .169 .113 .105 .100 .099 .098 .097 .098

Panel B: Parzen Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .038 .035 .03 .045 .80 .046 .048 .047 .047 .045 .045 .046 .046
-.5 .045 .041 .03 .047 .50 .047 .048 .048 .048 .046 .045 .046 .046
-.3 .046 .043 .03 .048 .30 .047 .048 .048 .049 .046 .046 .047 .047
.0 .052 .050 .02 .050 .06 .048 .048 .048 .048 .046 .047 .047 .046
.3 .062 .055 .04 .049 .29 .050 .048 .049 .049 .047 .047 .047 .047
.5 .069 .057 .07 .050 .49 .054 .049 .049 .049 .047 .047 .048 .047
.7 .079 .062 .11 .049 .68 .063 .052 .051 .050 .048 .049 .049 .048
.9 .119 .076 .28 .057 .88 .123 .075 .066 .060 .057 .057 .057 .057
.95 .169 .093 .46 .070 .93 .190 .116 .097 .081 .074 .072 .070 .069

Panel C: QS Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .044 .041 .01 .046 .79 .048 .047 .045 .046 .046 .047 .046 .045
-.5 .045 .042 .01 .047 .50 .049 .047 .046 .047 .046 .046 .045 .046
-.3 .046 .042 .01 .046 .30 .049 .048 .047 .048 .048 .047 .046 .047
.0 .051 .050 .01 .048 .06 .049 .048 .047 .048 .047 .048 .047 .047
.3 .062 .056 .02 .051 .29 .050 .047 .047 .049 .049 .049 .048 .048
.5 .068 .058 .03 .049 .49 .050 .047 .048 .050 .049 .049 .049 .050
.7 .078 .062 .06 .051 .68 .053 .048 .049 .051 .049 .050 .051 .050
.9 .117 .077 .14 .055 .88 .087 .058 .056 .058 .056 .056 .055 .055
.95 .162 .092 .23 .064 .93 .136 .079 .070 .067 .068 .066 .064 .064
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Table VIII: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .051 .050 .01 .049 .05 .048 .048 .048 .048 .047 .048 .047 .047
-.5 .052 .051 .01 .050 .03 .049 .048 .047 .048 .048 .048 .047 .047
-.3 .052 .051 .01 .049 .02 .049 .048 .048 .047 .047 .048 .048 .047
.0 .053 .053 .01 .052 .01 .049 .048 .048 .047 .048 .048 .048 .048
.3 .055 .054 .01 .052 .02 .048 .048 .048 .047 .047 .048 .048 .048
.5 .057 .055 .01 .051 .03 .048 .048 .047 .047 .047 .048 .047 .047
.7 .059 .057 .01 .054 .04 .049 .049 .048 .048 .046 .047 .047 .047
.9 .080 .079 .02 .070 .05 .061 .056 .054 .052 .051 .053 .051 .051
.95 .103 .101 .01 .092 .05 .081 .068 .066 .063 .063 .062 .061 .060

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .052 .049 .01 .050 .04 .048 .050 .049 .049 .047 .045 .045 .044
-.5 .051 .050 .01 .050 .03 .048 .050 .050 .048 .047 .046 .046 .045
-.3 .052 .050 .01 .050 .02 .048 .048 .049 .049 .047 .047 .046 .045
.0 .053 .052 .01 .052 .01 .048 .049 .049 .049 .047 .046 .046 .046
.3 .055 .054 .01 .052 .02 .049 .049 .049 .048 .047 .046 .046 .045
.5 .057 .055 .01 .053 .03 .049 .048 .049 .048 .047 .046 .046 .046
.7 .058 .057 .01 .055 .04 .049 .048 .048 .047 .046 .046 .045 .045
.9 .079 .077 .01 .072 .05 .064 .055 .053 .049 .048 .047 .046 .044
.95 .102 .100 .01 .095 .05 .085 .069 .064 .058 .054 .053 .050 .049

Panel F: QS Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .051 .050 .01 .049 .05 .051 .049 .046 .045 .043 .041 .037 .035
-.5 .052 .050 .01 .050 .03 .050 .049 .047 .046 .045 .044 .041 .040
-.3 .051 .050 .01 .050 .02 .050 .049 .047 .047 .045 .045 .042 .041
.0 .053 .052 .01 .052 .01 .051 .048 .048 .047 .046 .044 .042 .042
.3 .055 .054 .01 .051 .02 .050 .048 .048 .047 .045 .044 .042 .042
.5 .056 .055 .01 .051 .03 .050 .048 .048 .047 .045 .044 .041 .041
.7 .059 .057 .01 .053 .04 .049 .048 .048 .047 .044 .042 .041 .039
.9 .079 .077 .01 .069 .05 .057 .049 .048 .045 .044 .043 .041 .040
.95 .103 .101 .01 .089 .05 .075 .057 .053 .050 .046 .045 .041 .040
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Table IX: Empirical Null Rejection Probabilities in Simple Regression Model
5% Nominal Level, 10,000 Replications

yt = �1 + �2xt + ut, xt = 0:5xt�1 + "t, "t � i:i:d: N(0; 1), x0 = 0, ut = �ut�1 + �t, �t � i:i:d:
N(0; 1), u0 = 0 H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .048 .035 .07 .040 .35 .036 .039 .040 .041 .041 .040 .040 .041
-.5 .054 .043 .05 .047 .24 .045 .049 .050 .051 .051 .051 .050 .051
-.3 .061 .051 .04 .055 .18 .053 .055 .056 .055 .055 .055 .055 .055
.0 .073 .065 .03 .065 .12 .062 .061 .064 .062 .062 .062 .062 .063
.3 .087 .081 .03 .073 .14 .073 .068 .068 .067 .068 .067 .068 .068
.5 .099 .090 .04 .077 .18 .080 .072 .072 .070 .071 .072 .073 .073
.7 .110 .096 .05 .079 .24 .085 .079 .077 .077 .077 .077 .077 .077
.9 .122 .104 .07 .087 .31 .099 .086 .085 .084 .082 .083 .082 .082
.95 .127 .109 .07 .087 .33 .100 .086 .084 .085 .083 .083 .083 .084

Panel B: Parzen Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .050 .041 .08 .046 .35 .042 .048 .048 .046 .048 .048 .049 .047
-.5 .056 .046 .07 .052 .24 .049 .054 .055 .054 .054 .054 .054 .054
-.3 .063 .053 .06 .057 .18 .055 .058 .058 .057 .055 .055 .055 .055
.0 .074 .065 .06 .066 .12 .063 .062 .062 .061 .060 .060 .060 .059
.3 .086 .075 .07 .073 .14 .073 .068 .067 .063 .064 .064 .063 .062
.5 .095 .083 .09 .077 .18 .082 .072 .069 .066 .064 .064 .063 .063
.7 .105 .085 .11 .078 .24 .088 .075 .074 .070 .069 .069 .068 .068
.9 .119 .092 .14 .082 .31 .103 .082 .078 .075 .074 .073 .073 .072
.95 .122 .094 .14 .081 .33 .106 .082 .077 .074 .073 .073 .074 .073

Panel C: QS Kernel, No Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .049 .041 .04 .047 .35 .048 .046 .048 .048 .048 .048 .049 .050
-.5 .053 .045 .03 .050 .24 .053 .052 .054 .055 .055 .055 .055 .056
-.3 .061 .052 .03 .056 .18 .058 .056 .054 .054 .056 .056 .056 .055
.0 .072 .064 .03 .063 .12 .063 .061 .060 .061 .061 .060 .062 .062
.3 .085 .075 .04 .070 .14 .070 .063 .063 .062 .064 .064 .065 .065
.5 .095 .083 .04 .071 .18 .074 .064 .064 .062 .063 .064 .064 .064
.7 .103 .086 .06 .073 .24 .076 .069 .068 .067 .067 .067 .067 .067
.9 .116 .092 .07 .077 .31 .086 .074 .074 .073 .072 .072 .072 .072
.95 .119 .095 .07 .078 .33 .087 .073 .074 .074 .071 .069 .068 .067
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Table IX: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .060 .057 .02 .057 .05 .051 .049 .048 .049 .049 .049 .047 .048
-.5 .065 .062 .01 .062 .03 .057 .056 .056 .057 .057 .056 .055 .055
-.3 .072 .069 .01 .068 .03 .062 .060 .061 .059 .060 .060 .059 .058
.0 .078 .075 .01 .073 .02 .066 .064 .066 .063 .063 .062 .062 .062
.3 .083 .081 .01 .079 .02 .072 .067 .068 .066 .066 .066 .064 .064
.5 .089 .086 .01 .083 .03 .074 .071 .069 .068 .067 .067 .068 .068
.7 .090 .087 .01 .085 .03 .075 .072 .072 .071 .070 .069 .069 .068
.9 .097 .093 .01 .090 .04 .081 .077 .077 .075 .074 .075 .073 .074
.95 .102 .097 .02 .092 .05 .082 .078 .077 .077 .074 .074 .072 .072

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .061 .055 .04 .058 .05 .052 .051 .050 .048 .049 .049 .049 .047
-.5 .065 .060 .03 .062 .03 .057 .057 .056 .054 .055 .055 .054 .052
-.3 .072 .066 .03 .069 .03 .062 .061 .060 .058 .056 .056 .055 .054
.0 .077 .073 .03 .074 .02 .067 .064 .063 .063 .061 .060 .058 .057
.3 .083 .078 .03 .080 .02 .071 .068 .066 .064 .063 .063 .061 .060
.5 .088 .083 .03 .084 .03 .075 .072 .069 .065 .063 .062 .060 .060
.7 .090 .084 .04 .085 .03 .076 .071 .070 .068 .068 .065 .064 .064
.9 .096 .090 .04 .090 .04 .082 .076 .074 .073 .070 .071 .069 .067
.95 .101 .093 .04 .093 .05 .084 .077 .074 .072 .070 .069 .069 .067

Panel F: QS Kernel, AR(1) Prewhitening, T = 50

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .060 .055 .02 .057 .05 .051 .048 .049 .049 .046 .046 .045 .042
-.5 .064 .060 .02 .062 .03 .056 .054 .055 .054 .053 .052 .048 .045
-.3 .072 .066 .02 .068 .03 .061 .057 .055 .054 .052 .050 .047 .045
.0 .077 .074 .01 .073 .02 .065 .062 .060 .059 .057 .056 .053 .051
.3 .083 .079 .01 .078 .02 .070 .064 .063 .060 .060 .059 .057 .054
.5 .088 .083 .02 .082 .03 .072 .064 .063 .060 .059 .059 .056 .054
.7 .089 .084 .02 .084 .03 .073 .067 .066 .065 .065 .061 .057 .055
.9 .095 .090 .02 .089 .04 .078 .071 .070 .069 .066 .064 .060 .058
.95 .100 .094 .02 .091 .05 .077 .071 .072 .069 .063 .060 .056 .054
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Table X: Empirical Null Rejection Probabilities in Simple Regression Model
5% Nominal Level, 10,000 Replications

yt = �1 + �2xt + ut, xt = 0:5xt�1 + "t, "t � i:i:d: N(0; 1), x0 = 0, ut = �ut�1 + �t, �t � i:i:d:
N(0; 1), u0 = 0 H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .044 .034 .05 .045 .37 .038 .043 .043 .045 .045 .045 .045 .045
-.5 .052 .046 .03 .051 .24 .050 .050 .050 .050 .051 .051 .051 .052
-.3 .055 .050 .02 .053 .16 .054 .053 .052 .053 .051 .051 .051 .052
.0 .064 .060 .02 .058 .09 .057 .056 .056 .053 .054 .054 .054 .055
.3 .078 .072 .02 .064 .13 .063 .060 .060 .060 .059 .059 .059 .059
.5 .085 .078 .03 .067 .20 .068 .064 .065 .064 .064 .063 .063 .063
.7 .095 .084 .04 .070 .28 .071 .069 .068 .067 .067 .067 .069 .069
.9 .099 .088 .05 .070 .37 .076 .070 .070 .070 .070 .070 .069 .070

.950 .109 .092 .05 .073 .39 .082 .071 .071 .072 .073 .072 .072 .073

Panel B: Parzen Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .046 .039 .05 .049 .37 .045 .048 .049 .048 .047 .048 .048 .048
-.5 .055 .049 .04 .055 .24 .055 .055 .054 .052 .052 .053 .052 .052
-.3 .056 .051 .04 .056 .16 .057 .056 .054 .052 .051 .052 .052 .051
.0 .064 .059 .03 .059 .09 .059 .058 .056 .054 .053 .052 .053 .051
.3 .075 .067 .04 .065 .13 .063 .061 .057 .056 .056 .056 .056 .056
.5 .081 .072 .06 .067 .20 .068 .063 .063 .061 .061 .060 .060 .059
.7 .090 .074 .07 .067 .28 .070 .066 .065 .065 .063 .063 .061 .061
.9 .094 .079 .09 .067 .37 .076 .067 .065 .063 .064 .064 .064 .062
.95 .100 .082 .09 .068 .39 .082 .070 .066 .064 .065 .064 .064 .062

Panel C: QS Kernel, No Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .046 .039 .02 .049 .37 .048 .047 .048 .050 .050 .050 .050 .050
-.5 .054 .049 .02 .053 .24 .055 .052 .052 .052 .052 .052 .051 .051
-.3 .055 .050 .02 .054 .16 .057 .051 .052 .052 .052 .054 .055 .054
.0 .064 .058 .02 .058 .09 .057 .053 .052 .051 .050 .051 .051 .050
.3 .075 .068 .02 .062 .13 .061 .055 .057 .055 .055 .055 .055 .055
.5 .081 .073 .03 .066 .20 .064 .060 .061 .059 .058 .058 .057 .057
.7 .089 .075 .04 .066 .28 .066 .062 .062 .060 .059 .060 .059 .058
.9 .093 .079 .04 .064 .37 .068 .062 .063 .063 .062 .062 .061 .063
.95 .099 .082 .05 .065 .39 .070 .063 .064 .062 .062 .062 .062 .062

37



Table X: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .055 .053 .01 .052 .04 .049 .049 .050 .051 .049 .049 .049 .049
-.5 .060 .060 .01 .059 .02 .056 .054 .053 .053 .054 .053 .054 .054
-.3 .062 .061 .01 .061 .02 .057 .055 .055 .054 .053 .053 .053 .053
.0 .067 .066 .01 .065 .01 .059 .057 .056 .054 .055 .054 .053 .053
.3 .071 .069 .01 .067 .01 .062 .061 .060 .060 .058 .058 .058 .058
.5 .073 .072 .01 .070 .02 .063 .062 .063 .063 .061 .061 .061 .062
.7 .074 .072 .01 .070 .03 .063 .063 .065 .063 .063 .062 .063 .063
.9 .077 .075 .01 .074 .04 .066 .062 .062 .063 .065 .063 .063 .063
.95 .079 .077 .01 .074 .04 .068 .064 .064 .065 .066 .065 .064 .064

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .056 .051 .02 .054 .04 .050 .050 .049 .049 .048 .048 .047 .047
-.5 .061 .058 .02 .059 .02 .058 .056 .055 .053 .053 .053 .053 .051
-.3 .063 .060 .01 .061 .02 .059 .057 .055 .053 .053 .052 .052 .051
.0 .067 .064 .01 .065 .01 .060 .058 .058 .055 .052 .051 .051 .051
.3 .071 .068 .01 .068 .01 .062 .061 .059 .057 .056 .056 .055 .053
.5 .073 .070 .02 .071 .01 .064 .063 .063 .061 .061 .060 .059 .058
.7 .074 .071 .02 .071 .03 .065 .064 .064 .063 .062 .062 .060 .060
.9 .078 .074 .02 .075 .04 .067 .064 .062 .060 .061 .061 .060 .059
.95 .079 .075 .02 .075 .04 .069 .065 .063 .062 .062 .061 .060 .060

Panel F: QS Kernel, AR(1) Prewhitening, T = 100

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .055 .052 .01 .053 .04 .050 .049 .048 .049 .049 .049 .046 .045
-.5 .060 .058 .01 .059 .02 .057 .052 .052 .051 .051 .050 .047 .046
-.3 .062 .059 .01 .061 .02 .058 .053 .052 .051 .050 .049 .047 .046
.0 .067 .065 .01 .064 .01 .059 .054 .051 .051 .049 .049 .046 .044
.3 .071 .068 .01 .067 .01 .061 .056 .057 .055 .053 .052 .049 .047
.5 .073 .071 .01 .069 .02 .063 .061 .061 .058 .057 .055 .053 .051
.7 .074 .071 .01 .069 .03 .064 .062 .061 .060 .058 .057 .054 .052
.9 .077 .075 .01 .073 .04 .064 .060 .061 .060 .059 .058 .054 .053
.95 .079 .076 .01 .074 .04 .067 .061 .062 .060 .058 .056 .054 .053
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Table XI: Empirical Null Rejection Probabilities in Simple Regression Model
5% Nominal Level, 10,000 Replications

yt = �1 + �2xt + ut, xt = 0:5xt�1 + "t, "t � i:i:d: N(0; 1), x0 = 0, ut = �ut�1 + �t, �t � i:i:d:
N(0; 1), u0 = 0 H0 : �1 � 0, H1 : �1 > 0

Panel A: Bartlett Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .043 .037 .03 .048 .38 .042 .045 .046 .046 .047 .046 .045 .046
-.5 .047 .043 .02 .048 .24 .047 .047 .048 .049 .048 .049 .048 .048
-.3 .049 .047 .02 .049 .15 .048 .049 .050 .050 .050 .050 .050 .050
.0 .056 .055 .01 .054 .07 .053 .052 .052 .053 .054 .055 .054 .054
.3 .068 .065 .01 .056 .13 .054 .054 .055 .056 .056 .055 .054 .055
.5 .073 .068 .02 .055 .22 .056 .055 .055 .055 .056 .056 .055 .055
.7 .078 .072 .03 .057 .31 .059 .056 .056 .055 .056 .056 .056 .056
.9 .084 .076 .03 .058 .41 .062 .059 .059 .060 .059 .059 .060 .061
.95 .085 .075 .04 .059 .43 .061 .058 .059 .060 .060 .060 .061 .062

Panel B: Parzen Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .046 .043 .03 .047 .38 .047 .048 .047 .048 .048 .050 .050 .051
-.5 .050 .045 .02 .050 .24 .051 .048 .048 .050 .049 .049 .049 .048
-.3 .051 .048 .02 .050 .15 .051 .050 .050 .050 .051 .050 .049 .049
.0 .057 .054 .02 .054 .07 .054 .052 .052 .053 .053 .054 .053 .053
.3 .065 .062 .03 .056 .13 .056 .053 .055 .054 .053 .053 .054 .054
.5 .069 .063 .03 .054 .22 .057 .055 .054 .050 .052 .053 .054 .053
.7 .074 .065 .04 .054 .31 .059 .054 .054 .052 .052 .053 .052 .051
.9 .078 .070 .06 .057 .41 .060 .057 .057 .056 .056 .055 .056 .056
.95 .079 .068 .06 .058 .43 .059 .057 .057 .056 .056 .056 .056 .056

Panel C: QS Kernel, No Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .047 .043 .01 .050 .38 .046 .048 .049 .052 .050 .049 .048 .048
-.5 .049 .045 .01 .050 .24 .049 .050 .049 .048 .049 .049 .048 .048
-.3 .050 .048 .01 .050 .15 .049 .050 .051 .051 .051 .051 .051 .049
.0 .057 .054 .01 .054 .07 .053 .052 .054 .054 .055 .055 .055 .054
.3 .066 .062 .01 .054 .13 .052 .054 .052 .055 .055 .054 .055 .053
.5 .069 .064 .01 .052 .22 .054 .049 .052 .054 .054 .053 .052 .052
.7 .073 .066 .02 .054 .31 .055 .052 .053 .053 .052 .051 .050 .050
.9 .078 .070 .03 .057 .41 .055 .055 .055 .056 .055 .055 .054 .054
.95 .078 .068 .03 .056 .43 .056 .056 .056 .057 .057 .057 .057 .058
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Table XI: Continued

Panel D: Bartlett Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .053 .053 .01 .050 .03 .047 .047 .048 .049 .049 .049 .049 .048
-.5 .054 .053 .01 .053 .02 .050 .049 .050 .050 .049 .049 .049 .049
-.3 .055 .055 .01 .054 .01 .051 .050 .051 .051 .050 .050 .049 .050
.0 .058 .058 .01 .057 .01 .054 .052 .053 .053 .055 .054 .053 .053
.3 .060 .060 .01 .060 .01 .053 .054 .054 .056 .054 .053 .053 .054
.5 .060 .060 .01 .059 .01 .053 .054 .054 .054 .055 .055 .054 .054
.7 .061 .060 .01 .059 .02 .056 .053 .054 .054 .054 .053 .052 .053
.9 .064 .064 .02 .059 .03 .055 .055 .055 .054 .055 .055 .055 .055
.95 .064 .063 .02 .060 .03 .055 .054 .054 .057 .057 .057 .057 .057

Panel E: Parzen Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .054 .052 .01 .051 .03 .048 .048 .047 .048 .049 .049 .049 .049
-.5 .054 .052 .01 .053 .02 .052 .048 .049 .049 .048 .049 .047 .047
-.3 .055 .054 .01 .055 .01 .053 .051 .051 .051 .051 .051 .049 .048
.0 .058 .057 .01 .058 .01 .055 .052 .052 .053 .053 .054 .053 .053
.3 .060 .059 .01 .059 .01 .055 .053 .054 .054 .054 .053 .054 .053
.5 .060 .059 .01 .059 .01 .056 .055 .054 .051 .052 .053 .053 .052
.7 .060 .059 .01 .059 .02 .057 .054 .053 .052 .052 .052 .051 .050
.9 .064 .063 .01 .062 .03 .056 .056 .056 .055 .054 .054 .054 .054
.95 .064 .062 .01 .062 .03 .055 .056 .056 .055 .055 .056 .056 .055

Panel F: QS Kernel, AR(1) Prewhitening, T = 200

� tbb t�bb ave(bb) t�eb ave(eb) t�0:1 t�0:25 t�0:35 t�0:5 t�0:65 t�0:75 t�0:9 t�1:0
-.8 .054 .051 .01 .049 .03 .046 .048 .050 .051 .049 .047 .045 .044
-.5 .054 .052 .01 .054 .02 .050 .050 .049 .049 .048 .047 .045 .044
-.3 .055 .054 .01 .054 .01 .050 .051 .052 .050 .049 .048 .047 .044
.0 .058 .057 .01 .058 .01 .053 .053 .054 .053 .053 .053 .052 .050
.3 .060 .059 .01 .059 .01 .053 .053 .053 .054 .054 .053 .052 .050
.5 .060 .059 .01 .059 .01 .054 .050 .052 .052 .051 .051 .049 .048
.7 .061 .059 .01 .059 .02 .055 .051 .053 .051 .051 .050 .048 .047
.9 .064 .063 .01 .059 .03 .053 .054 .053 .054 .054 .053 .051 .050
.95 .064 .062 .01 .060 .03 .055 .055 .054 .055 .055 .054 .054 .053
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