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The paper re-examines the foundations of representation of in-

tertemporal preferences that satisfy intergenerational equity, and pro-

vides an axiomatic characterization of those social welfare relations,

which are representable by the utilitarian ordering, in ranking con-

sumption sequences which are eventually identical. A maximal point

of this ordering is characterized in a standard model of forest manage-

ment. Maximal paths are shown to converge over time to the forest

with the maximum sustained yield, thereby providing a theoretical ba-

sis for the tradition in forest management, which has emphasized the

goal of maximum sustained yield. Further, it is seen that a maximal

point coincides with the optimal point according to the well-known

overtaking criterion. This result indicates that the more restrictive

overtaking criterion is inessential for a study of forest management

under intergenerational equity, and provides a more satisfactory basis

for the standard forestry model.
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1 Introduction

In forestry management, there has been a tradition which claims that “the
goal of good policy is to have sustained forest yield, or even maximum sus-
tained yield somehow defined” [Samuelson (1976, p.146)]. In an attempt to
understand this tradition, Mitra and Wan (1986) formulated the problem of
forest management as one of optimizing the sum of (undiscounted) utlities
from harvests of timber according to the well-known overtaking criterion.
Their formulation allowed forestry economics to be viewed as a particular
case of modern capital theory. Exploiting the optimization methods familiar
from this general theory, they were able to show that, when the utility func-
tion is strictly concave, starting from any initial forestry configuration, the
optimally managed forest converges over time to the forest with the maxi-
mum sustained yield, which corresponds to the “golden-rule” of the forestry
model. This demonstration provided a theoretical basis for the tradition in
forestry management.

Over the last twenty five years, work on the general area of sustainable
development has brought about a thorough re-examination of the nature of
preferences over time relevant to studies on environmental economics and
the management of renewable resources. The Pareto efficiency principle is,
of course, an essential ingredient in such studies. And, the equal treatment
of all generations figures prominently in this literature, unlike other opti-
mal intertemporal allocation problems, where discounting future utilities is
common practice.1

These two guiding principles in the study of intertemporal preferences (of-
ten jointly referred to as the Suppes-Sen grading principle)2 do not, however,
take us far in terms of being able to develop useful qualitative properties of
the evolution of renewable resource stocks over time under appropriate man-
agement. In aggregating utilities of all generations, it is therefore common
practice to choose a more restrictive social welfare relation (SWR), and typ-
ically this SWR has been induced by some form of the overtaking criterion.

In this paper, I will re-examine the foundations of intertemporal prefer-
ences which respect intergenerational equity, propose a social welfare relation

1Ramsey (1928) had maintained that discounting one generation’s utility or income
vis-a-vis another’s to be “ethically indefensible”, and something that “arises merely from
the weakness of the imagination”.

2The Grading Principle is due to Suppes (1966). For a comprehensive analysis of it,
see Sen (1971).
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which is weaker (less restrictive) than the one induced by the overtaking cri-
terion, and provide an axiomatic basis for it. I will then apply this SWR to a
standard model of forestry and demonstrate the somewhat surprising result
that all the qualitative properties of optimally managed forests that one can
obtain by applying the more restrictive overtaking criterion can be obtained
with the application of the weaker and more acceptable SWR.

In proposing the new SWR, I would like to push the point of view that
in comparing infinite consumption streams, it is only the comparisons of
consumption streams which are “eventually identical” that are truly non-
controversial.3 Consequently, I will put forward a set of axioms which are con-
sistent with this point of view. These axioms are Weak Pareto, Anonymity,
Completeness and Continuity for finite horizon comparisons, and Indepen-
dence. Of these the first two have already been discussed above, except that
we postulate a weak version of Pareto, which restricts comparisons to con-
sumption streams which are eventually identical. The third axiom is natural:
since we are, after all, extending the theory from the finite-dimensional to
the infinite-dimensional case, we cannot hope to weaken the postulates of the
standard finite-dimensional theory.4 In the intertemporal context, the fourth
axiom is common in utilitarian representations of preferences.

A noteworthy feature of our SWR is that it is axiomatized without pos-
tulating any continuity property on the preference relation in the infinite
dimensional space containing the set of consumption streams.5 In contrast,
axiomatic characterizations of the more restrictive SWR induced by the over-
taking criterion typically involve some form of a continuity axiom.6 Axioms
on the continuity of preferences in infinite-dimensional spaces have been the
most controversial in the literature in this area, since the topology in which
such continuity is assumed determines to a large extent the nature of allow-
able preferences.7

3Such comparisons figure prominently in the theory of efficient capital accumulation
of Malinvaud (1953), and in the theory of representation of intertemporal preferences of
Koopmans (1972).

4For the standard finite dimensional theory, see Debreu (1959), which in turn is based
on Debreu (1954).

5In this regard, the current work can be seen as a continuation of the study in Basu
and Mitra (2003a).

6The study by Brock (1970b) uses a “consistency axiom” which is actually a continuity
restriction on the underlying preferences. A more recent study by Asheim and Tungodden
(2004) also uses a similar continuity axiom.

7This is in contrast to postulating continuity properties on preferences in the finite-
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We apply our SWR to rank consumption streams generated by the model
of forestry used in Mitra and Wan(1986). We call a consumption stream
maximal if it is a maximal point in the feasible set in terms of the SWR, and
study properties of maximal paths. We find that maximal paths converge
over time to the forest with the maximum sustained yield, which demon-
strates that the notion of maximality is enough to provide a theoretical basis
for the tradition in forest management, which has emphasized the goal of
maximum sustained yield. That is, in studying the long-run properties of
paths which are maximal and those which are optimal according to the fa-
miliar overtaking criterion, the latter concept does not possess any discernible
advantage.

Using duality theory, we show that maximal paths have generalized in-
tertemporal profit maximizing (bounded) shadow prices associated with them,
just like optimal paths do. So, one cannot have “errant behavior” on maxi-
mal paths, compared to optimal paths, in the short-run either. We combine
the above two findings to establish the result that the set of maximal paths
coincides exactly with the set of optimal paths. This leads us to conclude
that in the context of the forestry model, one can completely dispense with
the more restrictive overtaking criterion.

2 Notation

Let N denote the set of natural numbers {1, 2, 3, ...}, and let R denote the
set of real numbers. Let L denote the closed interval [0, 1] ⊂ R, let S denote
the set RN, and let C denote the set LN. C is to be interpreted as the set of
consumption sequences. Thus, we write c ≡ (c1, c2, . . .) ∈ C if and only if
ct ∈ [0, 1] for all t ∈ N .

Given x ∈ S, and N ∈ N , let us denote by x(N) the vector consisting of
the firstN elements of x and by x[N ] the sequence from term (N+1) onwards.
So, x(N) = (x1, x2, . . . , xN) and x[N ] = (xN+1, xN+2, . . .). Clearly, x[N ] ∈ S.
We will denote the sequence (x1, x2, . . . , xN , 0, 0, . . .) by (x(N), 0[N ]).

For c, c′ ∈ C, we write c′ ≥ c if c′t ≥ ct for all t ∈ N ; and, we write c′ > c
if c′ ≥ c, and c′ �= c.

dimensional theory.
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For each n ∈ N, the sum-norm on R
n is defined by:

‖x‖ =
n∑

i=1

|xi| for x ∈ R
n

The corresponding sum metric is defined by:

d(x, y) = ||x− y|| for x, y ∈ R
n

The unit vectors in R
n are denoted by e1, . . . , en.

Denote by U the set of continuous functions u : L → R, such that u is
increasing on L, and u(0) = 0, u(1) = 1.

A social welfare relation (SWR) is a binary relation, � , on C , which is
reflexive and transitive (a pre-ordering).8 We associate with � its symmetric
and asymmetric components in the usual way. Thus, we write c ∼ c′ when
c � c′ and c′ � c both hold; and, we write c′ 	 c when c′ � c holds, but
c � c′ does not hold.

A SWR �A is a subrelation to a SWR �B if (a) x, y ∈ X and x �A y
implies x �B y; and (b) x, y ∈ X and x 	A y implies x 	B y.

3 On a Utilitarian Social Welfare Relation9

In this section we will introduce the notion of a utilitarian social welfare
relation, and provide an axiomatic basis for it. The social welfare relation
will only compare consumption sequences which are “eventually identical”, so
that the relation will be “more incomplete” than the familiar SWR induced
by the overtaking criterion.10 It will be based consequently on axioms that
relate only to consumption sequences which are eventually identical, and
therefore will be more widely acceptable.

8In the economics literature, a pre-ordering is often refereed to as a “partial ordering”.
However, in the mathematics literature, the term “partial ordering” refers to a binary
relation which is transitive and antisymmetric. To avoid confusion, we use the mathe-
matical terminology, since the term “pre-order” is never used in any other sense in either
discipline. Incidentally, our usage coincides with the terminology introduced in Debreu
(1959).

9The results in this section are stated without proofs. They can be established along
the lines indicated in Mitra (2003).

10Our SWR will later be compared in detail with the one induced by the overtaking
criterion.
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3.1 Axiomatic Characterization of a Utilitarian SWR

Definition 1 Given a utility function, u ∈ U, a utilitarian SWR correspond-
ing to u is a binary relation �u, defined by:

c �u c′ iff ∃N ∈ N such that c[N ] = c′[N ],

and
N∑
t=1

u(ct) ≥
N∑
t=1

u(c′t) (U)

We find the ranking of consumption sequences according to the utilitarian
SWR to be persuasive. Thus, one may consider getting together the members
of the finite society {1, . . . , N}, and asking them to rank c versus c′. If they
apply utilitarian principles to themselves, they will rank c above c′ if:

N∑
t=1

u(ct) >
N∑
t=1

u(c′t)

In this case, it is legitimate for the infinite horizon society to rank c above
c′ because the infinite number of future generations, who are not included in
the finite society {1, . . . , N}, are indifferent between c and c′. In other words,
in this situation, all future generations beyond N are willing to go along with
the (utilitarian) preferences of the finite society {1, . . . , N}.

The following example illustrates the nature of the utilitarian SWR:

Example 1

c = (0.2, 0, 0.1, 0.2 0.1, 0.2, . . .)
c′ = (0, 0.1, 0.1 0.2, 0.1 0.2, . . .)

}

Here the finite society {1, 2} applying utilitarian principles to itself prefers
c to c′. All future generations beyond time period 2 are indifferent between
c and c′. So, in this case, we would have c 	u c′, according to every utility
function u ∈ U.

We turn now to the set of axioms which characterize the utilitarian SWR.
To this end, let us first consider the following two axioms, which are fairly
straightforward.

Axiom 1 (Weak Pareto) If c, c′ ∈ C, and there exists N ∈ N, such that
c(N) > c′(N) and c[N ] = c′[N ], then c 	 c′.
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Axiom 2 (Anonymity) If c, c′ are in C, and there exist r, s in N , such that
cr = c′s and cs = c′r , while ct = c′t for all t ∈ N , such that t �= r, s , then
c′ ∼ c.

The first axiom is weaker than the standard Pareto Rule, since it postu-
lates the Pareto pre-order only in comparisons of consumption sequences c
and c′ which are eventually identical. The second axiom, which is sometimes
also called the Equity Axiom (see Svensson (1980)), embodies a minimal
equity principle in that it ensures equal treatment of the consumption of
generations over time in the preference structure.11

The next axiom incorporates the notion that when we are dealing with
“finite horizon intergenerational societies”, we have no difficulty in ranking
any two consumption sequences. In fact, the axiom makes preferences over
such consumption sequences as well-behaved as postulated in the standard
theory of numerical representation of preferences, following Debreu (1954,
1959).

In order to formally write this axiom, let us define, for each T ∈ N,

C(T ) = {c ∈ C : ct = 0 for all t ∈ N, satisfying t > T}

Axiom 3 For each T ∈ N, the SWR � is a complete pre-order on C(T ),
and it is continuous in the sum metric on C(T ).

This axiom combines Axioms 1 and 2 used by Brock (1970b) in his ax-
iomatic characterization of the overtaking criterion. Note that assumptions
like completeness and continuity of the pre-order � on C(T ) have been non-
controversial axioms in this literature. It is only when such assumptions are
made on the set C that one needs to discuss whether such a complete ranking
is always possible, and whether continuity in some topologies on C are more
acceptable than others.

Our final axiom is a strong one, but its use is so prevalent in describing
intertemporal preferences that we shall have little to say about it, beyond
what is already known in the literature. It is the Independence Axiom, and

11Many authors have felt that a stronger notion than the Anonymity Axiom is needed to
reflect intergenerational equity in intertemporal preferences. However, there appears to be
general agreement that any notion of intergenerational equity in intertemporal preferences
must include the Anonymity Axiom. Since we are attempting an axiomatic characteriza-
tion of a utilitarian SWR, we feel justified in imposing this weak equity requirement on
the SWR.
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it follows the postulate, introduced by Debreu (1960) in the finite-horizon
context, and by Koopmans (1960) in an infinite-horizon context, in their
studies on the representation of preferences by suitable utility functions.12

Axiom 4 (Independence) If c, c′ ∈ C and N ∈ N satisfy:

(c(N), c[N ]) � (c′(N), c[N ]) (1)

then they must also satisfy:

(c(N), c′[N ]) � (c′(N), c′[N ]) (2)

Remark 1 (i) Loosely speaking, the independence axiom says that the pref-
erence between two consumption sequences is independent of those parts of
the two streams which are identical, whatever be the vector representing the
identical part.

(ii) The above independence axiom is similar to Postulate 3 in Koopmans
(1960) and to Postulate P3 in Koopmans, Diamond and Williamson (1964),
where it is referred to as “Limited Noncomplementarity”.

If a SWR � satisfies the above four axioms, then it is representable by
the utilitarian ordering, in comparisons of consumption sequences which are
“eventually identical.” To state this result formally, we need to introduce
the following notation.

Denote by D the subset of RN, consisting of sequences with at most a
finite number of non-zero entries. If c, c′ ∈ C, then c and c′ are said to be
eventually identical if (c− c′) ∈ D.

Theorem 1 Suppose a SWR � satisfies Axioms 1-4. Then, there is a utility
function, u ∈ U, such that for all c, c′ ∈ C, satisfying (c− c′) ∈ D,

c � c′ if and only if
∞∑
t=1

(u(ct)− u(c′t)) ≥ 0 (3)

Further, the utility function u ∈ U satisfying (3) is unique.

12The independence postulate, developed by Debreu (1960) and Koopmans (1960), fol-
lows the pioneering work in this area by Leontief (1947a, 1947b) and Samuelson (1947).
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Remark 2 (i)Note that the sum in (3) is well-defined since c′t = ct for all
but a finite number of periods t ∈ N.

(ii) In the utilitarian representation of preferences in (3), the fact that
the same utility function can be used for all periods follows directly from the
Anonymity axiom; in fact, the utility function must be the same for all the
periods. The fact that the same utility function can be used regardless of how
many non-zero components there are in (c− c′) is a deeper result, involving
the Independence axiom in an essential way.

Theorem 1 can be used to provide the following axiomatic characteriza-
tion of the utilitarian SWR �u.

Theorem 2 (i) Suppose there is a utility function, u ∈ U, for which the
corresponding utilitarian SWR �u is a subrelation to a SWR � . Then �
satisfies Axioms 1-4.

(ii) Suppose a SWR � satisfies Axioms 1-4. Then, there is a utility func-
tion, u ∈ U, such that the corresponding utilitarian SWR �uis a subrelation
to � .

3.2 Comparison with the SWR defined by the over-

taking criterion

The standard method of comparing consumption sequences, while respecting
the equal treatment of all generations, is by employing the overtaking crite-
rion. The resulting pre-order is a generalization of the one used by Ramsey
(1928), and was proposed independently by Atsumi (1965) and von Weiz-
sacker (1965). It was subsequently generalized by Gale (1967), McKenzie
(1968) and Brock (1970a). We can formally define it in the following way.

Definition 2 Given a utility function, u ∈ U, a Ramsey-Atsumi-von Weiz-
sacker (RAV) social welfare relation corresponding to u is a binary relation
Ru, such that for c, c′ ∈ C,

cRuc
′ iff there is N̄ ∈ N, such that

N∑
t=1

u(ct) ≥
N∑
t=1

u(c′t) for all N ≥ N̄

(R)
The symmetric and asymmetric components of Ru will be denoted by Iu and
Pu.
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Following Brock (1970b), one can obtain an axiomatic characterization
of the RAV social welfare relation in terms of Axioms 1-4 of the previous
section, and an additional consistency axiom13, which we now state.

Axiom 5 (Consistency) For c, c′ ∈ C,

(a)If there is N ′ ∈ N, such that (c(N), 0[N ]) � (c′(N), 0[N ]) for all N ≥ N ′, then c � c′

(4a)

(b)If there is N ′ ∈ N, such that (c(N), 0[N ]) � (c′(N), 0[N ]) for all N ≥ N ′, with

(c(N), 0[N ]) 	 (c′(N), 0[N ]) holding for a subsequence of N ≥ N ′, then c 	 c′

(4b)

Notice that, unlike Axioms 1-4, Axiom 5 does compare consumption se-
quences which are not eventually identical. Since such comparisons are based
on comparisons of consumption sequences which are eventually identical, one
might view Axiom 5 also as a continuity restriction on preferences.14

The characterization result15 can be stated as follows.

Theorem 3 (i)Suppose a SWR � satisfies Axioms 1-5. Then, there is a
utility function, u ∈ U, such that the RAV social welfare relation Ru, corre-
sponding to u, is a subrelation to � .

(ii) Suppose there is a utility function, u ∈ U, such that the RAV social
welfare relation Ru, corresponding to u, is a subrelation to a SWR � .Then,
� satisfies Axioms 1-5.

The crucial difference between the utilitarian social welfare relation and
the RAV social welfare relation is that the latter has to satisfy (in addition to

13According to Brock (1970), this axiom “captures the notion that decisions on infinite
programs are consistent with decisions on finite programs of length n if n is large enough.”

14Asheim and Tungodden (2004) use an axiom which is similar, and which they view as
a continuity restriction.

15We present Brock’s characterization result in a form so that it may be readily be
compared with our results reported in the previous section. Actually, Brock does not
impose the Anonymity axiom, and therefore gets a sequence of utility functions (rather
than a single one) in his characterization result. He does note however that under an
Anonymity axiom, these utility functions would be the same. Brock also does not impose
the Pareto axiom, although, to apply the representation theorem of Debreu (1960), he
does assume that there are at least three factors of IN, which are essential in the sense of
Debreu (1960).
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Axioms 1-4) the consistency (or continuity) Axiom 5. This difference might
best be explained by looking at an example16 of two consumption sequences
where, because of Axiom 5, the RAV SWR can compare the two sequences,
but where the utilitarian SWR declares them non-comparable.

Example 2

c = 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .)
c′ = 3/4 1/8, 1/16, 1/32, 1/64, 1/128, . . .)

}

Given the utility function u ∈ U, which satisfies u(c) = c, consider the
utilitarian SWR �u and the RAV SWR Ru associated with it. We can verify
that for N̄ = 1,

T∑
t=1

u(c′t) >
T∑
t=1

u(ct) for all T ≥ N̄

so that c′ is preferred to c according to the RAV SWR, corresponding to u.
The question arises whether c′ should be preferred to c by the infinite

horizon society. This is not altogether clear. The problems with judging c′

to be better than c in such a case can be seen as follows.
If we look at any finite-horizon society, and ask the society to rank c

versus c′, they will indeed rank c′ higher than c, if they apply utilitarian
principles to themselves. However, no matter how large the finite horizon,
there are an infinite number of future generations who rank c′ below c; in
fact, all generations beyond the first prefer c to c′. Thus, it is never possible to
have consensus of opinion between any finite horizon society and the infinite
number of future generations not included in that finite society. [This should
be compared with the “consensus” obtained when the utilitarian SWR can
be used to compare consumption sequences].

If one considers the infinite horizon society, one sees that the (infinite)
utility sum for both consumption sequences is precisely equal to 1, and so the
RAV SWR in fact violates the utilitarian principles on which it is supposed
to be based.

It appears to us that Axiom 5 is not as obvious an axiom to accept
as Axioms 1-4 in this context. In other words, we find the RAV SWR less

16This example is based on the discussion in Basu and Mitra (2003b). The present form
of this example owes much to comments on the Basu-Mitra (2003b) paper by Wolfgang
Buchholz.
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persuasive than the utilitarian SWR. Nevertheless, almost all of the theory of
optimal intertemporal allocation, in which generations are treated equally in
its preference structure, uses the RAV SWR, and therefore accepts Axiom 5
(in addition to Axioms 1-4). The reason for this is that even though Axiom 5
is not an obvious axiom to accept, it gives sufficient structure to intertemporal
preferences so that the theory of optimal intertemporal allocation has some
predictive power: a path which is optimal according to this pre-ordering
in the typical intertemporal model is unique, and the nature of such an
optimal path can be described quite accurately, both in terms of short-run
characteristics (the Ramsey-Euler or competitive conditions), and long-run
behavior (the turnpike property).

The presumption appears to be that if we wanted to proceed with in-
tertemporal preferences satisfying only Axioms 1-4 (that is, without impos-
ing something like Axiom 5), one would not have a useful theory of optimal
behavior over time. In principle, there could be many maximal points ac-
cording to the utilitarian SWR, and it might be the case that their behavior
(as a group of paths) fails to have some unifying mode worth characteriz-
ing. Unfortunately, this issue has not been explored in the literature, and
therefore such misgivings about a theory based solely on the utilitarian SWR
might be premature.17

We will establish the rather surprising result that in the standard forestry
model, a maximal point according to the utilitarian SWR is in fact unique
and coincides with the optimal point according to the RAV SWR. This shows
that we do not need the SWR induced by the overtaking criterion, and conse-
quently the comparisons entailed by Axiom 5, to present the theory of forest
management, respecting intergenerational equity. This puts the theory on a
more robust and satisfactory basis in terms of the postulated intertemporal
preference structure.

3.3 Intertemporal Inequality Aversion

In order to obtain the result mentioned above, in the standard forestry model,
we need a bit more structure on the utility function derived in Theorem 1,
based on Axioms 1-4. Specifically, we will need the utility function to be
concave, and strictly mid-concave, on I. While this is standard fare for many

17In this connection, one might note that in a recent paper, Asheim and Buchholz (2004)
work with a social preference relation, which has even less structure than ours; the SWR
in their paper is restricted only to satisfy the Pareto and Anonymity axioms.
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models of intertemporal allocation, the axiomatic basis of this requirement
is often not stressed.18 We present an exposition of this aspect of the theory
by imposing the following additional axiom on preferences.

Axiom 6 (Strong Convexity ) For c, c′ ∈ C with (c− c′) ∈ D, and c �= c′,

c ∼ c′ implies (
1

2
)c+ (

1

2
)c′ 	 c

The terminology “strong convexity” of preferences follows Debreu (1959,
p.61).19 The standard way to interpret this axiom is that the underlying pref-
erence structure exhibits inequality aversion, where the inequality in question
here is with respect to the intertemporal consumption pattern.

A function u ∈ U will be called concave if for all x, x′ ∈ L and λ ∈ (0, 1),
we have u(λx + (1 − λ)x′) ≥ λu(x) + (1 − λ)u(x′). It will be called strictly
mid-concave if for all x, x′ ∈ L with x �= x′,

u((
1

2
)x+ (

1

2
)x′) > (

1

2
)u(x) + (

1

2
)u(x′)

We define the class of utility functions U c = {u ∈ U : u is concave and
strictly mid-concave on L}.

Theorem 4 Suppose a SWR � satisfies Axioms 1-4 and 6. Then, there is
a utility function, u ∈ U c, such that for all c, c′ ∈ C, satisfying (c− c′) ∈ D,

c � c′ if and only if
∞∑
t=1

(u(ct)− u(c′t)) ≥ 0 (5)

Further, the utility function u ∈ U c satisfying (5) is unique.

4 A Forestry Model

The standard model of forest management under intertemporal equity can
be described in terms of the objects (f,A, b, u), where (f,A, b) represent the

18See Yaari (1977) for the general result relating convexity of preference relations to
concavity of utility functions, when the preference relation has an additively separable
utility representation.

19Actually, Debreu asserts the strict preference for all non-trivial convex-combinations
of c and c′. We will need the axiom only in its “strictly mid-convex” form.

13



technological aspects, and u represents the preferences20. We describe each
in turn in what follows.

We begin with f, a production function from R+ to R+, which relates
the timber content of a tree f(a) to the age of the tree, a. The following
assumptions on f are maintained:

(A.1) There is ã ≥ 1, such that f(a) = 0 for a ∈ [0, ã].
(A.2) f is continuous for a ≥ ã, and there is a positive integer n > a,

such that (i) f is increasing for a ∈ [ã, n], and (ii) f is decreasing for a > n.
(A.3) There is a positive integer m, satisfying ã < m < n, such that (i)

[f(a)/a] is maximized at a = m among all a ∈ {1, . . . , n}, and (ii) [f(a)/a] <
[f(m)/m] for all a ∈ {1, . . . , n}, with a �= n.

We will denote the vector (f(1), . . . , f(n)) by P ; note that P ∈ R
n
+. In

what follows, we normalize f(n) = 1 by choice of units in which the timber
content is measured.

Next, we describe (A, b), which indicate the transition possibilities of
forestry land occupied by trees of different ages. It is useful, in this con-
nection, to indicate the nature of evolution of the forest informally, before
introducing the matrix-vector notation.

Given (A.2), for any reasonable objective function of the forest man-
ager, trees will never be allowed to grow beyond age n. We therefore take
this as a condition of feasibility itself. The total land available for forestry
is taken to be one unit (by appropriate choice of units in which land is
measured). Imagine that we are starting at the end of time period 1 with
a standing forest, which might be described by the land occupied by out-
put of trees of ages 1 to n. This will be written as (y11, . . . , y

n
1 ). At the

end of time period 1, two things are supposed to happen instantaneously,
by the nature of our point-input, point-output framework. First trees of
different ages are harvested. Second, new seedlings (trees of age 0 ) are
planted in the cleared areas. The land released by harvests are described
by (h1

1, . . . , h
n
1 ). Since trees are never allowed to grow beyond age n, we

must have hn
1 = yn1 . The land occupied by input of trees of various ages

at the end of time period 1 can then be described by (x0
1, . . . , x

n−1
1 , xn

1 ),
where (y11, . . . , y

n
1 )− (h1

1, . . . , h
n
1 ) = (x1

1, . . . , x
n−1
1 , xn

1 ) = (x1
1, . . . , x

n−1
1 , 0), and

x0
1 = h1

1 + · · ·+ hn
1 .

20In terms of notation (but not in terms of content) the present version differs slightly
from that used in Mitra and Wan (1986). References to the earlier literature, on which
the model is based, can be found in Mitra and Wan (1986).
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The trees grow during time period 2, with trees of age a ∈ {0, . . . , n− 1}
at the end of time period 1, becoming trees of age a + 1 at the end of time
period 2. Thus, the land occupied by output of trees at the end of time
period 2 is (y12, . . . , y

n
2 ) = (x0

1, . . . , x
n−1
1 ). The above process is now repeated

indefinitely.
This informal description can be formalized as follows. Define the n× n

matrix A and the vector b ∈ R
n as:

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 . . . 0
0 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦ =

[
0n In−1

0 0n

]
; b = (1, 1, . . . , 1)

Denote the set {x ∈ R
n
+ : bx = 1} by Q, and define a transition possibility

set by:
Ω = {(y, z) ∈ Q2 : Az ≤ y}

A path starting from y ∈ Q is a sequence (yt)
∞

1 = (y1t , . . . , y
n
t )

∞

1 satisfying:

(yt, yt+1) ∈ Ω for t ∈ N, and y0 = y.

We can associate with a path (yt)
∞

1 a sequence (ht)
∞

1 = (h1
t , . . . , h

n
t )

∞

1 defined
by:

ht = yt −Ayt+1 for t ∈ N

and a sequence (xt)
∞

1 = (x0
t , x

1
t , . . . , x

n
t )

∞

1 defined by:

(x0
t , x

1
t , . . . , x

n
t ) = (1− ||Ayt+1||, Ayt+1) for t ∈ N

Note that ht ∈ R
n
+, with hn

t = ynt for t ∈ N, and xt ∈ R
n+1
+ , with xn

t = 0 and
||xt|| = 1 for t ∈ N.

The timber content obtained by harvest ht is Pht. So, we can associate
with a path (yt)

∞

1 , the consumption sequence (ct)
∞

1 defined by:

ct = Pht for t ∈ N

Notice that (by choice of f(n) = 1 ), we must have ct ∈ [0, 1] for t ∈ N.
Finally, we turn to preferences defined on consumption sequences. We

will suppose that there is a SWR � satisfying Axioms 1-4 and 6, so there is
a unique utility function, u ∈ U c, as described in Theorem 4 of Section 3.
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A path (y′t)
∞

1 from y ∈ Q dominates a path (yt)
∞

1 from y ∈ Q if the
associated consumption sequences (c′t)

∞

1 and (ct)
∞

1 satisfy the condition that
(c′t)

∞

1 	u (ct)
∞

1 [where the SWR �u, as defined by (U) of Section 3, corre-
sponds to the u ∈ U c, mentioned above]. That is,

∃N ∈ N such that c′[N ] = c[N ] and
N∑
t=1

u(c′t) >
N∑
t=1

u(ct)

A path (yt)
∞

1 is called maximal if there is no path (y′t)
∞

1 from y which dom-
inates it.

In words, a maximal path is a path, such that there is no path (from the
same initial conditions) which is better in terms of the social welfare relation
�u . It is, perhaps, worth emphasizing that this does not necessarily mean
that given any path (from the same initial conditions), a maximal path is at
least as good as the given path; in fact, the two paths need not be comparable.
Thus, the definition of maximality (like the definition of Pareto efficiency)
allows for multiple maximal points on the feasible set, given the pre-order.21

5 Maximum Sustained Yield Forest

Suppose the forest does not change at all from one period to the next. What
is the “best” composition of the forest in that case ? This is what is meant
when one speaks of the forest with the maximum sustained yield. In the
terminology of intertemporal allocation theory, one is concerned here with
the “golden-rule” forest.

We show that there is a unique golden-rule forest, and obtain dual vari-
ables (shadow prices) which provide “price support” to such a forest. These
shadow prices are in fact prices (expressed in terms of the utility good) of the
various subplots of land, according to the age of trees standing on each sub-
plot. The golden rule prices maximize “generalized profit” [the utility plus
the valuation of terminal subplots of land minus the valuation of initial plots
of land, terminal and initial referring to a unit time period] at the golden-rule
forest among all possible activities in the transition possibility set.

21It will turn out, as noted later in Section 8, that there is actually a unique maximal
path (from given initial conditions) in the model we are analyzing. But, this is a result of
the notion of maximality applied to the standard forestry model; it is not definitional.
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We go on to show (in Proposition 1) that those points in the transition
possibility set which stay away (uniformly) from the golden-rule must suffer
a (uniform) loss of “generalized profit” (compared to the golden-rule forest),
when evaluated at the golden-rule prices.

To discuss the golden-rule, let us introduce the welfare function, w : Ω →
L, defined by:

w(y, z) = u(P (y −Az)) for all (y, z) ∈ Ω

A golden-rule forest is a vector ȳ ∈ Q which solves the problem:

Max u(P (y −Ay))
subject to (y, y) ∈ Ω

}
(GR)

Since u is increasing, the above problem is the same as:

Max P (y −Ay)
subject to (y, y) ∈ Ω

}
(GR′)

To characterize the golden-rule, note that for (y, y) ∈ Ω, we have yi ≥ yi+1

for i ∈ {1, . . . , n− 1}. So, we get:

P (y −Ay) = P1(y1 − y2) + · · ·+ Pn−1(yn−1 − yn) + Pnyn

= P1(y1 − y2) + [P2/2]2(y2 − y3) + · · ·

+[Pn−1/(n− 1)](n− 1)(yn−1 − yn) + [Pn/n]nyn

≤ [Pm/m][(y1 − y2) + 2(y2 − y3) + · · ·+ (n− 1)(yn−1 − yn) + nyn

= [Pm/m][y1 + y2 + · · ·+ yn−1 + yn]

= [Pm/m]

the inequality following from assumption (A.3)(i) on f.Defining ȳ = [(1/m), . . . , (1/m), 0, . . . , 0]
in Q, it follows that ȳ is a golden-rule forest.

By (A.3)(ii), a strict inequality is produced in the above calculation,
unless yi − yi+1 = 0 for all i ∈ {1, . . . , n − 1}, with i �= m and yn =
0. Thus, if y is a golden-rule forest, then y = (ym, . . . , ym, 0, . . . , 0), and
since y ∈ Q, we must in fact have y = [(1/m), . . . , (1/m), 0, . . . , 0]. Thus,
ȳ = [(1/m), . . . , (1/m), 0, . . . , 0] is the unique golden-rule forest. Clearly, the
consumption associated with a golden-rule forest is stationary, and equal to
[Pm/m]; we will denote it by c̄.
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A convenient “price support property” of the golden-rule may now be
noted. Define:

q = c̄(1, . . . , n) and p = u′

+(c̄)q (GRP)

where u′

+(c̄) is the right-hand derivative of u at c̄. Then, we have:

u(P (y −Az)) + pz − py ≤ u(c̄) for all (y, z) ∈ Ω (6)

To see this, note that P ≤ q by (A.3). Thus, for (y, z) ∈ Ω, we have:

P (y −Az) ≤ q(y −Az) = qy − qz + q(z −Az) (7)

Now, (q − qA) = c̄(1, 2, . . . , n) − c̄(0, 1, . . . , n − 1) = c̄(1, . . . , 1, 1), so q(z −
Az) = (q − qA)z = c̄||z|| = c̄. Thus, (7) yields:

P (y −Az) ≤ qy − qz + c̄ for all (y, z) ∈ Ω (8)

Using the concavity of u, we have:

u(P (y −Az))− u(c̄) ≤ u′

+(c̄)[P (y −Az)− c̄] ≤ u′

+(c̄)[qy − qz] (9)

the last inequality in (9) following from (8). Using p = u′

+(c̄)q and rearrang-
ing terms in (9) yields (6). We will refer to the p defined in (GRP) as the
golden-rule price.

Following McKenzie (1968), let us define the value loss of operating at
(y, z) ∈ Ω as:

δ(y, z) = u(c̄)− [u(P (y −Az)) + pz − py] (10)

Clearly, δ(y, z) ≥ 0 for all (y, z) ∈ Ω, and δ(ȳ, ȳ) = 0.
The points which have zero value-loss have a very special structure, as

we note in the following result22. For this purpose, we denote the vector
(1/m)em [where em is the m− th unit vector in R

n ] by g.

Proposition 1 (i)If (y, z) ∈ Ω and δ(y, z) = 0, then:

(y −Az) = g (11)

(ii) Given ε > 0, there is δ > 0, such that if (y, z) ∈ Ω, and d((y −
Az), g) ≥ ε, then δ(y, z) ≥ δ.

22The second part of this Proposition is a result along the lines of the well-known “value-
loss lemma”, due to Radner (1961), Atsumi (1965), and McKenzie (1968).
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Proof. (i) Note that the inequality in (6) depends on the inequalities in
(7) and (9). Using (7), we can see that in order to have δ(y, z) = 0, we must
have:

yi − zi+1 = 0 for all i ∈ {1, . . . , n− 1}, i �= m, and yn = 0

Thus, (y −Az) must be of the form (0, 0, . . . , ym − zm+1, 0, . . . , 0). Thus, we
must have P (y − Az) = Pm(ym − zm+1). Denoting Pm(ym − zm+1) by c, we
see from the left-hand inequality in (9),

u(c)− u(c̄) ≤ u′

+(c̄)[c− c̄] (12)

In order to have δ(y, z) = 0, we must have equality in (12).
If c �= c̄, then defining c′ = (1

2
)c + (1

2
)c̄, we have by concavity of u, and

strict mid-concavity of u,

(
1

2
)[u(c)−u(c̄)] = (

1

2
)u(c)+(

1

2
)u(c̄)−u(c̄) < u(c′)−u(c̄) ≤ u′

+(c̄)[c
′−c̄] = (

1

2
)u′

+(c̄)[c−c̄]

and we cannot have equality in (12). Thus, for equality in (12), we must
have c = c̄. Thus, (ym − zm+1) = (1/m), so that (y −Az) = g.

(ii) Suppose, on the contrary, there is a sequence (ys, zs) ∈ Ω with s ∈ N,
such that d((ys − Azs), g) ≥ ε, but δ(ys, zs) → 0 as s → ∞. Since Ω is
compact, there is a subsequence (ys

′

, zs
′

) of (ys, zs), converging to (ŷ, ẑ) ∈ Ω.
Since d((ys

′

− Azs
′

), g) ≥ ε, we must have d((ŷ − Aẑ), g) ≥ ε. By (11), we
must have δ(ŷ, ẑ) > 0.

Since (ys
′

, zs
′

) converges to (ŷ, ẑ), we must have δ(ys
′

, zs
′

) converging to
δ(ŷ, ẑ), by (10) and the continuity of u. Since δ(ys

′

, zs
′

)→ 0, we have δ(ŷ, ẑ) =
0, a contradiction to the result obtained in the previous paragraph.

6 Long-Run Properties of Maximal Paths

In this section, we establish the following long-run property of maximal paths:
there is asymptotic convergence to the maximum sustained yield forest, start-
ing from an arbitrary initial forest. This provides a theoretical justification
for focusing on the maximum sustained yield forest as a goal of forestry
policy.

We show that from every initial forest, one can reach the steady-state of
the golden-rule forest in a finite number of periods (Lemma 1). Thus, there

19



are always paths which suffers finite value losses (in terms of the sum of gener-
alized profits evaluated at the golden-rule prices) compared to the golden-rule
forest, over the infinite horizon. Such paths are called “good paths”, and a
maximal path is shown (in Proposition 2) to be a good path. Because activi-
ties which stay away uniformly from the golden rule must suffer uniform per
period value loss (Proposition 1 in the previous section), paths which stay
away uniformly from the golden-rule for an infinite number of periods must
suffer infinite value losses. Thus good paths (which, by definition, suffer only
finite value losses) must exhibit asymptotic convergence to the golden-rule.
Consequently, maximal paths must also exhibit this property, since they are
good paths (Theorem 5).23

The principal technical result needed for our analysis is the ability to
move from any initial forest to any other forest in a finite number of periods,
independent of the initial and terminal compositions. In fact, we show that
this transition can always be made in (n+ 1) periods.

Lemma 1 Given any (y, ŷ) ∈ Q2, there exist (z1, . . . , zn+2) such that:

(i) (zs, zs+1) ∈ Ω for s = 1, . . . , n+ 1; (ii) z1 = y, zn+2 = ŷ. (13)

Proof. The proof consists of simply defining (z1, . . . , zn+2) appropriately
and checking that it satisfies (13). Let us define (z1, . . . , zn+2) as follows:

z1 = y
z2 = (1, 0, . . . , 0)
z3 = (ŷn, 1− ŷn, 0, . . . , 0)
z4 = (ŷn−1, ŷn, 1− ŷn − ŷn−1, 0, . . . , 0)
. . . . . . . . .
zn+1 = (ŷ2, ŷ3, . . . , ŷn, ŷ1)
zn+2 = ŷ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

It is straightforward to verify from this definition that (13) holds.
Following Gale (1967), let us call a path (yt)

∞

1 good if there is a real
number Ḡ such that:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] ≥ Ḡ for all T ∈ N

23For an excellent non-technical discussion of the methods used in Mitra andWan (1986),
which parallel the methods used in this section (as well as the previous one) see the recent
paper by M. Ali Khan (2004).
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Informally, a good path is one which is at most finitely worse that the golden-
rule path in terms of partial sums of its utlities.

We now show, using Lemma 1, that a maximal path is necessarily good,
so that it inherits all the well-known long-run properties of good paths.

Proposition 2 Let (yt)
∞

1 be a maximal path from y ∈ Q. Then (yt)
∞

1 is
good.

Proof. Define G = −2(n + 1)u(c̄). We claim that for all T > 2(n + 2),
we have:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] ≥ G (14)

Suppose, on the contrary, there is some T ∈ N, such that T > 2(n+ 2), and
:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] < G (15)

Since (y, ȳ) ∈ Q2, we can use Lemma 1 to obtain (z1, . . . , zn+2) such that:

(i) (zs, zs+1) ∈ Ω for s = 1, . . . , n+ 1; (ii) z1 = y, zn+2 = ȳ. (16)

Since (ȳ, yT+1) ∈ Q2, we can use Lemma 1 to obtain (z′1, . . . , z
′

n+2) such that:

(i) (z′s, z
′

s+1) ∈ Ω for s = 1, . . . , n+ 1; (ii) z′1 = ȳ, z′n+2 = yT+1. (17)

Define a sequence (y′t)
∞

1 as follows:

y′t = zt for t = 1, . . . , n+ 2
y′t = ȳ for t = n+ 3, . . . , T − (n+ 1)
y′t = z′t−(T−n−1) for t = T − n, . . . , T + 1

y′t = yt for t > T + 1

⎫⎪⎪⎬
⎪⎪⎭

(18)

Using (16), (17) and (18) it is easy to check that (y′t)
∞

1 is a path from y ∈ Q.
Since y′t = yt for t ≥ T + 1, we have c′t = ct for t ≥ T + 1, and c′t = c̄ for
t = n+ 3, . . . , T − (n+ 1). Using (18), and u ∈ U, it follows that:

T∑
t=1

[u(P (y′t −Ay′t+1))− u(c̄)] ≥ −2(n+ 1)u(c̄) = G (19)
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Thus, using (15) and (19), we have:

T∑
t=1

u(P (y′t −Ay′t+1)) >
T∑
t=1

u(P (yt −Ayt+1))

But, this implies that (yt)
∞

1 is not maximal, a contradiction. Thus, our claim
(14) must hold, and it follows that (yt)

∞

1 is good.
Using the above proposition, we can now summarize the long-run prop-

erties of maximal paths in the following theorem24. To this end, given a path
(yt)

∞

1 from y ∈ Q, we associate with it a value-loss sequence (δt)
∞

1 defined
by:

δt = δ(yt, yt+1) for t ∈ N

Theorem 5 Let (yt)
∞

1 be a maximal path from y ∈ Q. Then, we have:

∞∑
t=1

δt < ∞ (20)

δt → 0 as t → ∞ (21)

d((yt −Ayt+1), g) → 0 as t → ∞ (22)

d(yt, ȳ) → 0 as t → ∞ (23)

Proof. Given any T ∈ N, we can use (6) to write:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] =
T∑
t=1

[pyt − pyt+1]−
T∑
t=1

δt

= [py − pyT+1]−
T∑
t=1

δt (24)

Since (yt)
∞

1 is maximal, it is good by Proposition 2, so there is G ∈ R such
that:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] ≥ G for all T ∈ N (25)

24The analysis follows Mitra and Wan (1986) closely.
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Using (24) and (25), we obtain:

T∑
t=1

δt ≤ py −G ≤ n−G for all T ∈ N (26)

Since δt ≥ 0 by (6), (26) establishes (20). Clearly, (21) follows immediately
from (20). Using Proposition 1 and (21), we obtain (22).

We now verify (23) as follows. Using (22), given any ε > 0, we can choose
T ∈ N, such that:

d((yt −Ayt+1), g) < (ε/n4) for t ≥ T (27)

We will show that:
d(ys+m, ȳ) ≤ ε for all s > T (28)

Using (27), we note that for each t ≥ T, we have:

(a) yit − yi+1
t+1 < (ε/n4) for i = 1, . . . ,m− 1,m+ 1, . . . , n

(b) ymt − ym+1
t+1 > (1/m)− (ε/n4)

}
(29)

Then, for t > T, we must have:

y1t+1 =
n∑

i=1

hi
t =

n∑
i=1

(yit − yi+1
t+1) > (1/m)− (ε/n3) (30)

And, for j = 1, . . . ,m− 1 and t > T,

yj+1
t+j+1 = y1t+1 +

j∑
i=1

(yi+1
t+i+1 − yit+i)

> (1/m)− (ε/n3)− r(ε/n4)

≥ (1/m)− (ε/n2) (31)

Using (30) and (31), we have for t > T,

yjt+j > (1/m)− (ε/n2) for j = 1, . . . ,m (32)

Now pick any s > T. Then, using (32), we have:

n∑
i=m+1

yis+m < 1−m[(1/m)− (ε/n2)] = mε/n2 (33)
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Also, using (32), we claim that:

yis+m < (1/m) + (ε/n) for i = 1, . . . ,m (34)

For if yis+m ≥ (1/m) + (ε/n) for some i ∈ {1, . . . ,m}, then:

n∑
i=1

yis+m ≥
m∑
i=1

yis+m > (1/m) + (ε/n) + (m− 1)[(1/m)− (ε/n2)] ≥ 1

which contradicts the fact that ys+m ∈ Q. This establishes our claim (34).
Now, using (32) and (34), we have:

|yis+m − (1/m)| < (ε/n) for i = 1, . . . ,m (35)

Using (33) and (35), and m ≤ (n− 1), we have for s > T,

d(ys+m, ȳ) =
m∑
i=1

|yis+m − (1/m)|+
n∑

i=m+1

yis+m

< m(ε/n) +m(ε/n2)

≤ (n− 1)ε[(1/n) + (1/n2)]

= ε(n2 − 1)/n2 < ε

This establishes (28) and therefore (23).

7 Shadow Prices for Maximal Paths

Our investigation of the forestry model so far has shown that its central
results under intergenerational equity can be obtained without any reference
to the overtaking criterion. Our notion of maximality, based completely on
ranking of paths which are eventually identical, suffices for this purpose.

However, in order to tie up our present study with the earlier study by
Mitra and Wan (1986), we need to investgate the relation of maximal paths
to paths which are “optimal” according to the overtaking criterion, a precise
definition of which is given below.

We continue to suppose that there is a SWR � satisfying Axioms 1-4 and
6, so there is a unique utility function, u ∈ U c, as described in Theorem 4 of
Section 3.
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A path (y′t)
∞

1 from y ∈ Q weakly overtakes a path (yt)
∞

1 from y ∈ Q if the
associated consumption sequences (c′t)

∞

1 and (ct)
∞

1 satisfy the condition that
(c′t)

∞

1 Pu(ct)
∞

1 [where the SWR Ru as defined by (R) in Section 3, corresponds
to the u ∈ U c mentioned above]. This will be the case if and only if there is
N̄ ∈ N, such that:

N∑
t=1

u(c′t) ≥
N∑
t=1

u(ct) for all N ≥ N̄

and :
N ′∑
t=1

u(c′t) >
N ′∑
t=1

u(ct) for a subsequence N ′of N ≥ N̄

A path (yt)
∞

1 from y ∈ Q is called optimal if there is no path (y′t)
∞

1 from y
which weakly overtakes it.

In words, an optimal path is a path, such that there is no path (from
the same initial conditions) which is better in terms of the social welfare
relation Ru. It is worth noting, by comparing the definitions of maximality
and optimality, that an optimal path is necessarily maximal.

This brings us to the part of our paper which distinguishes the present
analysis of the forest management problem from the one offered in Mitra and
Wan (1986). This distinction parallels the difference in approaches used by
Brock (1970a) on the one hand, and by Gale (1967) and McKenzie (1968) on
the other, in developing the general theory of optimal intertemporal alloca-
tion under the overtaking criterion.

Brock (1970a) showed that the theory of optimal intertemporal allocation
under the overtaking criterion can be developed fully without finding shadow
prices to support infinite-horizon paths. One only needs the price-support
property of the golden-rule, a technically simple problem. In the theory
presented by Gale (1967) and McKenzie(1968, 1986), however, shadow prices
supporting infinite-horizon paths is an integral aspect.

Unlike the golden-rule prices, the prices supporting a (non-stationary)
maximal or optimal path are typically time varying. However, their role
is similar. In any time period, at the prices associated with a maximal (or
optimal) path, the activity chosen along the maximal (or optimal) path max-
imizes generalized profit [the utility plus the valuation of terminal subplots of
land minus the valuation of initial plots of land, terminal and initial referring
to the time period in question] among all possible activities in the transition
possibility set.
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Roughly speaking, the analysis of forest management offered in Mitra and
Wan (1986) follows Brock (1970a) quite closely. When it comes to studying
long-run behavior of maximal paths, this theory again turns out to be the
most elegant one to apply, as we have indicated in the previous section.

But, now, we need to concern ourselves with short-run behavior as well.
If “errant” behavior can occur in the short-run along maximal paths, which
would not occur on optimal paths (according to the overtaking criterion),
this would destroy to some extent the importance of the concept of maximal
paths. The fact that such errant behavior cannot occur in the short-run
along maximal paths is at the heart of establishing an equivalence between a
maximal path and an optimal path. In order to demonstrate this, we need to
find shadow prices to support a maximal path. Thus, the theory relating to
shadow prices, proposed by Gale (1967) and McKenzie (1968, 1986), becomes
very useful in the present context.

Unfortunately, a part of this theory cannot be applied directly, because
the model of forestry has characteristics which violate some of the standard
assumptions under which the general theory of optimal intertemporal alloca-
tion has been developed. We use a version of the Kuhn-Tucker theorem due
to Arrow, Hurwicz and Uzawa (1961), and then follow the Gale-McKenzie
approach to obtain the appropriate shadow prices. The appropriate result is
stated in Proposition 3; its proof is quite involved, although it uses methods
familiar in the literature on the general theory of intertemporal allocation
that we have repeatedly referred to.

To proceed with our analysis, we will make the following assumption25

on the utility function, u.
(A.4) u is continuously differentiable on R+, with B ≡ u′(0) < ∞.
We define a function w : R → R by:

w(c) =

⎧⎨
⎩

u(c) for c ∈ I
u′(0)c for c < 0
u′(1)(c− 1) + u(1) for c > 1

25While this assumption is crucial to our method of investigation (duality theory), it
is not clear whether it is indispensable for the results of the next section on the relation
between maximal and optimal paths. It would seem that a “primal route” to those results
should be possible. See Mitra (2003) for such an approach in the context of aggregative
models of economic growth and renewable resources. In any case, the duality theory
developed in the current section (using (A.4)) might be of interest, independent of its
application to obtain the results of the next section.
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Then w is concave and continuously differentiable on R, with w(c) = u(c)
for c ∈ L. Define W : R2n → R by:

W (y, z) = w(P (y −Az))

Then W is continuously differentiable on its domain.

Proposition 3 Suppose (ỹt)
∞

1 is a maximal path from ỹ ∈ Q. Then, there
is N ∈ N, N > 1,and a sequence of shadow prices (p̃t)

∞

N−1 such that:
(i) p̃t ∈ R

n
+ and p̃t ≤ (2n+ 1)Bb for all t ∈ N, with t ≥ N − 1;

(ii) If (yt)
∞

1 is a path from ỹ ∈ Q, then:

N−1∑
t=1

u(P (yt −Ayt+1)) + p̃NyN ≤
N−1∑
t=1

u(P (ỹt −Aỹt+1)) + p̃N ỹN (36)

(iii) For t ≥ N − 1, and for all (y, z) ∈ Ω,

u(P (y −Az)) + p̃t+1z − p̃ty ≤ u(P (ỹt −Aỹt+1)) + p̃t+1ỹt+1 − p̃tỹt (37)

Proof. Since (ỹt)
∞

1 is maximal, given any T ∈ N, (ỹ1, . . . , ỹT+1) must
solve the following constrained maximization problem:

Maximize
∑T

t=1W (yt, yt+1)
subject to (yt, yt+1) ∈ Ω for t = 1, . . . , T

y1 = ȳ1
yT+1 = ȳT+1

⎫⎪⎪⎬
⎪⎪⎭

(F )

Suppose on the contrary that there is (y1, . . . , yT+1), satisfying the constraints
of problem (F), for which the following holds:

W (yt, yt+1) > W (ỹt, ỹt+1) (38)

Then, we can define (y′t)
∞

1 as: y′t = yt for t = 1, . . . , T + 1, and y′t = ỹt for
t > T + 1. Then, it is easy to check that (y′t)

∞

1 is a path from y, for which
c′t = c̃t for t ≥ T + 1. Then, using (38), we would have:

T∑
t=1

u(P (y′t −Ay′t+1)) >
T∑
t=1

u(P (ỹt −Aỹt+1))

a contradiction to the fact that (ỹt)
∞

1 is maximal.
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We now proceed to examine the constrained maximum problem. In order
to apply the Kuhn-Tucker theorem to it, we write it first in the “standard
form”. Define X = R

n, and Y = XT+1. Then, (ỹ1, . . . , ỹT+1) must solve the
following problem:

Maximize
∑T

t=1W (yt, yt+1)
subject to yt −Ayt+1 ≥ 0 for t = 1, . . . , T

yt ≥ 0 for t = 1, . . . , T + 1
y1 − ỹ1 ≥ 0
ỹ1 − y1 ≥ 0
yT+1 − ỹT+1 ≥ 0
ỹT+1 − yT+1 ≥ 0
1−

∑n

i=1 y
i
t ≥ 0 for t = 1, . . . , T + 1∑n

i=1 y
i
t − 1 ≥ 0 for t = 1, . . . , T + 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(F ′)

among all (y1, . . . , yT+1) ∈ Y. Notice that the set Y is open. The constraint
functions are all linear, and hence continuously differentiable on Y. The ob-
jective function is continuously differentiable on Y, by the wayW was defined
and assumption (A.4). The Arrow-Hurwicz-Uzawa constraint qualification is
met since the constraint functions are all linear. Thus, we can apply their ver-
sion of the Kuhn-Tucker theorem to obtain (r1, . . . , rT ) ≥ 0, (ν1, . . . , νT+1) ≥
0, α ≥ 0, α′ ≥ 0, ω ≥ 0, ω′ ≥ 0, (µ1, . . . , µT+1) ≥ 0, (µ′

1, . . . , µ
′

T+1) ≥ 0, such
that:

−u′(c̃t)PA+ u′(c̃t+1)P + [rt+1 − rtA] + νt+1 − µt+1b+ µ′

t+1b = 0 (39)

for t = 1, . . . , T − 1

u′(c̃1)P + r1 + ν1 + α− α′ − µ1b+ µ′

1b = 0 (40)

−u′(c̃T )PA− rTA+ νT+1 + ω − ω′ − µT+1b+ µ′

T+1b = 0 (41)

r(t)(ỹt −Aỹt+1) = 0 for t = 1, . . . , T − 1 (42)

ν(t)ỹ(t) = 0 for t = 1, . . . , T + 1 (43)

α(y1 − ỹ1) + α′(ỹ1 − y1) = 0 (44)

ω(yT+1 − ỹT+1) + ω′(ỹT+1 − yT+1) = 0 (45)

µt(1−
n∑

i=1

ỹit) + µ′

t(
n∑

i=1

ỹit − 1) = 0 (46)
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Let us define (q1, . . . , qT ) by qt = u′(c̃t)P for t = 1, . . . , T, and (p1, . . . , pT )
by pt = qt + rt for t = 1, . . . , T. Now, let us consider any (y, z) ∈ Ω, and
t ∈ {1, . . . , T − 1}. Then, using (39), we have:

qtAz = qt+1z + [rt+1 − rtA]z + νt+1z − µt+1bz + µ′

t+1bz

= qt+1z + [rt+1 − rtA]z + νt+1z − µt+1 + µ′

t+1 (47)

Using (47), we obtain:

qty − qtAz = qty − qt+1z − [rt+1 − rtA]z − νt+1z + µt+1 − µ′

t+1 (48)

Using (A.4), we have:

u(P (y −Az))− u(P (ỹt −Aỹt+1)) ≤ u′(c̃t)[P (y −Az)− P (ỹt −Aỹt+1)]

= qty − qtAz − [qtỹt − qtAỹt+1] (49)

Using (42),(43) and (48) in (49), we obtain:

u(P (y −Az))− u(P (ỹt −Aỹt+1)) ≤ qty − qt+1z − [rt+1 − rtA]z − νt+1z

−[qtỹt − qt+1ỹt+1 − [rt+1 − rtA]ỹt+1]

≤ qty − qt+1z − rt+1z + rty

−[qtỹt − qt+1ỹt+1 − rt+1ỹt+1 + rtỹt]

= pty − pt+1z − [ptỹt − pt+1ỹt+1]

Transposing terms, we see that for all (y, z) ∈ Ω, and t ∈ {1, . . . , T − 1},

u(P (y −Az)) + pt+1z − pty ≤ u(P (ỹt −Aỹt+1)) + pt+1ỹt+1 − ptỹt (50)

To summarize this first part of the proof, given T ∈ N, we have obtained
(p1, . . . , pT ) ≥ 0, such that for all (y, z) ∈ Ω, and t ∈ {1, . . . , T − 1}, (50)
holds.

The vector (p1, . . . , pT ) obtained above depends, of course, on the T ∈ N

that is given to begin with, and one would write (p1{T}, . . . , pT{T}) to record
this explicitly . In order to obtain an infinite sequence (p̄t)

∞

1 from these finite
vectors, one would use a Cantor diagonal process argument; a pre-requisite
to applying this argument is to show that for each t ∈ N, there is a real
number Bt, such that ||pt{T}|| ≤ Bt for all T ≥ t.

It turns out that showing that such bounds exist for all t ∈ N is somewhat
problematic in the forestry model. Specifically, showing that there are such
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bounds on all rt{T} creates difficulties. However, it is possible to show that
there is N ∈ N, such that bounds exist for all t ≥ N. This is why the
statement of our theorem is split up into two parts, instead of the standard
Gale-McKenzie formulation, where (38) would be established for all t ∈ N.

We now proceed with the details of the second part of the proof. Since
(ỹt)

∞

1 is maximal, it is good. So, we can find N ′ ∈ N, such that for all t ≥ N ′,

ỹit ≥ (1/2m) for i = 1, . . . ,m; h̃m
t ≥ (1/2m)

We confine our attention henceforth to those T ∈ N which satisfy T > N ′ +
n.Given any such T , we have non-negative vectors (r1{T}, . . . , rT{T}), (q1{T}, . . . , qT{T})
and (p1{T}, . . . , pT{T}) as defined above, satisfying for all (y, z) ∈ Ω, and
t ∈ {1, . . . , T − 1},

u(P (y−Az))+pt+1{T}z−pt{T}y ≤ u(P (ỹt−Aỹt+1))+pt+1{T}ỹt+1−pt{T}ỹt
(51)

Clearly, using the above definition of qt{T} and (A.4), we have:

qt{T} ≤ BP ≤ Bb for t ∈ {1, . . . , T} (52)

It remains to find appropriate bounds for rt{T}.
Define ηt+1{T} = µt+1{T}−µ′

t+1{T} for t = 1, . . . , T +1. Using (39), we
get:

ηt+1{T}b = −qt{T}A+ qt+1{T} − rt{T}A+ rt+1{T}+ νt+1{T}

≥ −qt{T}A− rt{T}A (53)

Since the first component of the vector on the right hand side of (53) is 0,
and b = (1, . . . , 1), we must have ηt+1{T} ≥ 0.

Using (39) again and noting that:

ηt+1{T}b = −qt{T}A+ qt+1{T} − rt{T}A+ rt+1{T}+ νt+1{T}

≤ qt+1{T}+ rt+1{T}+ νt+1{T}

we have:
ηt+1{T} ≤ qmt+1{T}+ rmt+1{T}+ νm

t+1{T} (54)

For t ≥ N ′, we have h̃m
t ≥ (1/2m), and ỹmt ≥ (1/2m).So by (42), we have

rmt {T} = 0, and by (43), we have νm
t {T} = 0. Using this information in (54),

together with (52) yields:

ηt+1{T} ≤ B for T ≥ t ≥ N ′ − 1 (55)

30



Using (52) and (55) in (39), we have for T ≥ t ≥ N ′ − 1,

rt+1{T} − rt{T}A = qt{T}A− qt+1{T} − νt+1{T}+ ηt+1{T}b

≤ qt{T}A+ ηt+1{T}b

≤ 2Bb (56)

We can now use (56) to obtain:

r1t+1{T} ≤ 2B for t ≥ N ′ − 1
r2t+1{T} ≤ 4B for t ≥ N ′

r3t+1{T} ≤ 6B for t ≥ N ′ + 1
· · · · · · · · ·
rnt+1{T} ≤ 2nB for t ≥ N ′ + n− 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

This implies that:

rt+1{T} ≤ 2nBb for T ≥ t ≥ N ′ + n− 2

Thus, denoting (N ′ + n) by N, we have:

pt+1{T} ≤ (2n+ 1)Bb for T ≥ t ≥ N − 2 (57)

These are the bounds on the shadow prices that we need. This completes
the second part of the proof.

Let (yt)
∞

1 be a path from y ∈ Q. Using (51), we obtain:

N−1∑
t=1

[u(P (yt −Ayt+1))− u(P (ỹt −Aỹt+1)) ≤ pN{T}(ỹN − yN) (58)

We have now established that for each T > N, there is a vector (pN−1{T}, . . . , pT{T}),
such that:

0 ≤ pt+1{T} ≤ (2n+ 1)Bb for N − 2 ≤ t ≤ T − 1 (59)

holds, (58) holds, and for all (y, z) ∈ Ω, and for all N − 1 ≤ t ≤ T − 1,

u(P (y−Az))+pt+1{T}z−pt{T}y ≤ u(P (ỹt−Aỹt+1))+pt+1{T}ỹt+1−pt{T}ỹt
(60)

holds.
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Given (59), we can now use the Cantor diagonal process to obtain a
subsequence T ′ of T (> N), and a sequence (p̃t)

∞

N−1 such that, for each t ≥
N − 1

pt(T
′) → p̃t as T

′ → ∞ (61)

Using (61) in (58) yields (36). Using (61) in (60) yields (37). Using (61) in
(59) yields:

0 ≤ p̃t ≤ (2n+ 1)Bb for t ≥ N − 1 (62)

This completes the third and last part of the proof.

8 Maximal Paths are Optimal

In this section, we use the results of the previous two sections to show that
the notions of maximality and optimality coincide for our forestry model.

To this end, recall from the definitions of optimal and maximal paths
that an optimal path must be maximal. It is the reverse implication that is
non-trivial and of significant interest.

To make the discussion non-void, we show (in Theorem 6) that there
exists an optimal path from every initial forest, by following the method of
Brock (1970a). Then, using the price support property of maximal paths
(established in Proposition 3), we show (in Theorem 7) that a maximal path
is necessarily optimal.

We first present our result on the existence of an optimal path. We pro-
vide a fairly self-contained treatment of this familiar topic in intertemporal
allocation theory, because there are several differences between our frame-
work and the one typically used in the standard version of this theory.

Theorem 6 There exists an optimal path (ỹt)
∞

1 from every ỹ ∈ Q.

Proof. We first note that there is a good path from ỹ. Since (ỹ, ȳ) ∈ Q2

[where ȳ is the golden-rule] we can use Lemma 1 to obtain (z1, . . . , zn+2) such
that:

(i) (zs, zs+1) ∈ Ω for s = 1, . . . , n+ 1; (ii) z1 = ỹ, zn+2 = ȳ.

Define a sequence (y′t)
∞

1 as follows:

y′t = zt for t = 1, . . . , n+ 2
y′t = ȳ for t > n+ 2

}
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It is easy to check that (y′t)
∞

1 is a path from y ∈ Q. Since y′t = ȳ for t > n+2,
we have c′t = c̄ for t > n+ 2. It follows that for all T > n+ 2,

T∑
t=1

[u(P (y′t −Ay′t+1))− u(c̄)] ≥ −2(n+ 1)u(c̄)

Thus, (y′t)
∞

1 is good.
Next, we claim that for any good path (yt)

∞

1 from ỹ, we must have:

∞∑
t=1

δt < ∞

To see this, observe that for any T ∈ N, we can use (6) to write:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] =
T∑
t=1

[pyt − pyt+1]−
T∑
t=1

δt

= [py − pyT+1]−
T∑
t=1

δt

Since (yt)
∞

1 is good, there is G ∈ R such that:

T∑
t=1

[u(P (yt −Ayt+1))− u(c̄)] ≥ G for all T ∈ N

Thus, we obtain:

T∑
t=1

δt ≤ py −G ≤ n−G for all T ∈ N

Since δt ≥ 0 by (6), this establishes our claim.
We now define:

δ(ỹ) = inf{
∞∑
t=0

δt : (yt)
∞

1 is a good path from x}

Since there is a good path from x, δ(ỹ) is well-defined and δ(ỹ) < ∞.
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Given the definition of δ(ỹ), we can choose a sequence of paths (yt{N})∞1
from ỹ (for N = 1, 2, 3, ... ) such that:

∞∑
t=0

δt{N} ≤ δ(ỹ) + (1/N) for N = 1, 2, 3, ...

Since for each N = 1, 2, 3, ..., we have yt{N} ∈ Q for t ≥ 1, we can use
the Cantor diagonal process to find a subsequence N ′ of N , and a sequence
(ỹt)

∞

1 such that, for each t ∈ N, we have

yt{N
′} → ỹt as N

′ → ∞

It can be checked that (ỹt)
∞

1 is a path from ỹ, and for each t ∈ N, we have:

δt{N
′} → δ̃t as N

′ → ∞

We claim that the sequence (δ̃t)
∞

1 satisfies:

δ(ỹ) =
∞∑
t=1

δ̃t

If the claim is not true, then we can find T ∈ N, such that:

δ(ỹ) <
T∑
t=1

δ̃t

Defining γ =
∑T

t=1 δ̃t, pick a number γ′ such that γ > γ′ > δ(ỹ). Then, we
can find Ñ, such that for all N ′ ≥ Ñ,

γ′ <
T∑
t=1

δt{N
′}

Thus, for all N ′ ≥ Ñ, we have:

γ′ <
T∑
t=1

δt{N
′} ≤

∞∑
t=1

δt{N
′} ≤ δ(ỹ) + (1/N ′)

Letting N ′ → ∞, we get γ′ ≤ δ(ỹ), which contradicts the definition of γ′.
This establishes our claim.
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Consider the path (ỹt)
∞

1 from ỹ, defined above. It is easy to check that
(ỹt)

∞

1 is a good path. We will show that it is an optimal path from ỹ. Suppose,
on the contrary, there is a path (y′t)

∞

1 from ỹ, such that the associated con-
sumption sequences (c′t)

∞

1 and (c̃t)
∞

1 satisfy the condition that (c′t)
∞

1 Ru(c̃t)
∞

1

[where the pre-order Ru is defined by (R)]. This will be the case if and only
if there is N̄ ∈ N, such that:

N∑
t=1

u(c′t) ≥
N∑
t=1

u(c̃t) for all N ≥ N̄ (63)

and :
N ′∑
t=1

u(c′t) >
N ′∑
t=1

u(c̃t) for a subsequence N ′of N ≥ N̄ (64)

Define a sequence (y′′t )
∞

1 by: y′′t = (1
2
)y′t + (1

2
)ỹt for t ∈ N. It is easy to

check that (y′′t )
∞

1 is a path from ỹ, and its associated consumption sequence
(c′′t )

∞

1 satisfies: c′′t = (1
2
)c′t + (1

2
)c̃t for t ∈ N. Using (64), we know that c′t �= c̃t

for some t = τ ∈ N. Then, by concavity of u, and strict mid-concavity of u,
we have:

(a) u(c′′t ) ≥ (1
2
)u(c′t) + (1

2
)u(c̃t) for all t ∈ N

(b) ξ ≡ u(c′′t )− [(1
2
)u(c′t) + (1

2
)u(c̃t)] > 0 for t = τ

(65)

Defining Ñ = max[N̄, τ ], and using (65) in (63), we get:

ξ ≤ [
N∑
t=1

u(c′′t )−
N∑
t=1

u(c̃t)] for all N ≥ Ñ (66)

This shows that (y′′t )
∞

1 is also a good path from ỹ.
We can now use (6) to write for all N ∈ N,

[
N∑
t=1

u(c′′t )−
N∑
t=1

u(c̃t)] =
N∑
t=1

[u(P (y′′t −Ay′′t+1))− u(P (ỹt −Aỹt+1))]

= [pỹN+1 − py′′N+1]−
N∑
t=1

δ′′t +
N∑
t=1

δ̃t (67)

Since (y′′t )
∞

1 and (ỹt)
∞

1 are both good paths from ỹ, we have y′′N+1 → ȳ and
ỹN+1 → ȳ as N → ∞.Thus, we can choose N1 such that for N ≥ N1, we have
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[pỹN+1 − py′′N+1] < (1
2
)ξ. Given the definition of δ(ỹ) and the path (ỹt)

∞

1 , we

can choose N2 such that for N ≥ N2, we have [
∑N

t=1 δ̃t −
∑N

t=1 δ′′t ] < (1
2
)ξ.

Thus, for N > max[N1, N2, Ñ ], we have from (67) that:

[
N∑
t=1

u(c′′t )−
N∑
t=1

u(c̃t)] < ξ

But this contradicts (66) and establishes that (ỹt)
∞

1 is optimal from ỹ.
Next, we show that a maximal path is necessarily optimal. This depends

on the methods used by Gale (1967) and McKenzie (1968), and relies on
the shadow prices associated with maximal paths, derived in the previous
section.

Theorem 7 A path (ỹt)
∞

1 from ỹ ∈ Q is maximal if and only if it is optimal.

Proof. If a path (ỹt)
∞

1 from ỹ ∈ Q is optimal, then by definitions of
optimality and maximality, (ỹt)

∞

1 is a maximal path from ỹ ∈ Q.
To establish the converse result, let (ỹt)

∞

1 be a maximal path from ỹ ∈ Q.
We will show that it is optimal. Suppose this is not the case. Then there is
a path (y′t)

∞

1 from ỹ, such that the associated consumption sequences (c′t)
∞

1

and (c̃t)
∞

1 satisfy the condition that (c′t)
∞

1 Pu(c̃t)
∞

1 [where the pre-order Ru is
defined by (R)]. This will be the case if and only if there is N̄ ∈ N, such that:

T∑
t=1

u(c′t) ≥
T∑
t=1

u(c̃t) for all T ≥ N̄ (68)

and :
T ′∑
t=1

u(c′t) >
T ′∑
t=1

u(c̃t) for a subsequence T ′of T ≥ N̄ (69)

Define a sequence (yt)
∞

1 by: yt = (1
2
)y′t + (1

2
)ỹt for t ∈ N. It is easy to

check that (yt)
∞

1 is a path from ỹ, and its associated consumption sequence
(ct)

∞

1 satisfies: ct = (1
2
)c′t + (1

2
)c̃t for t ∈ N. Using (69), we know that c′t �= c̃t

for some t = τ ∈ N. Then, by concavity of u, and strict mid-concavity of u,
we have:

(a) u(ct) ≥ (1
2
)u(c′t) + (1

2
)u(c̃t) for all t ∈ N

(b) ξ ≡ u(ct)− [(1
2
)u(c′t) + (1

2
)u(c̃t)] > 0 for t = τ

(70)
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Defining Ñ = max[N̄, τ ], and using (70) in (68), we get:

ξ ≤ [
T∑
t=1

u(ct)−
T∑
t=1

u(c̃t)] for all T ≥ Ñ (71)

Since (ỹt)
∞

1 is a maximal path from ỹ ∈ Q, it is a good path from ỹ, by
Proposition 2. The inequality (71) shows that (yt)

∞

1 is also a good path from
ỹ.

Since (ỹt)
∞

1 is a maximal path from ỹ ∈ Q, we can use Proposition 3 to
obtain N ∈ N, N > 1,and a sequence of shadow prices (p̃t)

∞

N−1 such that:

0 ≤ p̃t ≤ (2n+ 1)Bb for all t ∈ N, with t ≥ N − 1 (72)

and (36) and (37) hold. Defining N̂ = max[N, Ñ ], and using (36) and (37),
we have for T > N̂,

[
T∑
t=1

u(ct)−
T∑
t=1

u(c̃t)] =
T∑
t=1

[u(P (yt −Ayt+1))− u(P (ỹt −Aỹt+1))]

≤ p̃T+1(x̃T+1 − xT+1) (73)

Since (yt)
∞

1 and (ỹt)
∞

1 are both good paths from ỹ, we have yT+1 → ȳ and
ỹT+1 → ȳ as T → ∞. Thus, using (72), we must have p̃T+1(x̃T+1−xT+1) → 0
as T → ∞. Using this in (73) contradicts (71) and establishes the result.

9 Concluding Remarks

Our analysis of forest management has tried to provide a more satisfactory
basis for focusing on maximum sustained yield of timber as a key concept,
given the objective of intergenerational equity. Since forest management in-
volves much more than timber production, it would be interesting to general-
ize the analysis to a setting of sustainable forest management, where all forest
products are taken into account. Since, in principle, such an exercise would
still fit into the general theory of intertemporal allocation, we feel that such
a generalization would be theoretically feasible. The inter-relationships that
would have to prevail between the various forest products at the maximum
sustained forest yield solution would reflect the actual biological features gov-
erning the (joint production) of forest products, and should be of interest to
foresters.

37



We note that, even as a model of timber management, our framework
is greatly oversimplified, and we comment on possible generalizations. (i)
Harvesting and replanting costs can be incorporated into the model fairly
easily. (ii) All trees coming to maturity at the same time might have a lower
timber yield per tree compared to a situation in which trees come to maturity
on different subplots in different years. This aspect is less straightforward to
incorporate into our model, because of the nature of the biological interaction
among trees that is being captured. In such a scenario, one would expect to
see (at least in transition) the phenomenon of “forest thinning” on maximal
paths. We feel, however, that such considerations would tend to reinforce
the concept of the golden-rule forest in the long-run, since the adverse effect
being captured would be fairly minimal for the golden-rule solution. (iii)
The assumption of strong convexity (Axiom 6) has been used extensively in
our analysis. Without it, the uniqueness of a maximal path is unlikely to
obtain. But, then, the uniqueness of an optimal path will not hold in general
either.26 Whether maximal paths nevertheless continue to be optimal in the
more general context, where strong convexity is replaced by (weak) convexity,
remains an open question.

Our setting for forest management is best applied to governments man-
aging forest resources of a country. Roughly, two-thirds of the world’s forests
are currently managed by governments, so we feel the model has fairly wide
potential use. Of course, our analysis focuses on the managed forest, under
intergenerational equity. Thus, the social rate of discount is zero, while the
market rate of interest is typically positive. In the same vein, the shadow
prices supporting maximal paths provide the correct social evaluation of
forestry land, according to the vintage of trees standing on it, and are likely
to differ from market prices of forestry land. This disparity arises because
market prices and interest rates are determined by (aggregate) decisions of
individuals whose preferences reflect fairly short-run objectives. In the inter-
est of intergenerational equity (of generations yet unborn), governments can
play a vital role in managing forests on a sustainable basis.

Our theory of shadow prices supporting maximal paths shows that judi-
cious forest management involves the methods of social project evaluation,
where the notion of “generalized profit maximization” is still central (as in
private project evaluation), but the profits are evaluated at the appropri-

26In the context of a somewhat different dynamic optimization model, this has been
demonstrated in a concrete example by Khan and Mitra (2002).
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ate shadow prices, and using the appropriate social rate of discount, rather
than the corresponding market based magnitudes. In this respect, the con-
siderations which lead a country to preserve its national parks are also the
considerations which lead to forest management which respects intergenera-
tional equity.
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