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1 Introduction

In the early stage of development, many countries, particularly those in Asia, adopt industrial

policies to support industries enjoying priority. Later on, policy makers emphasize the need

to liberalize and approach laissez faire (see, e.g., Rao (1996) for India, Kuo (1995) for Taiwan,

SaKong (1993) for Korea, and Komiya (1988) for Japan). Industrial policies typically undergo a

continuous sequence of policy reforms over time. In general, they consist of government support

and bureaucratic control. This paper focuses on three distinct aspects of industrial policies. The

first aspect is that government support promotes learning, and the second is that bureaucratic

control is imposed against rent-seekers. As the third aspect, which we emphasize the most in

this study, bureaucratic control induces red tape in the sense that it makes private sectors less

flexible in response to world market shocks. There are two main questions not yet resolved in the

literature: (1) How do these aspects relate to each other? (2) Are the observed policy reforms the

correction of past errors by the present decision makers, or do such reforms reflect the optimal

transition of the policy design to adapt to the changed circumstances? This paper addresses

such questions in both intuitive and analytical terms.

The need for production flexibility in a world with variable demand has been emphasized in

the recent literature (see, e.g., Beckman (1990), Killick (1995), and Deyo and Doner (2001)).

As case studies, Amsden (1985) and Subrathan (1991) comment on the ability to provide fast

delivery as critical to success in the competitive international machine tool market. Industrial

policies often reduce flexibility due to complex bureaucratic procedures. Desai (1985) points out

that complex state controls over industries in pre-reform India have rendered them uncompetitive

in the world market despite their various latent strength. This fact suggests that the decline of

flexibility due to bureaucracy can hamper the potential economic development. On the other

hand, even at some cost to flexibility, some degree of bureaucratic control may be needed against

rent-seekers, who abuse developmental policy for individual interest. Thus, balancing the issues

of flexibility, rent-seeking and bureaucracy is critically important for policy makers.

To our knowledge, few studies have analyzed policy reforms taking into account the loss
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in flexibility due to bureaucracy in the economics literature.1 Lin and Wan (1996) examined

empirical evidences from Asian countries and showed that strict bureaucracy engenders a loss

in flexibility in a static setting. In the present paper, an industrial policy refers to the support

for the firms that induce dynamic learning externalities. In order to describe this phenomenon,

modelling theoretically such an issue in a dynamic setting is vital to examine the optimal design

of an industrial policy.

There have been on-going debates about the effectiveness of industrial policies. At least from

the theoretical perspective, our results agree with Itoh, Kiyono, Okuno-Fujiwara, and Suzumura

(1991) in that temporary industrial policies may be valuable. Moreover, the development pro-

cess, viewed as a episode of ‘catching-up’ in ‘late-industrialization,’ may call for an endogenous

policy sequence, with justified government participation in early stages and continued liberaliza-

tion toward laissez faire. Balancing the shifting weights of benefit against cost of government

interventions, an optimal policy sequence has its own rhythm and timing for policy reforms.

Therefore, the nature of policy reform might not be a transition from past error to present

sagacity, but the adaptation to the change in circumstance.

Our model also shows whether a certain degree of bureaucracy is deemed tolerable under

an industrial policy at an early stage of development. The degree of bureaucracy depends on

two important issues; the first is the rent-seeking issue in which rent-seekers make an industrial

policy less effective, and the second is the flexibility issue in which bureaucratic red tape hurts

flexibility in the world market with variable demand. Elaborate bureaucratic procedures preclude

the rent-seeking issue but give rise to the flexibility issue. Thus, elaborate bureaucracy can be

justified if the rent-seeking issue is relatively significant, but not if the flexibility issue is relatively

significant. This result has important policy implication. The lack of competitiveness of export

industries in pre-reform India (Desai (1985)) may be attributed to strict administrative controls

under frequent market shifts in the world market.

Moreover, we find it plausible that policy makers should seek to reduce in complexity of

1Although there are many studies on aspects of production flexibility under demand uncertainty (e.g.,
Turnovsky (1973) and Epstein (1978)), the impacts of demand variability, which directly affects the flexibility, on
the optimal policy are hardly examined in the context of dynamic settings.
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bureaucratic procedures before an ultimate transition to laissez faire. An administrative reform

may also be an optimal action reflecting the change in circumstance. This finding may be

consistent with the fact that in many countries, administrative reforms to simplify bureaucratic

procedures have become the slogans of the day even though industry targeting still holds.

The rest of the paper is organized as follows. Section 2 defines what constitutes benefits

and costs of bureaucracy in the development context and analyzes what serves as the force for

the change in the balance of the costs and the benefits. In Section 3, we presents a dynamic

model for a small open economy with industries capable of learning, the presence of potential

rent-seekers and variable market demands. We also introduce government actions consisting of

both government support and bureaucratic control. Section 4 derives the optimal policy for the

model and shows some important results. Casting benefits and costs of an industrial policy in

analytic terms, we argue that each policy package may be appropriate to proper circumstances.

Section 5 provides a summary as conclusion. All proofs are in the Appendix.

2 Benefit and Cost of Bureaucracy

To lay the foundations for subsequent analysis, this section examines the interdependence among

the three aspects of industrial policies introduced in the previous section. These aspects are

closely related to benefits and costs of bureaucracy. In the present context, the objective of

industrial policies is to promote industries with dynamic learning effect that meets the Kemp

criterion (Kemp (1960)).2 We assume that all industries desire government support for their own

interest, but some industries would contribute to more learning when supported. The pace of

learning may be less than ideal without an industrial policy.

First, we clarify the benefit of bureaucracy. The ubiquity of bureaucratic procedures is

the result of neither coincidence nor malice. The administrative problem is that of potential

2For an early study on learning-by-doing, in which technological progress is the serendipitous by-product of
experience gained in the production, see, e.g., Arrow (1962). The direction of an industrial policy is decided
by various criteria, developed by Mill, Bastable, Kemp and Negishi. See, e.g., Itoh, Kiyono, Okuno-Fujiwara,
and Suzumura (1991). In particular, Kemp (1960) showed a crucial condition for an industrial policy, known as
the Kemp criterion, requiring that benefits from technological progress over time cannot be obtained by private
incentives due to dynamic learning externalities. This condition justifies a targeted industrial policy, whereby
some industries with such learning effect should be targeted while others remain non-targeted.
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misclassification of commodities. This problem arises because of industry targeting. If there

is any ambiguity about the appropriate classification for a commodity, private firms in non-

targeted industries have an incentive to make it appear to fit into a targeted category (see,

e.g., Corden (1990) for a tariff case).3 Information asymmetry between the administrator and

applicants would allow some non-learning industries to receive support. This makes an industrial

policy less effective and might lower an attainable welfare through policy dilution. Bureaucratic

controls play an important role in precluding this problem. We call such control as bureaucratic

monitoring. Bureaucratic monitoring takes the form of bureaucratic routines (e.g., requiring

documentation of the merits of the claim). The purpose of bureaucratic monitoring in this

paper is not so much to prevent shirking by the agent, a concern in standard principal-agent

problems, but rather to make the policy of industrial promotion more effective by excluding from

government assistance those whose claims are without merit.

Second, we identify the cost of bureaucracy. In the present study, flexibility is defined as the

adaptability in modifying designs and the capability of timely response to market variability.

Bureaucratic monitoring brings about the loss in flexibility. Private firms waste their time and

energy due to complex bureaucratic procedures. Thus, the degree of monitoring determines the

cost of bureaucracy.4 This element is quite important in the globalized era. There have been

many case studies on the impact of bureaucratic monitoring on flexibility. Roy (1996) states

that in some cases hundreds of documents must be submitted to complete a single transaction

in pre-reform India. Subrathan (1991) also mentions that there is a 6-10 months delay in getting

approval of licenses to import components for production in Indian’s machine tool industry.

Appelbaum and Smith (2001) state that a relative lack of regulation contributes to making

Chinese factories in the garment industry so flexible.

Finally, we discuss about the change of benefit and cost of bureaucracy over time. Matching

the elements of benefit and cost, we can arrive at an optimal policy package, consisting of govern-

3As another type of rent-seeking activities, there is the concept of ‘rent-seeking’, in which government and
bureaucracy are easily subject to persuasion and influence from businessmen affected by tariffs and quotas. See,
e.g., Krueger (1974) and Bhagwati (1982).

4The administrative cost may also be significant, but we ignore it to focus on the effect of bureaucratic
monitoring on flexibility.
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ment support and bureaucratic monitoring, under given any circumstance. For the developing

countries, learning often means the catching up with advanced countries, through tapping into

the ‘technology backlog,’ that is, the technology gap. As development proceeds, the scope for

learning is reduced (see, e.g., Mansfield, Rapoport, Romero, Villani, Wagner, and Husic (1977)

and Kuznets (1982)).5 Since elaborate bureaucracy is imposed to enhance learning by avoiding

policy dilution, as the scope of learning declines, so does the benefit of bureaucracy. In contrast,

the nature of the cost of bureaucracy does not change over time. So far as bureaucracy is con-

cerned, proportionately speaking, the economy may face a reduction in benefit but not in cost

over time. As circumstances change, so does the optimal policy. Thus, it is quite important to

examine optimal policy sequence in a dynamic setting.

3 The Model

3.1 Basic Elements

Consider a small open economy with an infinite period and a continuum of commodities.6 Com-

modities are indexed on the interval [0, 1]. Commodity z, which is produced in industry z, is

associated with each point on the interval. Each industry can be categorized as either a learning

industry or a non-learning industry. Learning industries are represented as the subset [0, K] of

interval [0, 1], and non-learning industries as the subset (K, 1], where K ∈ (0, 1) is fixed. The

international price of all commodities is nomalized to unity, and the total labor input in the

economy is fixed at L̄ > 0 in all periods.

Human capital Ht is a public good for production benefitting all producers equally. Only the

production in learning industries contributes to human capital accumulation through learning-

by-doing. Specifically, human capital in the next period depends on its current level and the

current labor employment in learning industries, and the state equation for human capital is

5It may be considered that each industry has bounded learning, introduced by Young (1993), requiring that
no knowledge can be gained by learning in highly matured industries.

6We consider a discrete-time model, instead of a continuous-time model. A unit of time should be introduced
in order to capture clearly the situation in which a style change in market demands has the negative effect on the
production flexibility, explained carefully in the later part.
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given as:

Ht+1 = h(LA,t, Ht), (1)

where LA,t is the labor employment in learning industries at period t, and h(·, ·) is the learning

function with h(·, ·) > 0, hL > 0, hH > 0 and limH→1− h(·, H) = 1. These conditions ensure that

human capital is bounded and rises toward its asymptotic limit of unity, and that its increment

is increasing in LA,t. This specification captures the situation in which the dynamic learning

externalities emphasized in the Kemp criterion become larger with an increase in LA,t and are

diminishing over time. Figure 1 illustrates these properties when LA,t is fixed at a certain level,

L1 and L2 with L1 > L2, in any period.

Taking human capital Ht as given, xz,t, the output of commodity z in period t, is compet-

itively produced using labor lz,t and its commodity-specific factor az,t under a constant-returns

technology, as in the framework of the Ricardo-Viner model. Labor can move freely among

industries, while the commodity-specific factors cannot. Output of commodity z is given as:

xz,t = F (lz,t, az,t|Ht, εz,t) ≡ εz,tHtf(lz,t, az,t), (2)

where the output-augmenting efficiency index has two components, an economy-wide component

Ht and an industry-specific productivity index εz,t ∈ (0, 1]. We assume for simplicity that for

all z, there is the same function f , which is strictly increasing in both arguments, exhibiting

constant-returns. Learning effect, which forms human capital Ht, is entirely an economy-wide

phenomenon, completely external to firms so that perfect competition continues to prevail.

In this model, the central assumption to capture the variability market demand is that each

commodity z ∈ [0, 1] is ‘stylish’ in the following sense. There are two alternative styles. In

every period only one style is demanded in each industry, and output is worthless unless it is

in accordance with the style ‘a la mode’. Nature may decide to have a style change at a given

probability θz ∈ (0, 1]. θz is the parameter for the frequency of demand shock. It captures the

degree of demand variability for commodity z. The style is more variable with an increase in θz.
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We suppose that the degree of demand variability is identical for all industries, i.e., θz = θ ∈ (0, 1]

for all z ∈ [0, 1]. Let ∆z,t denote a random variable such that7

∆z,t =


1 if the style of commodity z changes from period t− 1 to period t

0 otherwise.

Then, P [∆z,t = 1] = θ and P [∆z,t = 0] = 1− θ. Since style change is costly, we assume that for

any commodity z ∈ [0, 1],

εz,t =


1 if ∆z,t = 0

1− η̄z,t ∈ (0, 1] if ∆z,t = 1,

where η̄z,t ∈ [0, 1) is the proportional loss in the industry-specific productivity due to style change.

3.2 Government Activities

The government always keeps a balanced budget. It has two policy tools: first, promotion support

for learning industries as government support, and second, elaborate monitoring as bureaucratic

control. For promotion support, the government imposes a tax on all industries equally to raise

a revenue of amount τ > 0 and grants equal support for sales promotion to eligible industries

with an administrative cost c ∈ (0, τ).8 Eligibility is given to all approved producers who have

applied for the support. Due to asymmetric information between the government and applicants,

some non-learning industries may win government approval in rent-seeking. To counter this,

the government may install bureaucratic procedures for elaborate monitoring. For simplicity,

we assume that the procedure is costless in resources except that the bureaucratic process is

detrimental to the ability of firms’ response to demand variability.

Let (St,Mt) denote the government action in period t consisting of the two binary choices of

7Assume that ∆z,t is independent of z and t. The model is based on a special case of Markovian process.
Although we can use a generalized Makovian process, the model would be much complicated.

8The parameter c can be considered as the cost of tax collection fee. This cost may be realistically a significant
factor.
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whether to support and whether to adopt elaborate monitoring, respectively, where9

St =


1 if promotion support is adopted

0 otherwise,

Mt =


1 elaborate monitoring is adopted

0 otherwise,

and St and Mt are called the support action and the monitoring action, respectively.

3.2.1 Eligibility of Promotion Support

Elaborate monitoring (Mt = 1) enables the government to limit approval to firms only in learning

industries. In the absence of such monitoring (Mt = 0), the government cannot exclude some part

of rent-seeking firms in non-learning industries from sharing support. Let (K,K(1 + λ)] denote

the set of non-learning industries that obtain government support under elaborate monitoring.

The parameter λ ∈ [0, 1/K − 1) captures the degree of rent-seeking activities in non-learning

industries under elaborate monitoring. Promotion support for learning industries is more diluted

into non-learning industries with an increase in the degree of rent-seeking activities λ. Then,

given monitoring action Mt, the set of eligible industries D(Mt) ⊂ [0, 1] is represented as

D(Mt) = [0, K + λK(1−Mt)].

3.2.2 Effect of Government Action on Industry-Specific Factor

The objective of promotion support is to increase labor productivity in eligible industries D(Mt).

To capture this, we suppose that promotion support leads to net monetary transfer over all

industries and influences the resources available to various firms in the form of the supply of the

9For my objective to clarify endogenous policy transition, I assume that in each of the two policies the
government can make only a binary choice.
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industry-specific factor according to the following formula.10

az,t ≡ az(St,Mt) =


a0 + St[δ(Mt)− τ ] if z ∈ D(Mt)

a0 − Stτ if z ∈ [0, 1] \D(Mt),

(3)

where a0 > 0 is the industry-specific factor in each industry without promotion support, and

τ is the tax imposed on each industry.11 They are assumed to be identical for all industries.

δ(Mt) > 0 is the after-tax contribution to the industry-specific factor in each eligible industry

by such a transfer under promotion support.

Because of a balanced budget of the government in every period, the total tax revenue minus

the administrative cost of promotion support, τ − c, must equal the budget size of promotion

support. Since the industry-specific factor in eligible industry z ∈ D(Mt) increases by δ(Mt)

after the taxation, the budget size is δ(Mt)|D(Mt)|, where |D(Mt)| = K + λK(1−Mt). Then,

δ(Mt) =
τ − c

K
if Mt = 1; δ(Mt) =

τ − c

K(1 + λ)
if Mt = 0. (4)

Remark 1 The industry-specific factor in eligible industries increases by receiving promotion

support, while that in non-eligible industries decreases by taxation. Moreover, there exists policy

dilution due to asymmetric information without elaborate monitoring. Non-elaborate monitoring

dilutes promotion support into part of non-learning industries that are undeserved for government

assistance by spreading out the extent of eligible industries (D(1) = [0, K] ⊂ [0, K(1 + λ)] =

D(0)). At the same time, it reduces the effect of promotion support on the industry-specific

factor for all eligible industries (δ(1) = τ−c
K

> τ−c
K(1+λ)

= δ(0)). Even though the production

in non-learning industries z ∈ (K,K(1 + λ)] seems like the ones in learning industries, these

10Although an industrial policy is usually complicated and its form is thus difficult to describe briefly, its
primary objective can be said to increase labor productivity so as to promote the targeted industry. This is
commonly accomplished in part by such instruments as taxes, exchange rates, rationing and subsidies. Many
countries have come to employ a wider range of instruments, including support programs for sector-specific R&D
and the provision of information. For example, the Japanese government initiated the Very Large Scale Integrate
(VLSI) Semiconductor Project to foster the semiconductor industry in front of the threat by IBM (Imai (1984)).
Also, exhibitions such as electronic-show, which are partly supported by public sector, play an important role in
providing industry-specific information.

11For simplicity, we assume that τ is optimally derived from some institutional reasons.
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productions contribute nothing to human capital accumulation. Figure 2 shows the relationship

between the government action (St,Mt) and the industry-specific factor az,t.

3.2.3 Effect of Government Action on Industry-Specific Productivity Index

Although elaborate monitoring prevents some firms from perverting promotion support, it does

not come free in that too much red tape hurts production flexibility in response to a style change.

Demand changes in eligible industries are more costly under elaborate monitoring than under

non-elaborate monitoring.12 To clarify this, we suppose that under elaborate monitoring, only

eligible firms would apply for support. Only those who are applying for support would lose

flexibility due to elaborate monitoring. The lack of flexibility matters only if there is a style

change. Specifically, when style of commodity z ∈ [0, K] in learning industries changes under

elaborate monitoring (∆z,t = 1 and Mt = 1), there is a loss in the industry-specific productivity

index, η̄z,t = η ∈ (0, 1). The effect of elaborate monitoring is identical for all learning industries.

For given government action (St,Mt) and the realization of style change ∆z,t, the industry-specific

productivity index is given as:13

εz,t ≡ εz(St,Mt,∆z,t) =


1− ηStMt∆z,t if z ∈ [0, K]

1 if z ∈ (K, 1].

Without promotion support (St = 0), monitoring is pointless so that there will be no red tape

and no loss in the industry-specific productivity index, i.e., εz,t = 1.

Remark 2 Since the probability of style change is identical at θ for all industries, the expected

12As an example, we may consider the situation in which, under the red tape, output cannot be delivered ‘just
in time’, by regular procedure so that overtime pay must be paid to workers to fulfill the order.

13To focus on the case in which elaborate monitoring induces red tape, suppose that the industry-specific
productivity index never changes at η̄z,t = 0 for any non-learning industry z ∈ (K, 1] under elaborate monitoring
(Mt = 1) even when its style changes. Without such monitoring (Mt = 0), the index never changes at η̄z,t = 0
for all industries z ∈ [0, 1] irrespective of whether to have a style change.
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industry-specific productivity index is given as:

E(εz,t) = E[εz(St,Mt,∆z,t)] =


1− θηStMt if z ∈ [0, K]

1 if z ∈ (K, 1].

(5)

The value of θη represents the expected negative effect in learning industries through red tape.

Figure 3 shows the effect of government action on the expected productivity index E(εz,t).

3.3 Government’s Dynamic Problem

The government maximizes the expected sum of national income over time with discount rate

β ∈ (0, 1).14 To analyze an optimal policy, we consider the following steps in each period t:

Step 1 Given human capital Ht, the government chooses its action (St,Mt) ∈ {0, 1}2. The

decision determines the industry-specific factor az,t ≡ az(St,Mt) and the expected industry-

specific productivity index E(εz,t) ≡ E(εz(St,Mt,∆z,t)) in each industry z. The government

has no information about the style of commodity z ∈ [0, 1] in that period, except the

probability θ of style change.

Step 2 The equilibrium labor employment l∗z,t ≡ lz(Ht, St,Mt) in each industry z is determined

in the perfectly competitive market.15 This yields the total employment in learning indus-

tries

L∗A(Ht, St,Mt) =

∫ K

0

l∗z(Ht, St,Mt)dz, (6)

and the next period’s human capital Ht+1 = h(L∗A(Ht, St,Mt), Ht).

Step 3 Nature decides whether or not there will be a style change (∆z,t), which in turn deter-

mines the industry-specific productivity index εz,t ≡ εz(St,Mt,∆z,t). Using the already de-

14Assume that the government is risk-neutral.
15Note that competitive firms must choose labor employment facing uncertainty related to a style change in

the current period. The actual profit for firms depends on the realization about a style change. We assume that
the industry-specific factor is owned by firms so that its rent is included in the profit. If the negative effect of a
style change on the profit is small enough, each existing firm never goes bankruptcy because of its positive profit.
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cided labor employment l∗z,t and the industry-specific factor az,t with the output-augmenting

efficiency index εz,tHt, each industry z produces output x∗z,t ≡ x∗z(Ht, St,Mt,∆z,t) =

εz,tHtf(l∗z,t, az,t). Then current period’s national income

g∗t =

∫ 1

0

x∗z(Ht, St,Mt,∆z,t)dz,

Step 4 The first stage in period t+ 1 starts.

The expected national income before the realization of style change is given as:

ge
t ≡ ge(Ht, St,Mt) = Eg∗t =

∫ 1

0

E[x∗z(Ht, St,Mt,∆z,t)]dz. (7)

Then, the government’s dynamic decision problem at the first stage of each period is to solve for:

max
{(St,Mt)∈{0,1}2}∞t=0

E

[
∞∑

t=0

βtg∗t

]
=

∞∑
t=0

βtge(Ht, St,Mt), (8)

subject to Ht+1 = h(L∗A(Ht, St,Mt), Ht) and H0 ∈ (0, 1) as given. We denote by v(H0) the value

function of this problem.

4 Analysis

This section first introduces some assumptions. After that, we derive a temporal market equi-

librium, taking human capital Ht and government action (St,Mt) as given. Then, an optimal

policy is sketched out in the framework of a dynamic programming. Finally, we discuss some

economic implications that are indicated by our results.

4.1 Assumptions

Reallocation of the industry-specific factor over all industries may influence current national

income. Thus, the government may have an incentive to reallocate by adopting promotion

support for reasons different from dynamic learning effect. In order to focus on learning, we
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wish to neutralize the effect of the reallocation of the industry-specific factor on current national

income.16 Therefore, we assume that all industries share identical linear homogeneous production

technology except the industry-specific productivity index.17 To make the model tractable, the

following assumption is made.

Assumption 1 The production technology for each commodity is described as the Cobb-Douglas

function, i.e., xz,t = εz,tHtl
µ
z,ta

1−µ
z,t with µ ∈ (0, 1).18

Remark 3 This assumption requires that promotion support with the administrative cost of

promotion support must reduce current national income irrespective of the allocation, and the

government has no incentive to reallocate the industry-specific factors without dynamic learning

effect.

The next assumption is related to the state equation for human capital.

Assumption 2 h(LA,t, Ht) = 1− [1− ν(LA,t)](1−Ht) with ν(L) ∈ (0, 1) and ν ′(L) > 0 for any

L ≥ 0.

The state equation (1) for H is rewritten as:

1−Ht+1

1−Ht

= 1− ν(LA,t).

The value of ν represents the speed of technological progress. The condition of ν ′ > 0 requires

that the total labor employment in learning industries contributes to the acceleration of human

capital.

16The neutralization here means that current national income is independent of the allocation of the industry-
specific factor.

17To see this, suppose that the industry-specific factor and the price of output are identical for all industries. We
also suppose that only the government can reallocate the industry-specific factor az over two industries z ∈ {1, 2}
without cost. We furthermore suppose that the sum of the industry-specific factors in the two industries is fixed at
a = a1 +a2, that the total labor input is fixed at L̄ = l1 + l2, and that the production technology for each industry
is identical with f(li, ai) = lµi a

1−µ
i . Then, it is easy to find that national income is L̄µa1−µ, independent of the

allocation of the industry-specific factors. Thus, Under the assumption of the linear homogeneous technology
without dynamic learning effect in learning industries, if there is an administrative cost of the reallocation, the
government has no incentive to reallocate the industry-specific factor.

18The Cobb-Douglas function f(l, a) = lµa1−µ is linear homogeneous. The linear homogeneous function is
always homothetic.
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Remark 4 Given H0 and {LA,l}t−1
l=0, human capital in period t can be represented as

Ht = 1− (1−H0)
t−1∏
s=0

[1− ν(LA,s)], (9)

which implies that human capital is strictly increasing over time and its asymptotic limit is unity

as t goes to infinity since ν(LA,s) ∈ (0, 1).

4.2 Temporal Equilibrium

A temporal market equilibrium in period t is determined taking human capitalHt and government

action (St,Mt) as given. When labor allocation is determined under perfect competition, firms

have no information about the realization of a style change and act as expected profit maximizers

so that the wage rate wt equals the expected marginal value of product with respect to labor.

By equation (2), the equilibrium outcome in any period t must satisfy:

E(εz,t)Htfl(lz,t, az,t) = wt, (10)

for any z ∈ [0, 1], with the labor market clearing condition:

∫ 1

0

lz,tdz = L̄. (11)

Government action (St,Mt) may affect the equilibrium by changing the industry-specific factor

az,t and the expected industry-specific productivity index E(εz,t).

There are three possible actions to be taken place by the government in each period; [action

I] laissez faire, [action II] promotion support without elaborate monitoring, and [action III]

promotion support with elaborate monitoring.19 Let G ≡ {G1, G2, G3} denote the set of all

possible government actions, where G1 ≡ (0, 0), G2 ≡ (1, 0) and G3 ≡ (1, 1) represent actions

I, II, and III, respectively. The expected national income ge(Ht, St,Mt) and the total labor

employment in learning industries L∗A(Ht, St,Mt) in the equilibrium are two important values

19The possibility of elaborate monitoring with promotion support can be excluded since there is no objective
for monitoring without promotion support (any firm does not apply for support).
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for policy makers to maximize the sum of the expected national income over time. The latter is

related to future national income since it is the only source to accumulate human capital from

the current period to the next through the state equation. By equations (3), (4), (5), (10) and

(11), the following result in the equilibrium is obtained.

Lemma 1 For each Gt = (St,Mt) ∈ G, the total labor employment in learning industries and

the expected national income are given as

L∗A,t(Ht, St,Mt) =


KL̄ if (St,Mt) = (0, 0)

a0−τ+(τ−c)/[K(1+λ)]
a0−c

KL̄ if (St,Mt) = (1, 0)

(1−θη)1/(1−µ)(a0−τ+(τ−c)/K)
B

KL̄ if (St,Mt) = (1, 1),

(12)

and

ge
t (Ht, St,Mt) =


HtL̄

µa1−µ
0 if (St,Mt) = (0, 0)

HtL̄
µ(a0 − c)1−µ if (St,Mt) = (1, 0)

HtL̄
µB1−µ if (St,Mt) = (1, 1),

(13)

respectively, where B ≡ [K(1− θη)1/(1−µ) + 1−K](a0 − τ) +K(1− θη)1/(1−µ)(τ − c).

Notice that L∗A,t(Ht, 1, 0) depends on λ, and L∗A,t(Ht, 1, 1) and ge
t (Ht, 1, 1) depend on θ. By

equations (12) and (13), we obtain the following result.

Corollary 1 A rise in rent-seeking activities reduce dynamic learning effect by altering labor

allocation, i.e.,

∂L∗A,t

∂λ
= − (τ − c)L̄

(a0 − c)(1 + λ)2
< 0.20

On the other hand, a rise in demand variability reduces dynamic learning effect as well as the
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expected national income, i.e.,

∂L∗A,t

∂θ
= −(1−K)(a0 − τ)(a0 − τ + (τ − c)/K)KL̄

A[(KA+ 1−K)(a0 − τ) + A(τ − c)]2
ηAµ

1− µ
< 0;

∂ge
t

∂θ
= −µηHtK(a0 − c)Aµ

[
B

L̄

]µ

< 0,

where A = (1− θη)1/(1−µ).

Remark 5 By equations (12) and (13), for any government action Gt ≡ (St,Mt) ∈ G, the equi-

librium labor employment L∗A,t in learning industries is independent of human capital Ht ∈ (0, 1),

and the equilibrium expected national income ge
t is proportional to human capital Ht. These are

due to the specification in which the production technology has the output-augmenting efficiency

index, εz,tHt. Then, the equilibrium labor employment can be rewritten as L∗A(St,Mt) = L∗A(Gt)

with the element Ht dropped out, and also the expected national income can be rewritten as

ge
t (Ht, St,Mt) = HtR(St,Mt) = HtR(Gt), where R(·) is the expected national income per unit of

human capital and is independent of Ht.

4.3 Comparison among Actions I, II and III

This subsection examines the results of actions I, II and III (G1, G2 and G3). Promotion support

reallocates the industry-specific factors over all industries with the administrative cost c. This

paper focuses on two issues: first, the rent-seeking issue in which rent-seekers in non-learning

industries receive government assistance under non-elaborate monitoring, and second, the flex-

ibility issue in which demand variability reduces flexibility under elaborate monitoring. The

rent-seeking issue is more significant with larger degree of rent-seeking activities, λ, while the

flexibility issue is more significant with larger demand variability, θ. By equations (12) and (13),

the following results are obtained.

Lemma 2 R(G1) > R(G2) > R(G3) and L∗A(G1) < L∗A(G2).

Remark 6 A laissez faire policy always attains the highest expected national income (R(G1) >

max{R(G2), R(G3)}). This is because the economy incurs administrative cost c > 0 under pro-
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motion support. Therefore, promotion support can never be justified without dynamic learning

effect. Moreover, under promotion support, elaborate monitoring always attains smaller expected

national income than non-elaborate monitoring (R(G2) > R(G3)) since elaborate monitoring in-

duces the loss in the expected industry-specific productivity index that reduces the expected

national income.

Remark 7 Promotion support without elaborate monitoring causes learning industries to face a

higher labor productivity and select a higher employment than a laissez faire policy, in spite that

some rent-seekers in non-learning industries reduce the effectiveness of the support (L∗A(G1) <

L∗A(G2)). On the other hand, promotion support with elaborate monitoring yields a higher

industry-specific factor than without such monitoring. But at the same time it also reduces

the expected industry-specific productivity index in learning industries. An increase in the

industry-specific factor induces a higher labor productivity, but a decrease in the industry-specific

productivity index induces a lower labor productivity. The industry-specific factor under non-

elaborate monitoring depends on the degree of rent-seeking activity, λ, and the expected industry-

specific productivity index under elaborate monitoring depends on demand variability, θ. Thus,

the two parameters, λ and θ, are crucial to determine which monitoring scheme induces a higher

labor productivity and a higher employment in learning industries.

The following result is related to the total labor employment under G2 and G3.

Lemma 3 For any λ ∈ (0, 1/K−1), there exists a unique value ψ(λ) ∈ (0, 1] such that L∗A(G2) <

L∗A(G3) for any θ ∈ (0, ψ(λ)) and L∗A(G2) > L∗A(G3) for any θ ∈ (ψ(λ), 1]. Furthermore, the

critical value ψ(λ) is increasing in λ if ψ(λ) < 1.

Remark 8 Promotion support induces larger learning effect under elaborate monitoring if the

rent-seeking issue is relatively significant, i.e., λ is relatively large compared to θ. In contrast, it

induces larger learning effect under non-elaborate monitoring if the flexibility issue is relatively

significant, i.e., θ is relatively large compared to λ.

Lemmas 2 and 3 show the trade-off relation in the sense that promotion support reduces

the attainable welfare in the current period, but it may increase future welfare by speeding up
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human capital accumulation. Figure 4 illustrates the relationship between L∗A(G2) and L∗A(G3)

for each pair of λ and θ. The critical value θ = ψ(λ) is represented by OLM. Any pair (λ, θ) in

area OLMN yields L∗A(G2) < L∗A(G3), while any pair in area OPL yields L∗A(G2) > L∗A(G3).

4.4 Dynamic Decision Problem

This subsection examines government’s dynamic decision problem (8), in which the government

has a trinary choice in each period.21 Promotion support may make an economy enjoy larger

dynamic learning effect through an increase in labor employment in learning industries. Since

learning effect is diminishing over time, so is the benefit of promotion support. However, at the

same time, promotion support incurs an administrative cost. The nature of the cost does not

depend on time and learning potentials. Thus, the balance between the need for learning effect

and the desirability for laissez faire changes endogenously.

Elaborate monitoring also has its benefit and cost under promotion support. The benefit

comes from the preclusion of rent-seeking activities. Since such activities reduce the progress of

human capital accumulation, and since human capital approaches to its upper bound (diminishing

learning potentials over time), the benefit diminishes over time. In contrast, the cost is from

the loss in flexibility. The nature of the cost does not depend on time and learning potentials

since the loss of flexibility reduces the productivity all the time. Thus, the balance between

the need for the preclusion of rent-seeking activities and the desirability for flexibility changes

endogenously.

The optimal government action in period t depends only on Ht, and G(H) denotes the

function mapping the state variable H ∈ (0, 1) into the optimal government action in G.22 There

are two cases according to the result in Lemma 3. The first case, say case A, is the one with

θ ∈ (ψ(λ), 1] corresponding to area OLP in Figure 4. The second case, say case B, is the one

21The state variable H is independent of the realization of style change and this problem has the Markov
property. This property is due to the specification in which in each period the total labor inputs in learning
industries is determined before Nature decides whether or not to change style, i.e., each competitive firm commits
to use some labor inputs before the realization of style uncertainty, and hence next period’s level of human capital
is also independent of the realization (even though being dependent on probability θ of style change).

22The dynamic problem is autonomous since its dependence on time is merely through the discount term, which
is assumed to be constant at β ∈ (0, 1).
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with θ ∈ [0, ψ(λ)) corresponding to area OLMN in Figure 4. On the (ν,R) plane in Figures 5,

6 and 7 (the upper part), points A, E and C represent (ν(L∗A(G1)), R(G1)), (ν(L∗A(G2)), R(G2))

and (ν(L∗A(G3)), R(G3)), respectively. Lemma 3 requires that point C is within area OBEF if

θ ∈ (ψ(λ), 1], while point C is within area EFHG if θ ∈ [0, ψ(λ)).

We further divide case B into two subcases according to the following way. On the (ν,R)

plane in Figures 6 and 7 (the upper part), we divide area EFHG into two subareas according

to the line that passes through both points A and E. The first is subcase B-I in which point

C is within area EIG above line AI, and the second is subcase B-II in which point C is within

area EFHI below line AI. Figures 6 and 7 illustrates subcases B-I and B-II, respectively. Then,

regarding the relationship between each of the two subcases and the values of (θ, λ), the following

preliminary result is obtained.

Lemma 4 Consider line AI in Figures 5, 6 and 7. For any λ ∈ (0, 1/K − 1), there exists a

unique value ϕ(λ) ∈ (0, ψ(λ)] such that (ν(L∗A(G3)), R(G3)) is above line AI for any θ ∈ (0, ϕ(λ)),

and (ν(L∗A(G3)), R(G3)) is below line AI for any θ ∈ (ϕ(λ), ψ(λ)). And also, the critical value

ϕ(λ) is increasing in λ.

Remark 9 Using Lemmas 3 and 4, for any λ ∈ (0, 1/K−1), the range (0, 1] of demand variability

θ is divided into three subranges; (0, ϕ(λ)), (ϕ(λ), ψ(λ)) and (ψ(λ), 1], which correspond to

subcase B-I, subcase B-II and case A, respectively. Case A corresponds to the situation in which

the flexibility issue is more significant. Subcase B-I corresponds to the situation in which the

rent-seeking issue is relatively significant compared to the flexibility issue. Subcase B-II shows

the intermediate situation between case A and subcase B-I (see Figure 4).23

23Figures 4, 5, 6 and 7 illustrate these three categories for the better understanding. Dotted curve OT in Figure
4 represents the function θ = ϕ(λ) that is monotonically increasing in λ and divides area B into area B-I and
area B-II. Curve OLM represents the function θ = ψ(λ) that is also monotonically increasing in λ and divides the
whole area into area B and area A. Figure 5, as explained before, shows case A that corresponds area A in Figure
4. In contrast, Figure 6 shows subcase B-I that corresponds to area B-I in Figure 4, and the result of action III
(point C) is inside area EIG. Finally, Figure 7 indicates subcase B-II that corresponds to area B-II in Figure 4,
and the result of action III (point C) is inside EFHI.
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4.4.1 Main Results

We now show the main results in each of the three cases, case A, subcases B-I and B-II. Let

mi = [1 − β(1 − ν(L∗A(Gi)))]/[1 − β(1 − ν(L∗A(G1)))] > 1 and ri = R(G1)/R(Gi) > 1 for each

i ∈ {2, 3}.

Case A : The Flexibility Issue is Relatively Significant

Proposition 1 Suppose that the flexibility issue is relatively significant such that θ ∈ (ψ(λ), 1].

(1) The adoption of promotion support without elaborate monitoring is optimal for H ∈ (0, Ĥ),

and a laissez faire policy is optimal for H ∈ (Ĥ, 1), where

Ĥ ≡ Ĥ(λ) = 1− r2 − 1

r2m2 − 1
∈ (0, 1). (14)

(2) The critical value Ĥ is decreasing in λ.

Remark 10 (Policy Liberalization) Since human capital converges to its upper-bound, the

effect of promotion support on learning effect is diminishing over time.24 This implies that the

merit of promotion support is diminishing over time with the nature of its cost unchanged. Thus,

promotion support becomes less attractive over time. If the initial level of human capital is less

than Ĥ, then the government should adopt the policy reform from the promotion support regime

to the laissez faire regime. That is, the optimal policy calls for endogenous liberalization in some

future period (see Figure 5 (the lower part)).

Remark 11 (Bureaucracy) Elaborate monitoring has large negative impact on the industry-

specific productivity index. Since the flexibility issue is relatively more significant compared to

the rent-seeking issue, the cost of elaborate monitoring is relatively high compared to its benefit.

Thus, elaborate monitoring cannot be justified.

24Proposition 1 partially comes from the result that our original dynamic problem can be reducible to an
optimal stopping problem in which the government decides the timing of changing from action II to action I if the
initial level of human capital is small enough so that action II is optimal in the initial period. For the discussion
of an optimal stopping problem, see Dixit and Pindyck (1994).
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Remark 12 (Comparative Statics) A rise in the degree of rent-seeking activities makes pro-

motion support less effective. In this case, the reform to a laissez faire policy should be imple-

mented at an earlier stage of human capital accumulation.

Subcase B-I : The Rent-Seeking Issue is Relatively Significant

Proposition 2 Suppose that the rent-seeking issue is relatively significant such that θ ∈ (0, ϕ(λ)).

(1) The adoption of promotion support with elaborate monitoring is optimal for H ∈ (0, H̃), and

a laissez faire policy is optimal for H ∈ (H̃, 1), where

H̃ = H̃(θ) = 1− r3 − 1

r3m3 − 1
∈ (0, 1). (15)

(2) The critical value H̃ is decreasing in θ.

Remark 13 (Policy Liberalization) As in case A, the result is also due to the property

of diminishing learning effect. If the initial level of human capital is less than H̃, then the

government should adopt the policy reform from the promotion support regime to the laissez faire

regime in some future period, i.e., the optimal policy calls for endogenous policy liberalization

(see Figure 6 (the lower part)).

Remark 14 (Bureaucracy) In contrast to case A, elaborate monitoring should be accompa-

nied with promotion support in the early stage. Although elaborate monitoring reduces flexibility,

it makes promotion support significantly more effective by avoiding serious rent-seeking. The

benefit of elaborate monitoring is relatively high compared to its cost.

Remark 15 (Comparative Statics) The policy reform to a laissez faire policy should be

implemented at an earlier stage of human capital accumulation as demand variability becomes

larger. The increase in demand variability θ reduces the speed of human capital accumulation

as well as the expected national income, making a laissez faire policy become more attractive.
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Subcase B-II : Intermediate Case Subcase B-II corresponds to the case in which (θ, λ) is

in the intermediate case between subcase B-I and case A. Then the following preliminary result

is obtained.

Lemma 5 Suppose that θ ∈ (ϕ(λ), ψ(λ)). Let Ĥ = 1− (r2 − 1)/(r2m2 − 1). Then,

(1) G(H) = G1 = (0, 0) for any H ∈ (Ĥ, 1);

(2) there exists some ε ∈ (0, Ĥ) such that G(H) = G2 = (1, 0) for any H ∈ (Ĥ − ε, Ĥ);

(3) there exists some ξ ∈ (0, Ĥ) such that G(H) = G3 = (1, 1) for any H ∈ (0, ξ).

Remark 16 The first part of this result states that a laissez faire policy is optimal at a later

stage of human capital accumulation as in the previous cases. The second says that promotion

support without elaborate monitoring is optimal if human capital is less than, but close enough

to Ĥ. The third means that if human capital is small enough, promotion support with elaborate

monitoring is optimal.

Notice that in subcase B-II, the complete description of the optimal government action over

the domain of the state variable H may be complex. The assumption of θ ∈ (ϕ(λ), ψ(λ)) is

insufficient to guarantee that there exist two critical values H1 and H2 such that G(H) = G3 for

H ∈ (0, H1), G(H) = G2 for H ∈ (H1, H2), and G(H) = G1 for H ∈ (H2, 1).25 To understand

25There may be a case in which, focusing on the range (a, 1) ⊂ (0, 1) of H, action II is optimal for any H in its
lower range (a, a1), action III is optimal for any H in its middle range (a1, a2), action II is again optimal for any
H in its higher range (a2, a3), and action I is finally optimal for any H in its highest range (a3, 1). To understand
this, consider a numerical example, where (R1, R2, R3) = (1.00, 0.81, 0.80) and (ν1, ν2, ν3) = (0.10, 0.39, 0.40)
with β = 0.95, where Ri ≡ R(Gi) and νi ≡ ν(L∗A(Gi)) for i ∈ {1, 2, 3}. Let us restrict ourselves into the range
H ∈ (0.840, 1.000). Then we can derive the optimal action: G(H) = G2 for H ∈ (0.840, 0.850), G(H) = G3

for H ∈ (0.850, 0.868), G(H) = G2 for H ∈ (0.868, 0.909), and G(H) = G1 for H ∈ (0.909, 1.000). In fact,
the optimal action may not change monotonically, as human capital H increases. It changes from G2 to G3 at
H1 = 0.850, from G3 to G2 again at H2 = 0.868, and from G2 to G1 at H3 = 0.909. This implies that there are
three critical values of H, at each of which the policy change should be considered, and that the range in which
G2 is optimal is divided into two regions, (0.840, 0.850) and (0.868, 0.909).

However, it does not mean that the optimal policy (sequence of actions) is G2 → G3 → G2 → G1. Define
by G(H) the function mapping the state variable H ∈ (0, 1) into the optimal sequence of government actions
from that period. The function G : (0, 1) → G ≡ {G1, G2, G3} is a function mapping the state variable H
into the optimal government action at that period, while the function G : (0, 1) → Gχ0 mapping the state
variable H ∈ (0, 1) into the optimal infinite sequence of government actions from that period, where Gχ0 is
the policy space consisting of countably infinite sequence of elements in G. In this example, the optimal policy
sequence is G(H) = {2(2), 1(∞)} for any H ∈ (0.840, 0.850), G(H) = {3(1), 1(∞)} for any H ∈ (0.850, 0.868),
G(H) = {2(1), 1(∞)} for any H ∈ (0.868, 0.909), and G(H) = {1(∞)} for any H ∈ (0.909, 1.000), where i(l) is the
finite sequence {Gi, · · · , Gi} with l elements, and 1(∞) is the infinite sequence {G1, G1, · · · }. {3(m), 2(n), 1(∞)}
means that the government adopts G3 m times (periods), G2 n times (periods) and then G1 forever. This implies
that if the initial human capital is between 0.840 and 0.850, then the path of human capital under the optimal
action skips over the range (0.850, 0.868), where G3 is optimal.
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subcase B-II more, we consider an optimal sequence of government actions. Let

H ′ = 1− (1− β)[R(G2)−R(G3)]

[1− β(1− ν(L∗A(G3))]R(G2)− [1− β(1− ν(L∗A(G2))]R(G3)
.

Then, the following preliminary result is obtained.

Lemma 6 Suppose that θ ∈ (ϕ(λ), ψ(λ)) and H̄ < H ′. For any H ∈ (0, 1), neither G2 nor G3

follows G1, and G3 never follows G2 in the optimal sequence of government actions.

Remark 17 Once a laissez faire policy is optimal in some period, promotion support cannot

be optimal in any future period irrespective of monitoring action. Moreover, once promotion

support without elaborate monitoring is optimal, elaborate monitoring cannot be justified in

any future period.

By Lemmas 5 and 6, the following main result in subcase B-II is obtained.

Proposition 3 Suppose that θ ∈ (ϕ(λ), ψ(λ)) and H̄ < H ′. Suppose also that the adoption of

promotion support with elaborate monitoring is optimal for a given initial human capital H ∈

(0, 1). Then, at most two policy reforms should be adopted in some future periods, i.e., G3 → G1

or G3 → G2 → G1, where Gi → Gj represents the policy reform from Gi to Gj.

Remark 18 (Two Policy Reforms) In contrast to the previous cases, case A and subcase B-I,

where one endogenous policy reform should be implemented, the important point here is that

under some conditions, there may be two endogenous policy reforms, G3 → G2 → G1. Figure 7

(the lower part) illustrates a case in which the policy reform should be implemented in periods

T ∗ and T ∗∗.

Remark 19 The balance between the benefit and the cost of monitoring changes endogenously

over time. In this case, the benefit dominates the cost in the early stage when learning potentials

are large, while the cost dominates the benefit in the later stage when learning potentials get

small.26 That is, the rent-seeking issue is significant in the early stage, while the flexibility issue is

26Case A corresponds to a situation in which the cost always dominates the benefit until the period when
promotion support cannot be justified. Conversely, subcase B-I corresponds to a situation in which the benefit
always dominates the cost until the period when promotion support cannot be justified.
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significant in the later stage. Noticing that ultimately promotion support cannot be justified, the

policy makers should adopt two endogenous policy reforms; the first is the administrative reform

from elaborate monitoring to non-elaborate monitoring with learning industries continuously

supported, and the second is the reform to a laissez faire policy.

Remark 20 (Numerical Example)

Consider an example in which L̄ = 1, a0 = 1, K = 0.2, δ̄ = 0.25, η = 0.1, µ = 0.5, τ = 0.1,

λ = 0.3, θ = 0.25 and ν(L) = L. The expected national income per unit of human capital and the

speed of human capital accumulation under government actions, G1, G2 and G3, are represented

as (R(G1), ν(L∗A(G1)) = (1, 0.2), (R(G2), ν(L∗A(G2)) = (0.9747, 0.23), and (R(G3), ν(L∗A(G3)) =

(0.9688, 0.2329), respectively. It is easy to show that this is the case of θ ∈ (ϕ(λ), ψ(λ)), i.e.,

subcase B-II. Suppose that the initial human capital is H0 = 0.1. Using Lemmas 5 and 6, the

optimal sequence of government actions is

{G3, G3, G3, G3︸ ︷︷ ︸
4 periods

, G2, G2︸ ︷︷ ︸
2 periods

, G1, G1, . . .︸ ︷︷ ︸
infinitely many periods

},

which implies that there are two endogenous policy reforms.

Finally we deduce the following result that is satisfied in all cases, case A, subcase B-I and

subcase B-II.

Corollary 2 Let Ȟ ≡ max{Ĥ, H̃}, where Ĥ = 1 − (r2 − 1)/(r2m2 − 1) and H̃ = 1 − (r3 −

1)/(r3m3 − 1). Then, initially the adoption of promotion support is optimal for any H ∈ (0, Ȟ),

and ultimately the laissez faire regime is optimal for any H ∈ (Ȟ, 1).

4.5 Discussions

4.5.1 Policy Reform from Industrial Policies to Laissez Faire

In the development process of many countries (especially those in Asia), there is a continuous

sequence of policy reforms, leading from the implementation of industrial policies to the grad-

ual adoption of laissez faire. At the same time, there have been on-going debates about the
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effectiveness of industrial policies. Taking Japan for example, Miwa (2004) states that targeted

industrial policies constitute unfair government intervention and play little role in development.

In their view, an industrial policy represents past errors and liberalizing reform is its subsequent

correction. In contrast, researchers like Amsden (2001) regards the protection of infant industries

as necessary. Others like Itoh, Kiyono, Okuno-Fujiwara, and Suzumura (1991) maintain that al-

though past industrial policies may not be error-free, such policies as the adoption of temporary

protection to launch an industry can be helpful, at least in theory.

In order to evaluate the effectiveness of industrial policies, an investigation of economic his-

tory is necessary. This study is not an investigation of history, but a theoretic inquiry. From

the theoretical point of view, our results agree with Itoh, Kiyono, Okuno-Fujiwara, and Suzu-

mura (1991) in that temporary industrial policies may be valuable. But more than that, the

development process, viewed as an episode of ‘catching-up’ in ‘late-industrialization,’ calls for an

endogenous sequence of policy reforms, with justified government participation in early stages

and continued liberalization toward laissez faire. Therefore, it is not a case of present wisdom

correcting past errors. Balancing the benefit and the cost of industrial policies, reforms also have

their optimal timing.

4.5.2 Cost and Benefit of Bureaucracy

At a more specific level, it is well recognized that industrial policies may nurture knowledge

capital and overcome coordination failures. But there is inherent cost due to the distortion that

industrial policies induce. What has not been examined analytically in the past literature is

that these bureaucratic practices accompanying industrial policies would incur the cost of losing

production flexibility as a result. This is studied in our inquiry. In cases, A, B-I and B-II, we

have highlighted the balance of cost and benefit related to industrial policies and bureaucratic

procedures.

There has been a lot of studies that emphasize the significance of production flexibility for

achieving success across a wide rage of industries, especially quality- and fashion-sensitive in-

dustries (see, e.g., Deyo and Doner (2001), Appelbaum and Smith (2001), and Dicken (1992)).
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In particular, globalization may intensify the sensitivity since international markets are char-

acterized by ruthless competition and ongoing innovation. In such a situation, the flexibility

issue is significant. The cost of monitoring may be large so that elaborate monitoring cannot be

justified, as in case A. This finding has important policy implication since practicing elaborate

monitoring could be problematical in the case that the market of a targeted industry is highly

variable (e.g., machine tool industry and electronic industry). It may be considered that the lack

of competitiveness of Indian exports in pre-reform India can be attributed to strict regulatory

controls under frequent market shifts in the international market.

On the other hand, the rent-seeking issue may depend partially on state governance. If state

governance is not mature, as in some developing countries, it is much more difficult to prevent

undeserved firms from obtaining government assistance. Since the assistance is not uniform for all

industries under a targeted industrial policy, there is doubt about the appropriate classification

for a good. In this situation, it may be easy for firms in non-targeted industries to make it

appear to fit into a targeted category. Thus, the rent-seeking issue is significant, and the benefit

of elaborate monitoring is large. Although seemingly inefficient, complex bureaucratic procedures

might be necessary to make industrial policies effective, as in subcase B-I.

The model also implied that administrative reform is not necessarily a correction of past

errors, but may be an optimal action of reflecting to the change in circumstance. The desirability

for flexibility becomes more crucial compared to the need for the preclusion of rent-seeking

activities over time. In subcase B-II, which is the case between the previous two cases, the policy

makers seek to reduce in complexity of bureaucratic procedure before an ultimate transition to

laissez faire. This may be consistent with the fact that in many countries, administrative reforms

to simplify bureaucratic procedures have become the slogans of the day even though industry

targeting still holds.

5 Conclusion

Targeted industrial policies are usually accompanied with some bureaucratic controls, which

often bring about bureaucratic red tape. This paper focused on bureaucratic monitoring as the
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controls to prevent sub-optimal rent-seeking activities. A key problem of bureaucratic monitoring

is that it reduces production flexibility in a globalized world with variable market demands. We

developed a dynamic model that explicitly includes the negative effect of monitoring on flexibility

and addressed policy transition to laissez faire.

In this paper the policy in each period consists of two components; (1) government support,

which promotes dynamic learning, and (2) a bureaucratic control, which constitutes monitoring.

The analysis calls for endogenous liberalization in the sense that a targeted industrial policy

should be implemented at an earlier stage of human capital accumulation, and then a laissez

faire policy should be adopted at a later stage. The result might be consistent with the empirical

evidence in Asian countries.

It was also shown that whether or not to couple elaborate monitoring with a targeted in-

dustrial policy at an earlier stage depends on the degrees of rent-seeking activities and demand

variability. When demand variability is relatively large, elaborate monitoring cannot be justi-

fied contrary to the traditional protectionist’s stance. In contrast, when rent-seeking activities

prevail for some reasons, elaborate monitoring may induce higher welfare over time. The paper

also found it plausible that the government should adopt two endogenous policy transitions: the

first is the administrative reform from elaborate monitoring into a simplified one, with learning

industries continuously supported, and the second is the reform to a laissez faire policy.

This paper tried to shed light into the motivation of a government to adopt bureaucratic

monitoring in the presence of industrial targeting. Hopefully this will help to interpret economic

history as well as to design government policies. As a final remark, we have not studied the role

of innovation in the development process. This problem seems important since the aim of some

industrial policies may be to promote innovation by domestic firms. Although there are some

similarities between innovative process and learning process, it is important to understand the

difference: innovation of technologies is not the by-product of production experience. That topic

should be explained separately in the future.
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6 Appendix

In this Appendix, we will first explain the optimal control problem with a trinary choice, and
show an important result which we use in the proof of results in Section 4. After that, we will
show the proofs of all Lemmas and Propositions in Section 4.

6.1 Optimal Control Problem with Trinary Choice

6.1.1 Setup

Consider the situation in which there are three distinct actions, one of which must be chosen
in each period. Let G ≡ {G1, G2, G3} denote the set of all feasible actions in each period, and
let Gχ0 ≡ {G1, G2, G3}χ0 denote the set of all sequences whose element is in G. Let Ht ∈ (0, 1)
denote the state variable in period t. The reward in period t, which depends on Ht and Gt ∈ G,
is represented as reward function HtR(Gt). The state variable in period t + 1 depends on Ht

and variable ν(L∗A(Gt)) ∈ (0, 1), which is determined by Gt, and the state equation for the state
variable is described by

Ht+1 = 1− (1−Ht)[1− ν(L∗A(Gt))].

The discrete-time dynamic optimization problem with discount rate β ∈ (0, 1) is given by:

max
{Gt∈G}∞t=0

∞∑
t=0

βtHtR(Gt),

subject to the above state equation and H0 as given. For simplicity, for i ∈ {1, 2, 3}, let

Ri ≡ R(Gi), νi ≡ ν(L∗A(Gi)) and Mi ≡ 1− νi,

and we assume that R1 > R2 > R3 and 1 > M1 > M2 > M3 as in case B in Section 4. We
denote by v(H) the value function of this problem.

6.1.2 Some Preliminaries

Let V (H, g) denote the value when action sequence g ∈ Gχ0 is chosen with H ∈ (0, 1) as given.
We denote by {i(k)} the finite sequence {Gi, · · · , Gi}, the number elements is k. Then, we have
that, for m ∈ {1, 2, · · · } and for i 6= j ∈ {2, 3},

V (H; {1(∞)}) = V (H; {2(0), 1(∞)}) = V (H; {3(0), 1(∞)}) =
R1

1− β
− (1−H)

R1

1− βM1

;

V (H; {i(m), 1(∞)}) =

[
Ri

1− βm

1− β
+R1

βm

1− β

]
− (1−H)

[
Ri

1− (βMi)
m

1− βMi

+R1
(βMi)

m

1− βM1

]
;

V (H; {1(1), i(m), 1(∞)}) = R1 +
β

1− β
[Ri + βm(R1 −Ri)]

− (1−H)

[
R1 + βM1

(
Ri

1− βMi

+ (βMi)
m

[
R1

1− βM1

− Ri

1− βMi

])]
;
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V (H; {i(1), j(m), 1(∞)}) = Ri +
β

1− β
[Rj + βm(R1 −Rj)]

− (1−H)

[
Ri + βMi

(
Rj

1− βMj

+ (βMj)
m

[
R1

1− βM1

− Rj

1− βMj

])]
.

We first deduce the following preliminary results regarding the function V :

Claim 1 For any m ∈ {0, 1, · · · } and any i ∈ {2, 3},

∂V (H; {i(m+1), 1(∞)})
∂H

<
∂V (H; {i(m), 1(∞)})

∂H
.

Proof of Claim 1 Since M1 > Mi for i ∈ {2, 3}, it must hold that, for m = 0,

∂V (H; {1(∞)})
∂H

− ∂V (H; {i(1), 1(∞)})
∂H

=
R1

1− βM1

−
[
R1

βMi

1− βM1

+Ri

]
=

1− βMi

1− βM1

R1 −Ri > R1 −Ri > 0.

For m ∈ {1, 2, . . .}, it must hold that

∂V (H; {i(m), 1(∞)})
∂H

− ∂V (H; {i(m+1), 1(∞)})
∂H

= (βMi)
m(1− βMi)

[
R1

1− βM1

− Ri

1− βMi

]
> 0.

Thus, for any m ∈ {0, 1, 2, . . .} and any i ∈ {2, 3}, Claim 1 holds. �

Claim 2 For any m ∈ {0, 1, · · · } and any i ∈ {2, 3},

∂V (H; {3(1), i(m), 1(∞)})
∂H

<
∂V (H; {2(1), i(m), 1(∞)})

∂H
<
∂V (H; {1(1), i(m), 1(∞)})

∂H
.

Proof of Claim 2 For j ∈ {2, 3},

∂V (H; {(j − 1)(1), i(m), 1(∞)})
∂H

− ∂V (H; {j(1), i(m), 1(∞)})
∂H

=(Rj−1 −Rj) + β(Mj−1 −Mj)

[
R1

(βMi)
m

1− βM1

+Ri
1− (βMi)

m

1− βMi

]
> 0,

which yields the desired result. �

Claim 3 For any m ∈ {0, 1, · · · } and any i ∈ {2, 3},

∂V (H; {i(m), 1(∞)})
∂H

<
∂V (H; {1(1), i(m), 1(∞)})

∂H
≤ ∂V (H; {1(∞)})

∂H
,

with equality if m = 0.
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Proof of Claim 3 For any m ∈ {0, 1, · · · } and any i ∈ {2, 3}, it must hold that

∂V (H; {1(1), i(m), 1(∞)})
∂H

− ∂V (H; {i(m), 1(∞)})
∂H

=

(
R1 + βM1

[
R1

(βMi)
m

1− βM1

+Ri
1− (βMi)

m

1− βMi

])
−

(
R1

(βMi)
m

1− βM1

+Ri
1− (βMi)

m

1− βMi

)
=(1− βM1)[1− (βMi)

m]

(
R1

1− βM1

− Ri

1− βMi

)
> 0,

which yields the desired result. �

Let G : (0, 1) → Gχ0 denote the policy function mapping the state space (0, 1) into the action
sequence space Gχ0 , which consists of countably infinite sequence. We apply the concept of the
backwards iteration. For any m ∈ {0, 1, · · · } and any i ∈ {2, 3}, let Hm,m+1

i such that

V (Hm,m+1
i ; {i(m), 1(∞)}) = V (Hm,m+1

i ; {i(m+1), 1(∞)}).

Then we deduce the following result:

Claim 4 Suppose that V (Hm,m+1
i ; {i(m), 1(∞)}) = V (Hm,m+1

i ; {i(m+1), 1(∞)}). Then, it must hold
that

Hm,m+1
i = 1−

R1

Ri
− 1

Mm
i

[
1−βMi

1−βM1

R1

Ri
− 1

] ⇔ 1−Hm,m+1
i =

R1 −Ri

Mm
i (1− βMi)

[
R1

1− βM1

− Ri

1− βMi

]−1

.

Proof of Claim 4 We can derive this result directly using the function V . �

6.1.3 Proposition and Proof

In this section we present the main proposition, and then show their proof by applying the
backwards iteration. We first show the preliminary result in the case in which the state variable
Ht is close enough to its asymptotic limit.

Lemma 7 There exists some value H̄ ∈ (0, 1), close enough to unity, such that G(H) = {1(∞)}
for any H ∈ (H̄, 1)

Proof of Lemma 7 Suppose, to get a contradiction, that {1(∞)} is not an optimal policy for
any H ∈ (0, 1). Pick any Ht̄ ∈ (0, 1) as the state variable in period t̄ such that

Ht̄ = 1− ε, where 0 < ε <
R1 −R2

R1

(1− β),

and the optimal action in period t̄ is not G1. Without loss of generality, we assume that G(Ht̄) =
G2. Then, it must hold that Hs ∈ (1− ε, 1) for all s > t̄, which implies that

v(Ht̄) = R2 + max
{Gs∈G}∞s=t̄+1

∞∑
s=t̄+1

βs−t̄HsR(Gs) < R2 + max
{Gs∈G}∞s=t̄+1

∞∑
s=t̄+1

βs−t̄R(Gs) = R2 +
β

1− β
R1,
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since R1 > R2 > R3 and Hs ∈ (0, 1). Also, since Ht̄ ∈ [1− ε, 1), v(Ht̄) must satisfy

v(Ht̄) = max
{Gs∈G}∞s=t̄

∞∑
s=t̄

βs−t̄HsR(Gs) ≥ (1− ε) max
{Gs∈G}∞s=t̄

∞∑
s=t̄

βs−t̄R(Gs) = (1− ε)
R1

1− β
.

But, since 0 < ε < (R1 −R2)(1− β)/R1 by the assumption, we have that

(1− ε)
R1

1− β
>

[
1− (R1 −R2)(1− β)

R1

]
R1

1− β
= R2 +

β

1− β
R1,

which contradicts to the fact that

(1− ε)
R1

1− β
≤ v(Ht̄) < R2 +

β

1− β
R1.

Thus, for any H close enough to unity, G1 is optimal, i.e., G(H) = {1(∞)}. �

By Lemma 7 and Claims 2 and 4, we can deduce the following result:

Lemma 8 G(H) = {1(∞)} for any H ∈ (H1, 1), where H1 ≡ max{H0,1
2 , H0,1

3 }.

Proof of Lemma 8 We need to find the action Gi and the level of state variable H1 such that

V (H, {1(∞)}) = max
l∈Gχ0

V (H, l),

for any H ∈ (H1, 1), and

V (H, {1(∞)}) < V (H, {i(1), 1(∞)}),

for any H ∈ (0, H1). By Lemma 7 and Claim 2, there exists some value H̄ ∈ (0, 1), close to
unity, such that G(H) = {1(∞)} for any H ∈ (H̄, 1), and that

∂V (H; {3(1), 1(∞)})
∂H

<
∂V (H; {2(1), 1(∞)})

∂H
<
∂V (H; {1(∞)})

∂H
,

and

V (1; {3(1), 1(∞)}) < V (1; {2(1), 1(∞)}) < V (1; {1(∞)}).

Compare action sequences {1(∞)}, {2(1), 1(∞)} and {3(1), 1(∞)}, and find H1 such that

H1 = max{H0,1
2 , H0,1

3 }.

By Claim 4, it must hold that

max{V (H; {3(1), 1(∞)}), V (H; {2(1), 1(∞)})} < V (H; {1(∞)})

for H ∈ (H0,1
2 , 1) if H0,1

3 < H0,1
2 and for H ∈ (H0,1

3 , 1) if H0,1
2 < H0,1

3 . Therefore, setting
H1 ≡ H0,1

i = max{H0,1
2 , H0,1

3 }, we obtain the desired result. �
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We now have two cases: the first is H0,1
3 < H0,1

2 , and the second is H0,1
2 < H0,1

3 . If H0,1
3 <

H0,1
2 , then G(H) = {1(∞)} for any H ∈ (H0,1

2 , 1). On the other hand, if H0,1
2 < H0,1

3 , then
G(H) = {1(∞)} for any H ∈ (H0,1

3 , 1). We consider the second case to examine subcase B-I in
Section 4. Suppose that H0,1

2 < H0,1
3 . Then, the main result is:

Result 1 Suppose that H0,1
2 < H0,1

3 . Then, G(H) = G3 if H ∈ (0, H0,1
3 ), and G(H) = G1 if

H ∈ (H0,1
3 , 1).

To prove this proposition, it is sufficient to show the following lemma:

Lemma 9 Suppose that H0,1
2 < H0,1

3 . Then, G(H) = {1(∞)} if H ∈ (H0,1
3 , 1), and G(H) =

{3(n), 1(∞)} if H ∈ (Hn,n+1
3 , Hn−1,n

3 ) for any n ∈ {1, 2, · · · }.

We apply the mathematical induction to this problem. We first examine the case of n = 1, and
then consider the case of n = m+1 assuming that G(H) = {3(m), 1(∞)} ifH ∈ (Hm,m+1

3 , Hm−1,m
3 ).

To do so, we deduce the following result.

Claim 5 Suppose that G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1). Then, {2(m), 1(∞)} is not optimal

for any m ∈ {1, 2, · · · } and any H ∈ (0, 1).

Proof of Claim 5 Noting that, by Claim 2,

∂V (H; {3(1), 1(∞)})
∂H

<
∂V (H; {2(1), 1(∞)})

∂H
<
∂V (H; {1(∞)})

∂H
,

and H0,1
2 < H0,1

3 , it must hold that

max{V (H; {3(1), 1(∞)}), V (H; {1(∞)})} > V (H; {2(1), 1(∞)}),

which implies that {2(1), 1(∞)} is not optimal. Next we will show that if {2(1), 1(∞)} is not op-
timal, then {2(m), 1(∞)} is not optimal for any m ∈ {1, 2, · · · }. To see this, suppose, to get a
contradiction, that there exists some positive integer m̄ > 1 such that {2(m̄), 1(∞)} is optimal for
some H̄ ∈ (0, 1). Then, for any m ∈ {1, · · · , m̄ − 1}, there exists some H̃m ∈ (0, 1) such that
{2(m), 1(∞)} is optimal, which contradicts to the fact that {2(1), 1(∞)} is not optimal. �

We now examine the case of n = 1.

Claim 6 {i(1), 3(1), 1(∞)} is not optimal for any H ∈ (0, 1) and for any i ∈ {1, 2}.

Proof of Claim 6 We will show that

max{V (H; {3(1), 1(∞)}), V (H; {1(∞)})} > V (H; {1(1), 3(1), 1(∞)}),

Suppose, to get a contradiction, that {1(1), 3(1), 1(∞)} is optimal for some H ∈ (0, 1). Since

∂V (H; {3(1), 1(∞)})
∂H

<
∂V (H; {1(1), 3(1), 1(∞)})

∂H
<
∂V (H; {1(∞)})

∂H
,

by Claim 3, there exists some H̄ ∈ (H0,1
3 , 1) such that

V (H̄; {1(∞)}) < V (H̄; {1(1), 3(1), 1(∞)}),
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which contradicts to the assumption that G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1). �

Claim 7 Suppose that G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1). Then,

V (H0,1
3 ; {3(1), 1(∞)}) = V (H0,1

3 ; {1(∞)}) ≥ V (H0,1
3 ; {2(1), 3(1), 1(∞)}).

Proof of Claim 7 Suppose, to get a contradiction, that

V (H0,1
3 ; {3(1), 1(∞)}) < V (H0,1

3 ; {2(1), 3(1), 1(∞)}).

Then, there exists some H̄ ∈ (H0,1
3 , 1) such that {2(1), 3(1), 1(∞)} is optimal for H̄, which contra-

dicts to the fact that {1(∞)} is optimal for H ∈ (H0,1
3 , 1). �

Claim 8 Suppose that G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1). Then, for any H ∈ (H1,2

3 , H0,1
3 ),

V (H; {2(1), 3(1), 1(∞)}) < V (H; {3(1), 1(∞)})

if V (H1,2
3 ; {2(1), 3(1), 1(∞)}) < V (H1,2

3 ; {3(1), 1(∞)}).

Proof of Claim 8 By Claim 7, it must hold that V (H0,1
3 ; {3(1), 1(∞)}) ≥ V (H0,1

3 ; {2(1), 3(1), 1(∞)}).
Note that V (H; ·) is an affine function. By the assumption, we have that V (H1,2

3 ; {2(1), 3(1), 1(∞)}) <
V (H1,2

3 ; {3(1), 1(∞)}). Therefore, we derive the desired result. �

Claim 9 Suppose that G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1). Then, G(H) = {3(1), 1(∞)} for

any H ∈ (H1,2
3 , H0,1

3 ) if V (H1,2
3 ; {2(1), 3(1), 1(∞)}) < V (H1,2

3 ; {3(1), 1(∞)}).

Proof of Claim 9 Suppose that V (H1,2
3 ; {2(1), 3(1), 1(∞)}) < V (H1,2

3 ; {3(1), 1(∞)}). Then, by
Claim 8, {2(1), 3(1), 1(∞)} cannot be optimal for any H ∈ (H1,2

3 , H0,1
3 ). Also, by Claim 6,

{1(1), 3(1), 1(∞)} cannot be optimal for any H ∈ (H1,2
3 , H0,1

3 ). Note also that G(H) = {1(∞)}
for any H ∈ (H0,1

3 , 1), that

max{V (H; {1(∞)}), V (H; {3(2), 1(∞)})} < V (H; {3(1), 1(∞)}),

for any H ∈ (H1,2
3 , H0,1

3 ), that Ht+1 = 1−M3(1−H) ∈ (H0,1
3 , 1) for H ∈ (H1,2

3 , H0,1
3 ), and that

{2(m), 1(∞)} is not optimal by Claim 5. Therefore, it must hold that G(H) = {3(1), 1(∞)} for any
H ∈ (H1,2

3 , H0,1
3 ). �

Claim 10 Suppose that H0,1
2 < H0,1

3 . Then, V (H1,2
3 ; {2(1), 3(1), 1(∞)}) < V (H1,2

3 ; {3(1), 1(∞)}).

Proof of Claim 10 Define the function

Γ(H) ≡ V (H; {3(1), 1(∞)})− V (H; {2(1), 3(1), 1(∞)}).
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We need to show that Γ(H1,2
3 ) > 0 if H0,1

2 < H0,1
3 . Note that

Γ(H) = (R3 −R2) + β(R1 −R3) + (1−H)[R2 −R3 − βM3A1(1− βM2) + βM2A3(1− βM3)],

where Ai = Ri/(1− βMi) for i ∈ {2, 3}. Since

1−H1,2
3 =

R1 −R3

M3(1− βM3)(A1 − A3)
,

we have that

Γ(H1,2
3 ) = −(R2 −R3) +

R1 −R3

M3

[
1− β(M2 −M3)−

(1− βM2)(A1 − A2)

(1− βM3)(A1 − A3)

]
= −(R2 −R3) +

R1 −R3

M3

[
1− β(M2 −M3)−

(1− βM2)R1 − (1− βM1)R2

(1− βM3)R1 − (1− βM1)R3

]
.

Given (R1,M1) and (R3,M3), define Γ̄(R2,M2|(R1,M1), (R3,M3)) ≡ Γ(H1,2
3 ). Then, it is obvious

that Γ̄(R2,M2|(R1,M1), (R3,M3)) = 0 is as an affine function with respect to (R2,M2). Since

Γ̄(R3,M3) = 0;

Γ̄(R1,M1) =
R1 −R3

M3

[(1−M3)− β(M1 −M3)] >
R1 −R3

M3

(M1 −M3)(1− β) > 0;

Γ̄(R1,M3) = −(R1 −R3) < 0;

it is easy to show that the affine function Γ̄(R2,M2) = 0 passes through (R3, ν3) and some point
between (R1, ν1) and (R1, ν3) on the (R2, ν2)−plane, and that any point in the area, denoted by
Γ, below the line Γ̄(R2,M2) = 0 satisfies Γ̄(R2,M2) > 0. Let

Λ ≡ {(R2, ν2) | H0,1
2 < H0,1

3 , R1 > R2 > R3 and ν1 < ν2 < ν3}

denote the set of feasible pairs of R2 and ν2 that satisfies H0,1
2 < H0,1

3 . Since this set Λ is
represented by the triangle whose points are (R1, ν1), (R3, ν3) and (R3, ν1), we have that Λ ⊂ Γ.
Therefore, it must hold that if H0,1

2 < H0,1
3 , then Γ(H1,2

3 ) > 0 or

V (H1,2
3 ; {2(1), 3(1), 1(∞)}) < V (H1,2

3 ; {3(1), 1(∞)}),

which is the desired result. �

From the above analysis, we deduce the following result related to the case of n = 1 in Lemma
9.

Lemma 10 Suppose that H0,1
2 < H0,1

3 . Then, G(H) = {3(1), 1(∞)} for any H ∈ (H1,2
3 , H0,1

3 ).

Proof of Lemma 10 From Claims 9 and 10, we derive the desired result. �

We now suppose that

G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ),
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with H0,1
2 < H0,1

3 . Then, we consider the case of n = m+ 1.

Claim 11 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 <

H0,1
3 . Then, {1(1), 3(m), 1(∞)} and {2(1), 3(m), 1(∞)} cannot be an optimal policy for any H ∈

(Hm+1,m+2
3 , Hm,m+1

3 ).

Proof of Claim 11 Consider the policy {1(1), 3(m), 1(∞)}. Suppose, to get a contradiction,
that {1(1), 3(m), 1(∞)} is an optimal policy for some H̄ ∈ (Hm+1,m+2

3 , Hm,m+1
3 ). By Claims 1 and

3, it must hold that

∂V (H; {3(m+1), 1(∞)})
∂H

<
∂V (H; {3(m), 1(∞)})

∂H
<
∂V (H; {1(1), 3(m), 1(∞)})

∂H
.

Then, there exists some Ĥ ∈ (Hm,m+1
3 , Hm−1,m

3 ) such that {1(1), 3(m), 1(∞)} is optimal, which con-
tradicts to the assumption that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1

3 , Hm−1,m
3 ). Similarly,

consider the policy {2(1), 3(m), 1(∞)}. Suppose, to get a contradiction, that {2(1), 3(m), 1(∞)} is an
optimal policy for some H̄ ∈ (Hm+1,m+2

3 , Hm,m+1
3 ). By Claim 2, it must hold that

∂V (H; {3(m+1), 1(∞)})
∂H

<
∂V (H; {2(1), 3(m), 1(∞)})

∂H
.

Then, there exists some Ĥ ∈ (Hm,m+1
3 , Hm−1,m

3 ) such that {2(1), 3(m), 1(∞)} is optimal, which
contradicts to the assumption that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1

3 , Hm−1,m
3 ). �

Claim 12 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then, the optimal policy can be represented as {l∗, 3(m+1), 1(∞)} for any H ∈ (0, Hm,m+1

3 ), where
l∗ is a finite sequence, possibly empty, of elements from G.

Proof of Claim 12 From Claim 11, we already know that {1(1), 3(m), 1(∞)} and {2(1), 3(m), 1(∞)}
cannot be an optimal policy for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ). Since M1 > M2 > M3, there

must exist some t̄ such that Ht̄ ∈ (Hm+1,m+2
3 , Hm,m+1

3 ) if the initial state variable is less than
Hm+1,m+2

3 . In this case, the optimal policy can be represented as {l, 3(m+1), 1(∞)}, where l is a
non-empty finite sequence of elements from G. On the other hand, if the initial state variable is
between Hm+1,m+2

3 and Hm,m+1
3 , the optimal policy can be represented as {l, 3(m+1), 1(∞)}, where

l is a finite sequence of elements from G, but may be empty. �

Claim 13 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then, {1(1), 3(m+1), 1(∞)} is not an optimal policy for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ).

Proof of Claim 13 By Claim 12, we know that the optimal policy can be represented as
{l∗, 3(m+1), 1(∞)} for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ), where l∗ is a finite sequence, possibly empty,

of elements from G. We will show that, for any H ∈ (Hm+1,m+2
3 , Hm,m+1

3 ),

V (H; {3(m+1), 1(∞)}) > V (H; {1(1), 3(m+1), 1(∞)}),

35



Suppose, to get a contradiction, that {1(1), 3(m+1), 1(∞)} is optimal for someH ∈ (Hm+1,m+2
3 , Hm,m+1

3 ).
Since

∂V (H; {3(m+1), 1(∞)})
∂H

<
∂V (H; {1(1), 3(m), 1(∞)})

∂H
,

by Claim 2, there exists some H̄ ∈ (Hm,m+1
3 , Hm−1,m

3 ) such that

V (H̄; {3(m), 1(∞)}) < V (H̄; {1(1), 3(m+1), 1(∞)}),

which contradicts to the assumption that G(H) = {3(m), 1(∞)} for anyH ∈ (Hm,m+1
3 , Hm−1,m

3 ). �

Claim 14 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then,

V (Hm,m+1
3 ; {3(m+1), 1(∞)}) = V (Hm,m+1

3 ; {3(m), 1(∞)}) ≥ V (Hm,m+1
3 ; {2(1), 3(m+1), 1(∞)}).

Proof of Claim 14 Suppose, to get a contradiction, that

V (Hm,m+1
3 ; {3(m+1), 1(∞)}) < V (Hm,m+1

3 ; {2(1), 3(m+1), 1(∞)}).

Then, there exists some H̄ ∈ (Hm,m+1
3 , Hm−1,m

3 ) such that {2(1), 3(m+1), 1(∞)} is optimal for H̄,
which contradicts to the fact that {3(m), 1(∞)} is optimal for H ∈ (Hm,m+1

3 , Hm−1,m
3 ). �

Claim 15 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then, for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ),

V (H; {2(1), 3(m+1), 1(∞)}) < V (H; {3(m+1), 1(∞)})

if V (Hm+1,m+2
3 ; {2(1), 3(m+1), 1(∞)}) < V (Hm+1,m+2

3 ; {3(m+1), 1(∞)}).

Proof of Claim 15 By Claim 14, it must hold that

V (Hm,m+1
3 ; {3(m+1), 1(∞)}) ≥ V (Hm,m+1

3 ; {2(1), 3(m+1), 1(∞)}).

Note that V (H; ·) is an affine function. By the assumption, we have V (Hm+1,m+2
3 ; {2(1), 3(m+1), 1(∞)}) <

V (Hm+1,m+2
3 ; {3(m+1), 1(∞)}). Therefore, we derive the desired result. �

Claim 16 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then, G(H) = {3(m+1), 1(∞)} for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ) if V (Hm+1,m+2

3 ; {2(1), 3(m+1), 1(∞)}) <
V (Hm+1,m+2

3 ; {3(m+1), 1(∞)}).

Proof of Claim 16 Suppose that V (Hm+1,m+2
3 ; {2(1), 3(m+1), 1(∞)}) < V (Hm+1,m+2

3 ; {3(m+1), 1(∞)}).
Then, by Claim 15, {2(1), 3(m+1), 1(∞)} cannot be optimal for anyH ∈ (Hm+1,m+2

3 , Hm,m+1
3 ). Also,
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by Claim 13, {1(1), 3(m+1), 1(∞)} cannot be optimal for any H ∈ (Hm+1,m+2
3 , Hm,m+1

3 ). Note also
that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1

3 , Hm−1,m
3 ), that

max{V (H; {3(m), 1(∞)}), V (H; {3(m+2), 1(∞)})} < V (H; {3(m+1), 1(∞)}),

for anyH ∈ (Hm+1,m+2
3 , Hm,m+1

3 ), andH ′ = 1−M3(1−H) ∈ (Hm,m+1
3 , 1) forH ∈ (Hm+1,m+2

3 , Hm,m+1
3 ).

Thus, it must hold that G(H) = {3(m+1), 1(∞)} for any H ∈ (Hm+1,m+2
3 , Hm,m+1

3 ). �

Claim 17 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then,

V (Hm+1,m+2
3 ; {2(1), 3(m+1), 1(∞)}) < V (Hm+1,m+2

3 ; {3(m+1), 1(∞)}).

Proof of Claim 17 Define the function

Γm(H) ≡ V (H; {3(m+1), 1(∞)})− V (H; {2(1), 3(m+1), 1(∞)}).

We need to show that Γm(Hm+1,m+2
3 ) > 0 if H0,1

2 < H0,1
3 . Note that

Γm(H) =βm+1(R1 −R2)− (1− βm+1)(R2 −R3)

+ (1−H)[R2 − (1− βM2)[(βM3)
m+1A1 + (1− (βM3)

m+1)A3],

where Ai = Ri/(1− βMi) for i ∈ {1, 2, 3}. Since

1−Hm+1,m+2
3 =

R1 −R3

Mm+1
3 (1− βM3)(A1 − A3)

,

we have that

Γm(Hm+1,m+2
3 ) = βm+1(R1 −R2)− (1− βm+1)(R2 −R3)

+
(R1 −R3)(1− βM2)

Mm+1
3 (1− βM3)(A1 − A3)

[A2 − (βM3)
m+1A1 − (1− (βM3)

m+1)A3].

For given (R1,M1) and (R3,M3), Γm(Hm+1,m+2
3 ) ≡ Γ̄m(R2,M2 : R1,M1, R3,M3) = 0 is regarded

as an affine function with respect to (R2,M2) or (R2, ν2). Note that

Γ̄m(R3,M3) =βm+1(R1 −R3)− βm+1(R1 −R3) = 0 and

Γ̄m(R3,M1) =βm+1(R1 −R3)

+
(R1 −R3)

Mm+1
3 (1− βM3)(A1 − A3)

{R3 − (1− βM1)[(βM3)
m+1A1 + (1− (βM3)

m+1)A3]}

=
β(R1 −R3)(M1 −M3)

Mm+1
3 (1− βM3)(A1 − A3)

[(βM3)
m+1A1 + (1− (βM3)

m+1)A3] > 0.

Also, it must hold that Γ̄m(R1,M1) > 0. To see this, note that

Γ̄m(R1,M1) = V (Hm+1,m+2
3 ; {3(m+1), 1(∞)})− V (Hm+1,m+2

3 ; {1(1), 3(m+1), 1(∞)}).
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Suppose, to get a contradiction, that Γ̄m(R1,M1) < 0, or

V (Hm+1,m+2
3 ; {3(m+1), 1(∞)}) < V (Hm+1,m+2

3 ; {1(1), 3(m+1), 1(∞)}).

Since

∂V (H; {3(m+1), 1(∞)})
∂H

<
∂V (H; {1(1), 3(m+1), 1(∞)})

∂H

by Claim 3, there exists some H̄ ∈ (Hm,m+1
3 , Hm−1,m

3 ) such that

V (H̄; {3(m), 1(∞)}) < V (H̄; {1(1), 3(m+1), 1(∞)}),

which contradicts to the assumption that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ).
Thus, it must hold that Γ̄m(R1,M1) > 0. Therefore, since Γ̄m(R3,M3) = 0, Γ̄m(R3,M1) > 0
and Γ̄m(R1,M1) > 0, it is easy to show that the affine function Γ̄m(R,M) = 0 does not pass
through any point in the triangle that is connected by (R1, ν1), (R3, ν3) and (R3, ν1) on the
(R2, ν2)−plane. Let

Λ ≡ {(R2, ν2) | H0,1
2 < H0,1

3 , R1 > R2 > R3 and ν1 < ν2 < ν3}

denote the set of feasible pairs of R2 and ν2 that satisfies H0,1
2 < H0,1

3 . Then, it must hold that

Γ̄m(R2,M2) ≥ 0 for any (R2,M2) ∈ Λ.

This implies that if H0,1
2 < H0,1

3 , then Γm(Hm+1,m+2
3 ) ≥ 0 or

V (Hm+1,m+2
3 ; {2(1), 3(m+1), 1(∞)}) ≤ V (Hm+1,m+2

3 ; {3(m+1), 1(∞)}),

which is the desired result. �

From the above analysis, we deduce the following result under the assumption that G(H) =
{3(m), 1(∞)} for any H ∈ (Hm,m+1

3 , Hm−1,m
3 ), which corresponds to the case of n = m + 1 in

Lemma 9.

Lemma 11 Suppose that G(H) = {3(m), 1(∞)} for any H ∈ (Hm,m+1
3 , Hm−1,m

3 ) with H0,1
2 < H0,1

3 .
Then, G(H) = {3(m+1), 1(∞)} for any H ∈ (Hm+1,m+2

3 , Hm,m+1
3 ).

Proof of Lemma 11 From Claims 16 and 17, we derive the desired result. �

We now summarizes the proof of Lemma 9 as follows:

Proof of Lemma 9 By Lemma 8 and H0,1
2 < H0,1

3 , G(H) = {1(∞)} for any H ∈ (H0,1
3 , 1).

By Lemma 10, G(H) = {3(1), 1(∞)} for any H ∈ (H1,2
3 , H0,1

3 ). By Lemma 11, if G(H) =
{3(m), 1(∞)} for any H ∈ (Hm,m+1

3 , Hm−1,m
3 ) with H0,1

2 < H0,1
3 , then G(H) = {3(m+1), 1(∞)} for

any H ∈ (Hm+1,m+2
3 , Hm,m+1

3 ). By the method of the mathematical induction, it must hold that
if H0,1

2 < H0,1
3 , then G(H) = {3(n), 1(∞)} if H ∈ (Hn,n+1

3 , Hn−1,n
3 ) for any n ∈ {1, 2, · · · }. �
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6.2 Proofs of Lemmas and Propositions in Section 4

Proof of Lemma 1 Suppose that the government chooses action I (Gt = G1) in period t.
By equations (3) and (5), the industry-specific factor is az,t = a0, and the (expected) industry-
specific productivity index is E(εz,t) = 1 for any industry z ∈ [0, 1]. The conditions (10) and
(11) yield the equilibrium wage rate w∗t = µH(a0/L̄)1−µ and the equilibrium labor employment
l∗z,t = L̄ in any industry z ∈ [0, 1]. Then, the total labor employment in learning industries and
the (expected) national income are

L∗A,t = KL̄; ge
t = HtL̄

µa1−µ
0 .

Suppose that the government chooses action II (Gt = G2) in period t. There is no red tape
and no loss in the industry-specific productivity index under non-elaborate monitoring. However,
due to rent-seeking, part of non-learning industries becomes eligible for promotion support so
that D(0) = [0, (1 + λ)K]. By equations (3), (4) and (5), the industry-specific factor and the
expected industry-specific productivity index are

az,t =

{
a0 − τ + τ−c

K(1+λ)
if z ∈ [0, K(1 + λ)]

a0 − τ if z ∈ (K(1 + λ), 1]
; E(εz,t) = 1 for all z ∈ [0, 1].

The conditions (10) and (11) yield the equilibrium wage rate w∗t = µH[(a0 − c)/L̄]1−µ and the
equilibrium labor employment

l∗z,t =

{
a0−τ+(τ−c)/[K(1+λ)]

a0−c
L̄ if z ∈ [0, K(1 + λ)]

a0−τ
a0−c

L̄ if z ∈ (K(1 + λ), 1].

Then, the total labor employment in learning industries and the (expected) national income are

L∗A,t =
a0 − τ + (τ − c)/[K(1 + λ)]

a0 − c
KL̄; ge

t = HtL̄
µ(a0 − c)1−µ.

Suppose that the government chooses action III (Gt = G3) in period t. Since there is no rent-
seeking activities under elaborate monitoring, only learning industries are eligible for promotion
support so that D(1) = [0, K]. However, such monitoring gives rise to red tape that reduces
the productivity index in eligible industries. By equations (3), (4) and (5), the industry-specific
factor and the expected industry-specific productivity index are

az,t =

{
a0 − τ + τ−c

K
if z ∈ [0, K]

a0 − τ if z ∈ (K, 1]
; E(εz,t) =

{
1− θη if z ∈ [0, K]

1 if z ∈ (K, 1].

The conditions (10) and (11) yield the equilibrium wage rate w∗t = µH(B/L̄)1−µ and the equi-
librium labor employment

l∗z,t =

{
(1−θη)1/(1−µ)(a0−τ+(τ−c)/K)

B
L̄ if z ∈ [0, K]

a0−τ
B
L̄ if z ∈ (K, 1],

where B ≡ [K(1− θη)1/(1−µ) + 1−K](a0 − τ) +K(1− θη)1/(1−µ)(τ − c). Then, the total labor
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employment in learning industries and the (expected) national income are

L∗A,t =
(1− θη)1/(1−µ)(a0 − τ + (τ − c)/K)

B
KL̄; ge

t = HtL̄
µB1−µ. �

Proof of Corollary 1 Notice that L∗A,t(Ht, 1, 0) depends on λ, and L∗A,t(Ht, 1, 1) and ge
t (Ht, 1, 1)

depend on θ. Differentiating L∗A,t(Ht, 1, 0) with respect to λ and differentiating L∗A,t(Ht, 1, 1) and
ge

t (Ht, 1, 1) with respect to θ yield the desired results. �

Proof of Lemma 2 We first show that R(G1) > R(G2) > R(G3). Let δ̄ = δ(1) = (τ − c)/K.
Since

R(G1)−R(G2) = L̄µ[a1−µ
0 − (a0 − τ +Kδ̄)1−µ] > 0,

it must hold that R(G1) > R(G2). Furthermore, notice that

R(G2)−R(G3)

=L̄µ[(a0 − τ +Kδ̄)1−µ − {[K(1− θη)
1

1−µ + 1−K](a0 − τ) +K(1− θη)
1

1−µ δ̄}1−µ].

Since

(a0 − τ +Kδ̄)− {[K(1− θη)
1

1−µ + 1−K](a0 − τ) +K(1− θη)
1

1−µ δ̄}

=K[1− (1− θη)
1

1−µ ](a0 − τ + δ̄)

=K[1− (1− θη)
1

1−µ ](a0 − c+ τ(1−K)/K) > 0,

it must hold that R(G2) > R(G3). Thus, R(G1) > R(G2) > R(G3). Next We show that
L∗A(G1) < L∗A(G2). Since K(1 + λ) < 1 and

L∗A(G2)− L∗A(G1) = KL̄

[
δ̄(1−K(1 + λ))

(1 + λ)(a0 − τ +Kδ̄)

]
> 0,

it must hold that L∗A(G2) > L∗A(G1). �

Proof of Lemma 3 It is first shown that for any λ ∈ (0, 1/K − 1), there exists a unique value
ψ(λ) ∈ (0, 1] such that L∗A(G2) < L∗A(G3) for any θ ∈ (0, ψ(λ)) and L∗A(G2) > L∗A(G3) for any

θ ∈ (ψ(λ), 1]. Let A(θ) ≡ (1 − θη)1/(1−µ) ∈ [(1 − η)
1

1−µ , 1) and let δ̄ = δ(1) = (τ − c)/K. Then,
it must hold that

L∗A(G3)− L∗A(G2) = KL̄[C(θ)−D(λ)],

where

C(θ) =
A(θ)(a0 − τ + δ̄)

(KA(θ) + 1−K)(a0 − τ) +KA(θ)δ̄
; D(λ) =

a0 − τ + δ̄/(1 + λ)

a0 − τ +Kδ̄
.
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Notice that

C(0) = D(0) =
a0 − τ + δ̄

a0 − τ +Kδ̄
; D(1/K − 1) = 1;

∂C(θ)

∂θ
= − (1−K)(a0 − τ)(a0 − τ + δ̄)KL̄

A(θ)[(KA(θ) + 1−K)(a0 − τ) +KA(θ)δ̄]2
η(1− θη)

µ
1−µ

1− µ
< 0;

∂D(λ)

∂λ
= − δ̄KL̄

(a0 − τ +Kδ̄)(1 + λ)2
< 0.

Pick any λ ∈ (0, 1/K−1). There are two possible cases; D(λ) ≤ C(1) and D(λ) > C(1). Suppose
thatD(λ) ≤ C(1). Since C(θ) is decreasing in θ, it must hold that C(θ)−D(λ) > C(1)−D(λ) ≥ 0
and hence L∗A(G3) > L∗A(G2) for any θ ∈ (0, 1]. Next suppose that D(λ) > C(1). Note that
D(0) = C(0) > D(λ). Since C(θ) is decreasing in θ, there exists a unique value of ψ(λ) ∈ (0, 1)
such that C(θ) > D(λ) for any θ ∈ (0, ψ(λ)) and C(θ) < D(λ) for any θ ∈ (ψ(λ), 1]. Thus, it must
hold that L∗A(G3) > L∗A(G2) for any θ ∈ (0, ψ(λ)) and L∗A(G3) < L∗A(G2) for any θ ∈ (ψ(λ), 1].
For convenience, define ψ(λ) = 1 for any λ satisfying D(λ) ≤ C(1). Then, the desired result is
derived. Also, not that if C(θ) < D(λ) or ψ(λ) < 1, then C(ψ(λ)) = D(λ). Then, it must hold
that ∂ψ(λ)/∂λ = D′(λ)/C ′(θ) > 0, which implies that ψ(λ) is increasing in λ. �

Proof of Lemma 4 The line AI on the (ν,R) plane in Figures 5, 6 and 7 is represented as

R−R(G1) =
R(G1)−R(G2)

ν(L∗A(G1))− ν(L∗A(G2))
[ν − ν(L∗A(G1)].

Plugging (ν,R) = (ν(L∗A(G3)), R(G3)) into the above equation, the condition of subcase B-I is
that the left-hand side is larger than the right-hand side, while the condition of subcase B-II is
that the left-hand side is smaller than the right-hand side. We denote the left-hand side minus
the right-hand side by W (ν,R). Then, to prove the first part, it is enough to show that for any
λ ∈ (0, 1/K−1), there exists a unique value ϕ(λ) ∈ (0, ψ(λ)] such thatW (ν(L∗A(G3)), R(G3)) > 0
for θ ∈ (0, ϕ(λ)) and W (ν(L∗A(G3)), R(G3)) < 0 for θ ∈ (ϕ(λ), ψ(λ)). For each i ∈ {2, 3}, define

κi ≡
R(G1)ν(L∗A(Gi))−R(Gi)ν(L∗A(G1))

R(G1)−R(Gi)
∈ (0, 1).

Note that κ2 ≡ κ2(λ) and κ3 ≡ κ3(θ) depend on λ and θ, respectively. Pick any λ ∈ (0, 1/K−1).
Define the difference between κ2(λ) and κ3(θ) by

D(θ) ≡ κ3(θ)− κ2(λ) =
R1ν3(θ)−R3(θ)ν1

R1 −R3(θ)
− κ2(λ),

where R1 = R(G1), R2 = R(G2), ν1 = ν(L∗A(G1)) and ν2 = ν(L∗A(G2)) are independent of θ, and
R(G3) = R3(θ) and ν3(θ) = ν(L∗A(G3)) are dependent on θ. Then, we have that

∂D(θ)

∂θ
=
R1(ν3(θ)− ν1)

(R1 −R3(θ))2

∂R3(θ)

∂θ
+

R1

R1 −R3(θ)

∂ν3(θ)

∂θ
< 0,
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since R1 > R3(θ) and ν3(θ) > ν1 by the assumption of (ν,R), and since ∂R3(θ)/∂θ < 0 and
∂ν3(θ)/∂θ < 0. Also, we have that

D(0) =
(R1 −R2)(ν3(0)− ν2)

ν2 − ν1

> 0,

sinceR3(0) = R2. Thus, for given λ, D(θ) is decreasing in θ. Note that if θ > ψ(λ), then obviously
D(0) < 0. Therefore, setting ϕ(λ) such that D(ϕ(λ)) = 0 with ϕ(λ) < ψ(λ) or D(ϕ(λ)) > 0
with ϕ(λ) = ψ(λ), where ϕ(λ) = min{1, ψ(λ)}, it must hold that there exists a unique value
ϕ(λ) ∈ (0, ψ(λ)) such that D(θ) > 0 for θ ∈ (0, ϕ(λ)) and D(θ) < 0 for θ ∈ (ϕ(λ), ψ(λ)). Since
D(θ) ≷ 0 is equivalent to W ≷ 0, the desired result can be obtained.

We next show that the critical value ϕ(λ) is increasing in λ. By D(ϕ(λ)) = 0, taking the
derivative with respect to λ, it must hold that, for any λ such that ϕ(λ) < ψ(λ),

∂ϕ(λ)

∂λ
=

1

R1 −R2(λ)

∂ν2(λ)

∂λ
/

[
ν3(θ)− ν1

(R1 −R3(θ))2

∂R3(θ)

∂θ
+

1

R1 −R3(θ)

∂ν3(θ)

∂θ

]
> 0,

which implies that the critical value ϕ(λ) is increasing in λ. �

Proof of Proposition 1 First, we show the following claim.

Claim 18 Suppose that there are two government actions Ḡt = (S̄t, M̄t) and Ĝt = (Ŝt, M̂t) such
that L∗A(Ḡt) < L∗A(Ĝt) and R(Ḡt) < R(Ĝt). Then, Ḡt is never optimal for any Ht ∈ (0, 1).

Proof of Claim 18 Using ge(Ht, St,Mt) = HtR(St, Ht), the function v̂(Ht, St,Mt) is defined
as:

v̂(Ht, St,Mt) ≡ HtR(St,Mt) + βv(Ht+1),

subject to Hs+1 = 1− [1−ν(L∗A(Ss,Ms))](1−Hs) for s ∈ {t, t+1, . . . }. The value of v̂(Ht, St,Mt)
represents the sum of expected national income from period t under the optimal policy taking
government action (St,Mt) in period t as given. We need to show that if LA(S̄t, M̄t) < LA(Ŝt, M̂t)
and R(S̄t, M̄t) < R(Ŝt, M̂t), then it must hold that v̂(Ht, S̄t, M̄t) < v̂(Ht, Ŝt, M̂t) for all Ht ∈
(0, 1). It is enough to show that:

R(S̄t, M̄t) < R(Ŝt, M̂t) and v(H ′
t+1) < v(H ′′

t+1),

where H ′
t+1 = h(L∗A(S̄t, M̄t), Ht) and H ′′

t+1 = h(L∗A(Ŝt, M̂t), Ht). By the assumption, we already

know that R(S̄t, M̄t) < R(Ŝt, M̂t). The remaining is to show that v(H ′
t+1) < v(H ′′

t+1). Suppose,

to get a contradiction, that v(H ′
t+1) ≥ v(H ′′

t+1). Let {S̃t+s, M̃t+s}∞s=1 such that

v(H ′
t+1) =

∞∑
s=0

βsH ′
t+1+sR(S̃t+1+s, M̃t+1+s),
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where H ′
t+1 = h(L∗A(S̄t, M̄t), Ht) and H ′

l+1 = h(L∗A(S̃l, M̃l), H
′
l) for l ≥ t + 2. Then, since

v(H ′
t+1) ≥ v(H ′′

t+1), for {S̃t+s, M̃t+s}∞s=1 it must hold that:

v(H ′
t+1) =

∞∑
s=0

βsH ′
t+1+sR(S̃t+1+s, M̃t+1+s) ≥

∞∑
s=0

βsH ′′
t+1+sR(S̃t+1+s, M̃t+1+s),

where H ′′
t+1 = h(L∗A(Ŝt, M̂t), Ht) and H ′′

l+1 = h(L∗A(S̃l, M̃l), H
′′
l ) for l ≥ t+ 2. By the assumption

that LA(S̄t, M̄t) < LA(Ŝt, M̂t), it must hold that H ′
t+1 < H ′′

t+1. By Assumption 2, we have that
Hs+1 = 1− (1− ν(LA,s))(1−Hs). Thus, we have that

H ′′
t+1 > H ′

t+1 ⇒ H ′′
t+2 −H ′

t+2 = [1− ν(L∗A(S̃t+1, M̃t+1))](H
′′
t+1 −H ′

t+1) > 0 ⇒ H ′′
t+2 > H ′

t+2.

Similarly, we can deduce H ′′
t+l > H ′

t+l for all l ≥ 1. Then, it must hold that

∞∑
s=0

βsH ′
t+1+sR(S̃t+1+s, M̃t+1+s) <

∞∑
s=0

βsH ′′
t+1+sR(S̃t+1+s, M̃t+1+s),

which contradicts to the assumption that v(H ′
t+1) ≥ v(H ′′

t+1). Therefore, it must hold that

v(H ′
t+1) < v(H ′′

t+1), and hence v̂(Ht, S̄t, M̄t) < v̂(Ht, Ŝt, M̂t) for all Ht ∈ (0, 1). �
The expected national income ge

t = HtR(Gt) can be regarded as a current reward, and the
total employment L∗A(Gt) in learning industries as the value related to future rewards through
human capital accumulation. Thus, the government prefers a pair of higher ge

t and higher L∗A,t

by choosing its action Gt in each period. If a government action achieves lower expected national
income per unit of human capital and lower speed of human capital accumulation than another
action, such an action cannot be optimal. We call it a dominated government action.

By Lemma 2, action I (G1) is never dominated. For any Ht ∈ (0, 1), define the value when
the government chooses action I in all periods by

v1(Ht) =
∞∑

s=0

βsHt+sR(G1), (16)

subject to Hs+1 = 1 − [1 − ν(L∗A(G1))](1 −Hs). And for each Gi ∈ G (i 6= 1), define the value
when he chooses action i (Gi) in period t and then action I forever from period t+ 1 by

vi1(Ht) = HtR(Gi) + βv1(Ht+1), (17)

and Ht+1 = 1− [1− ν(L∗A(Gi))](1−Ht) and Ht+l+1 = 1− [1− ν(L∗A(G1))](1−Ht+l) for all l ≥ 1.
Using equation (9), these value functions, (16) and (17), can be respectively rewritten as

v1(H) = R(G1)

[
1

1− β
− 1−H

1− βM(G1)

]
, (18)

and

vi1(H) =

[
R(Gi) +

βR(G1)M(Gi)

1− βM(G1)

]
H + βR(G1)

[
1

1− β
− M(Gi)

1− βM(G1)

]
. (19)
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where M(Gj) = 1− ν(L∗A(Gj)) for each Gj ∈ G.
Consider case A in which the economy has relatively small degree of rent-seeking activities

and relatively large demand variability such that θ ∈ (ψ(λ), 1]. From Lemmas 2 and 3 and Claim
18, action III (G3 = (1, 1)) is dominated by action II (G2 = (1, 0)) so that the government can
restrict itself into a binary choice between actions I and II. The cost of elaborate monitoring is
always relatively high compared to its benefit so that elaborate monitoring cannot be justified.
Figure 5 (the upper part) illustrates this situation on (ν,R) space, where point C representing
the result of government action G3 is within the shaded area, i.e., G3 is dominated by G2.

Since R(G1) > R(G2) and ν(L∗A(G1)) < ν(L∗A(G2)), the government faces the trade-off be-
tween the current reward and the future reward that is determined by the total employment in
learning industries in each period. Then, the following claim is obtained:

Claim 19 Suppose that the flexibility issue is relatively significant such that θ ∈ (ψ(λ), 1]. Then,
there exists a unique value Ĥ ∈ (0, 1) such that the adoption of promotion support without
elaborate monitoring is optimal for H ∈ (0, Ĥ), and a laissez faire policy is optimal for H ∈
(Ĥ, 1).

Proof of Claim 19 For this proof, we follow the discussion of the optimal stopping region in
Dixit and Pyndyck Dixit and Pindyck (1994). Suppose that θ ∈ (ψ(λ), 1]. We first examine the
impossibility of multiple policy changes. To show this, we pay attention to the case of a binary
choice between policy A (setting G1 forever) and policy B (setting G2 now). Now consider the
following Bellman equation:

V (H) = max{v1(H), HR(G2) + βV (1− [1− ν(L∗A(G2))](1−H))}.

Policy A is optimal for those values of H for the maximum on the right-hand side is attained at
the first argument, that is,

v1(H) > HR(G2) + βV (1− [1− ν(L∗A(G2))](1−H)),

and policy B is optimal if the opposite inequality holds. We call the corresponding divisions of
the range of H the policy A region and the policy B region, respectively. We will show that
there exists a unique value Ĥ ∈ [0, 1] such that G(H) = G2 for H ∈ [0, Ĥ) and G(H) = G1 for
H ∈ (Ĥ, 1], that is, it is impossible to have the case in which the regions could be any sequence
of alternating intervals. And there is a clean division of the range into low and high values
separated by a threshold, say Ĥ, such that policy A is optimal for H ∈ [Ĥ, 1] and policy B is
optimal for H ∈ [0, Ĥ], i.e., the value function of this problem is equivalent to the original value
function; V (H) = v(H) for all H ∈ [0, 1].

Denoting V (H)− v1(H) by Ω(H), we have that

Ω(H) = max{0, HR(G2) + βV (H ′
2)− v1(H)},

= max{0, [HR(G2) + βv1(H
′
2)− v1(H)] + βΩ(H ′

2) }.
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where H ′
2 = 1− [1− ν(L∗A(G2))](1−H). Note that

F (H) ≡ HR(G2) + βv1(H
′
2)− v1(H)

= −
[
1− β[1− ν(L∗A(G2))]

1− β[1− ν(L∗A(G1))]
R(G1)−R(G2)

]
H +

[
1− β[1− ν(L∗A(G2))]

1− β[1− ν(L∗A(G1))]
− 1

]
R(G1).

The function F is just the difference between the value of waiting for exactly one period before
changing the policy, and that of changing right away. Since F ′ < 0, F is strictly decreasing.
By decreasing property of F , the solution function Ω(H) must be decreasing. To see this, note
that the second argument of the max operator on the right-hand side consists of two parts. The
first is decreasing in H, as we have already shown. The second is decreasing if Ω(H) is. Thus,
starting with a decreasing function, the right-hand side yields another increasing function, Then,
the fixed point of the iteration step is itself a decreasing function. Since the second argument is
decreasing, there is a unique Ĥ ∈ [0, 1] such that the second argument is positive if and only if
H ∈ [0, Ĥ). Thus, G(H) = G2 if H ∈ [0, Ĥ) and G(H) = G1 if H ∈ (Ĥ, 1]. �

The threshold value Ĥ in Claim 19 must satisfy the condition that the value of setting action
I forever equals the value of setting action II now and action I forever, that is,

v1(Ĥ) = v21(Ĥ). (20)

Let mi = [1− βM(Gi)]/[1− βM(G1)] = [1− β(1− ν(L∗A(Gi)))]/[1− β(1− ν(L∗A(G1)))] > 1 and
ri = R(G1)/R(Gi) > 1 for each i ∈ {2, 3}. By equations (18), (19) and (20), Ĥ satisfies:

R1

1− β
− (1− Ĥ)

R1

1− βM1

=

[
R2 +R1

β

1− β

]
− (1− Ĥ)

[
R2 +R1

βM2

1− βM1

]
.

Solving this for Ĥ, we can derive equation (14). And also, since m2 > 1 and r2 > 1, it must hold
that Ĥ ∈ (0, 1). From equation (14), it must hold that

∂Ĥ

∂r
= − m− 1

(rm− 1)2
< 0 and

∂Ĥ

∂m
=

r(r − 1)

(rm− 1)2
> 0.

Since ∂L∗A(G2)/∂λ < 0 and ∂R(G2)/∂λ = 0, we get ∂m/∂λ < 0 and ∂r/∂λ = 0. Therefore, it
must hold that

∂Ĥ(m, r)

∂λ
=
∂Ĥ

∂m

∂m

∂λ
+
∂Ĥ

∂r

∂r

∂λ
< 0,

which implies that Ĥ is decreasing in λ. �

Proof of Proposition 2 Consider subcase B-I in which the rent-seeking issue is relatively
significant so that θ ∈ (0, ϕ(λ)), as shown in area B-I in Figure 4 and Figure 6 (the upper
part). After examining the dynamic decision problem with a trinary case, the following claim is
obtained.

Claim 20 Suppose that the rent-seeking issue is relatively significant such that θ ∈ (0, ϕ(λ)).
Then, there exists a unique value H̃ ∈ (0, 1) such that the adoption of promotion support with
elaborate monitoring is optimal for H ∈ (0, H̃), and a laissez faire policy is optimal for H ∈
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(H̃, 1).

Proof of Claim 20 Suppose that θ ∈ (0, ϕ(λ)). Note that

H0,1
2 = 1− r2 − 1

r2m2 − 1
≶ 1− r3 − 1

r3m3 − 1
= H0,1

3

⇔ R3 ≷ −R1 −R2

ν2 − ν2

ν3 +
R1ν2 −R2ν1

ν2 − ν1

⇔ κ2 ≡
R1ν2 −R2ν1

R1 −R2

≶
R1ν3 −R3ν1

R1 −R3

≡ κ3.

From Lemma 4, κ2 < κ3 if θ ∈ (0, ϕ(λ)). Therefore, if θ ∈ (0, ϕ(λ)), then it must hold that
H0,1

2 < H0,1
3 . From Result 1, there exists a unique value H̃ ∈ (0, 1) such that G(H) = G3 for

H ∈ (0, H̃) and G(H) = G1 for H ∈ (H̃, 1). �
Similarly as in case A, the threshold value H̃ in Claim 20 must satisfy the condition that the

value of setting action I forever equals the value of setting action III now and action I forever,
that is,

v1(H̃) = v31(H̃). (21)

Equations (18), (19) and (21) yield equation (15):

H0,1
3 = H̃ = H̃(θ) = 1− r3 − 1

r3m3 − 1
∈ (0, 1).

By equation (15), it must hold that

∂H̃

∂r3
= − m3 − 1

(r3m3 − 1)2
< 0 and

∂H̃

∂m3

=
r3(r3 − 1)

(r3m3 − 1)2
> 0.

Note that θ affects both L∗A(G3) and R(G3) when the government action is action III. Since
∂L∗A(G3)/∂θ < 0 and ∂R(G3)/∂θ < 0, we have that ∂m3/∂θ < 0 and ∂r3/∂θ > 0. Therefore, we
have that

∂H̃(m3, r3)

∂θ
=

∂H̃

∂m3

∂m3

∂θ
+
∂H̃

∂r3

∂r3
∂θ

< 0.

Thus, H̃ is decreasing in θ. �

Proof of Lemma 5 We will first prove that G(H) = G1 for any H ∈ (H̄, 1). By Lemma
4, if θ ∈ (ϕ(λ), ψ(λ)), then κ2(λ) > κ3(θ). By the proof in Claim 20, if κ2(λ) > κ3(θ), then
H0,1

2 > H0,1
3 . By Lemma 8, noting that H̄ = H0,1

2 > H0,1
3 , it must hold that G(H) = {1(∞)} for

any H ∈ (H̄, 1), which is the desired result in (1).
Next we will show that there exists some ε ∈ (0, H̄) such that G(H) = G2 for any H ∈

(H̄ − ε, H̄). From the proof of Lemma 8 and H̄ = H0,1
2 > H0,1

3 , it must hold that, for any
H ∈ (0, H̄), max{V (H; {3(1), 1(∞)}), V (H; {2(1), 1(∞)})} > V (H; {1(∞)}). Note that G(H) = G1

for any H ∈ (H̄, 1), and that V (·) is an affine function. Then, since H̄ > H0,1
3 , it is obvious that

there exists some ε ∈ (0, H̄) such that V (H; {3(1), 1(∞)}) < V (H; {2(1), 1(∞)}) or G(H) = G2 for
any H ∈ (H̄ − ε, H̄) in (2).

Finally, we will show that there exists some ξ ∈ (0, H̄) such that G(H) = G3 for any
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H ∈ (0, ξ). Define

v̂(Ht, G
i) = HtR(Gi) + βv(H i

t+1(Ht)),

where H i
t+1(Ht) = 1− (1−Ht)[1− ν(L∗A(Gi))] for i ∈ {1, 2, 3}. It is enough to show that there

exists some ξ ∈ (0, H̄) such that

v̂(Ht, G
3) > max{v̂(Ht, G

1), v̂(Ht, G
2)},

for any Ht ∈ (0, ξ). For i ∈ {1, 2}, define Ei(Ht) ≡ v(H3
t+1(Ht)) − v(H i

t+1(Ht)) on Ht ∈ (0, H̄).
Let

D1 ≡ inf
Ht∈(0,H̄)

E1(Ht).

Since v(H3
t+1(Ht)) > v(H1

t+1(Ht)) by H3
t+1(Ht) > H1

t+1(Ht), and Ht ∈ (0, H̄) ⊂ (0, 1), it must
hold that D1 > 0. Let ξ1 ≡ βD1/(R1 −R3) > 0. Then, we have that

v̂(Ht, G
3)− v̂(Ht, G

1) = β[v(H3
t+1(Ht))− v(H1

t+1(Ht))]−Ht(R1 −R3) = βE1(Ht)−Ht(R1 −R3)

> βD1 −Ht(R1 −R3) = (ξ1 −Ht)(R1 −R3).

Thus, it must hold that v̂(Ht, G
3) > v̂(Ht, G

1) for any Ht ∈ (0, ξ1). Similarly, let ξ2 ≡ βD2/(R2−
R3) > 0, where

D2 ≡ inf
Ht∈(0,H̄)

E2(Ht).

Then, it must hold that v̂(Ht, G
3) > v̂(Ht, G

2) for any Ht ∈ (0, ξ2). Setting ξ ≡ min{ξ1, ξ2} < H̄,
it must hold that v̂(Ht, G

3) > max{v̂(Ht, G
1), v̂(Ht, G

2)} for any Ht ∈ (0, ξ). Thus, there exists
some ξ ∈ (0, H̄) such that G(H) = G3 for any H ∈ (0, ξ), which is the desired result in (3).
�

Proof of Lemma 6 Notice that V (1, {k(1), 3(n), 2(m), 1(∞)}) = Ak since

V (H, {k(1), 3(n), 2(m), 1(∞)}) = Ak − (1−H)Bk,

where

Ak = Rk +
βm+n+1

1− β
R1 +

1− βm

1− β
R2 + β

1− βn

1− β
R3 > 0;

Bk = Rk +
βm+n+1Mm

2 M
n
3 Mk

1− βM1

R1 + βn+1Mn
3 Mk

1− βmMm
2

1− βM2

R2 + βMk
1− βnMn

3

1− βM3

R3 > 0.

Claim 21 {1(1), 3(n), 2(m), 1(∞)} = {1(1), l} is not optimal for H0 ∈ (0, 1), where l = {3(n), 2(m), 1(∞)}
with n ∈ {1, 2, . . .} and m ∈ {1, 2, . . .}.

Proof of Claim 21 Pick any n and m with, and pick any H0 ∈ (0, 1). Suppose, to get a
contradiction, that {1(1), l} is optimal for H0, i.e., G(H0) = {1(1), l}. Then, it must hold that

V (H0, {1(1), l}) ≥ V (H0, {l}).
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Since {l} is optimal for H1 = 1− (1−H0)[1− ν(L∗A(G1))], it must hold that

V (H1, {l}) ≥ V (H1, {1(1), l}).

Since V is an affine function, it must hold that

Y (1) ≡ lim
H→1−

V (H1, {l})− lim
H→1−

V (H1, {1(1), l}) ≥ 0.

However, it must hold that

Y (1) = −(1− βn+m)R1 + (1− βn)R3 < −(1− βn)(R1 −R3) < 0,

which contradicts to the fact that Y (1) ≥ 0. Thus, {1(1), 3(n), 2(m), 1(∞)} = {1(1), l} is not optimal
for H0 ∈ (0, 1). �

Claim 22 {1(1), i(m), 1(∞)} = {1(1), l} is not optimal for H0 ∈ (0, 1) with m ∈ {1, 2, . . .} and
i ∈ {2, 3}.

Proof of Claim 22 Pick anym with, and pick anyH0 ∈ (0, 1). Suppose, to get a contradiction,
that {1(1), l} is optimal for H0, i.e., G(H0) = {1(1), l}. Then, it must hold that

V (H0, {1(1), l}) ≥ V (H0, {l}).

Since {l} is optimal for H1 = 1− (1−H0)[1− ν(L∗A(G1))], it must hold that

V (H1, {l}) ≥ V (H1, {1(1), l}).

Since V is an affine function, it must hold that

Y (1) ≡ lim
H→1−

V (H1, {l})− lim
H→1−

V (H1, {1(1), l}) ≥ 0.

However, it must hold that

Y (1) = −(1− βn)(R1 −Ri) < 0,

which contradicts to the fact that Y (1) ≥ 0. Thus, {1(1), i(m), 1(∞)} is not optimal for H0 ∈ (0, 1)
and i ∈ {2, 3}. �

Claim 23 {2(1), 3(1), l, 1(∞)} is not optimal for H0 ∈ (0, 1).

Proof of Claim 23 Suppose, to get a contradiction, that {2(1), 3(1), l, 1(∞)} is optimal for H0,
i.e., G(H0) = {2(1), 3(1), l, 1(∞)}. Then it must hold that

v(H0) = H0R2 + β[1− (1−H0)M2]R3 + β2v(1− (1−H0)M2M3)

> H0R3 + β[1− (1−H0)M3]R2 + β2v(1− (1−H0)M2M3).
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Thus, we have that

H0 > 1− (1− β)(R2 −R3)

(1− βM3)R2 − (1− βM2)R3

.

Let H2 = 1− (1−H0)M2. This yields

H2 > 1− (1− β)M2(R2 −R3)

(1− βM3)R2 − (1− βM2)R3

≡ H ′.

Since G(H2) = G3 by the assumption and G(H) = G1 for any H ∈ (H̄, 1) by Lemma 5 (1), it
must hold that

H ′ < H2 < H̄.

However, it contradicts to the assumption of H̄ < H ′. Therefore, {2(1), 3(1), l, 1(∞)} is not optimal
for H0. �

We now show that the optimal sequence of government actions can be given as {3(n), 2(m), 1(∞)}
with n ∈ {0, 1, . . .} and m ∈ {0, 1, . . .}. We first show that once G1 is optimal, neither G2 nor G3

are optimal in any future period. Suppose, to get a contradiction, that {1(1), l, 1(∞)} is optimal
for some H ∈ (0, 1), where l includes elements of 2 or/and 3. By Claim 22, l can be neither 3(m)

nor 2(m). By Claim 23, G3 never follows G2. Thus, l can be represented as {3(m), 2(n)}. However,
by Claim 21, {1(1), l, 1(∞)} cannot be optimal. This contradicts to the assumption. Therefore,
the optimal sequence of government actions can be represented as {3(n), 2(m), 1(∞)}. �

Proof of Proposition 3 By Lemma 5 (1) andG(H) = G3, the optimal sequence of government
actions is described as G(H) = {3(1), l, 1(∞)}, where l is a finite sequence from G. By Lemma
5 (2), l may include an element of 2. By Lemma 5 (3), there exists some H ∈ (0, 1) such
that G(H) = G3. Thus, by Lemma 6, l can be written in the form of l = {3(n), 2(m)}, where
n ∈ {0, 1, . . .} and m ∈ {0, 1, . . .}. If m = 0, then G(H) = {3(n+1), 1(∞)}, i.e., exact one policy
reform from G3 to G1 is adopted in some future period in the optimal sequence. If m 6= 0, then
G(H) = {3(n+1), 2(m), 1(∞)}, i.e., two policy reforms (the one from G3 to G2 and then the other
from G2 to G1) are adopted in some future periods in the optimal sequence. �

Proof of Corollary 2 From Propositions 1 and 3 and Lemma 5 (1), the desired result is
obtained. �
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Figure 2: Government Action and Industry-Specific Factor 
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Figure 3: Government Action and Industry-Specific Productivity Index 
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Figure 4: Critical Value under Promotion Support  
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Figure 5 
Case A: The Flexibility issue is relatively significant so that ]1),(( λψθ ∈ .  

R  

Non-Intervention (Laissez Faire) 
A 

Promotion Support without  
Elaborate Monitoring 

E 

 
 

 

)( ∗
ALν  

Promotion Support with  
Elaborate Monitoring 

G 

0 1 
H 

)(ˆ λH

Optimal Action 

F H 

I 

Action III 

Action II 

Action I 

↑λ

C 

B 

O 



 
 

 
Figure 6 

Subcase B-I : The rent-seeking issue is relatively significant so that ))(,0( λϕθ ∈ . 
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Figure 7 
Subcase B-II : The Intermediate Case ))(),(( λψλϕθ ∈  
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