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1 Introduction

In the late sixties and early seventies, under the general heading of \technical choice under full employ-

ment in a socialist economy," Robinson (1960, 1969), Okishio (1966) and Stiglitz (1968, 1970, 1973)

studied the problem of optimal economic growth in a model of an economy originally formulated by

Robinson (1960, pp. 38-56), Solow (1962b) and Srinivasan (1962a) (henceforth, the RSS model).1 The

work generated controversy. Stiglitz argued, with justi�cation, that the Robinson-Okishio assumption of

a �xed labor allocation between the consumption and investment sectors had no place in an exercise that

sought to determine the optimal growth path, and thereby an optimum time-path of the allocation of

labor.2 He identi�ed development policies, henceforth Stiglitz' policies,3 under which there is investment

only in the type of machine � that minimizes e�ective labor costs and simultaneously maximizes the

steady state consumption, and a utilization of only those types of machines whose output per man ratios

are higher than the e�ective labor cost of producing �: Stiglitz observed that the \number of workers

working in the consumption-goods sector increases monotonically (capital `widening' occurs in a smooth

way), output of consumption goods need not be monotonically increasing",4 and prescribed for the econ-

omy at any point in time an optimal choice of techniques, both to use and to produce, and thereby the

(instantaneous) optimal levels of technological obsolescence { prescriptions which are all independent of

the felicity function. Robinson commented on Stiglitz' solution by criticizing his assumption of a �xed

positive discount rate, continuous time and the linearity assumption in the speci�cation of the planner's

felicity function.5

Robinson's objections were explicitly acknowledged by Stiglitz,6 and as a �rst approximate step,7

he extended his earlier analysis to the case of a minimum consumption constraint in a setting with con-

tinuous time and a positive rate of discount. However, he emphasized that the important modi�cations

concerned transition, rather than long-run, dynamics.8

Even if there is a minimum consumption constraint and a �nite gestation period, the path

of development will, after an initial \adjustment" period, look exactly as I have described

it. [Unlike] long-run neoclassical models with malleable capital [where] the optimal policy
1In Khan (2000, p.3), the model is referred to as the Solow-Srinivasan model; also see Solow (1962, concluding three

paragraphs) and Khan (2000, Footnote 12) for the way it is seen in earlier work.
2See (1968, Paragraph 1; 1970, p. 421). Stiglitz (1970, p. 421) writes \There may be some special situations ... where

the employment allocation is the same for all steady-state paths, but even then, in going from one steady-state path to
another, one cannot infer that the employment allocation is unchanged { and it is this dynamic problem that we are
discussing."

3This is formalized in De�nitions 8 and 9 below. As we shall see in the sequel, Stiglitz' policies can be usefully compared
to Faustmann's solution to the forestry problem, as formalized in Mitra-Wan (1986).

4See Stiglitz (1973, pp. 143-144). In the discussion of his policy, Stiglitz also drew attention to preliminary investigations
of Bruno (1967).

5We restate Robinson's criticisms in our own terminology; she phrases them in terms of a \discount rate chosen once
and for all, ... negligible gestation periods, ...[and] ceasing to consume and living on air during the �rst phase of the plan."

6See Stiglitz (1973, p. 144) and also Cass-Stiglitz (1969, p. 614).
7Thus Cass-Stiglitz (1969, Footnote 19) saw the instantaneous utility function U(C) = �1 for C < �C and U(C) = C

for C � �C; �C a minimum consumption level, as \one approximation to the general instantaneous utility function satisfying
U 0(C) > 0 with limC=0 U

0(C) =1 and U 00(C) � 0:"
8Stiglitz's (1970) response is important for the record; this essay can also be seen as a further investigation into the

substance of this response.
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is always of the so-called bang-bang variety { if the initial capital labor ratio is less than

its long-run equilibrium value there is always a period of zero consumption, after which

consumption jumps to its long-run equilibrium value, whereas in our ex-post �xed coeÆcients

model consumption increases steadily to its long-run value.

Given the primary interest in the undiscounted case, Stiglitz interpreted the undiscounted case as a

situation when the discount rate is \negligible"; he developed the intuitive ideas in discrete-time and

then chose to translate them to the continuous-time framework.9

In his recent revisit of Srinivasan (1962a), Solow (2000, p. 7) asks for a solution to the \Ramsey

problem for this model." Since Stiglitz had already provided a solution with a \linear utility and positive

time preference", the open questions concern a rigorous treatment of the undiscounted case and of the

discounted case with a \strictly concave social utility function for current per capita consumption." Like

Robinson, Solow also mentions that an \adoption of this [linear utility] criterion can indeed lead to

unjusti�able neglect of early consumption," and if one was to share \Ramsey's belief that the only ethi-

cally defensible social rate of time preference is zero, a suÆciently sharply-concave utility function would

enforce a closer approach to intergenerational equality." In short, Solow's question remains unanswered,

and the generalization of Stiglitz's work in the directions it prompts remains yet to be accomplished.10

In this paper, we address this general question, and most importantly from a methodological point of

view, do so in the setting of the modern theory of optimal intertemporal allocation initiated originally

by Ramsey and von Neumann and brought to completion at the hands of Brock, Gale and McKenzie.11

Since this theory was being �nalized at the same time as the \capital controversy" between the two

Cambridges,12 it has not been brought to bear on the fundamental issues.

In terms of speci�cs, we truly treat the Ramsey problem; that is, consider a formulation in which

there is no discounting of future utilities, and thus no appeal to the assumption of structural stability of

the model at the zero discount rate, an assumption at best roundabout and at worst dubious. We are by

this time very familiar with the overtaking criterion of Atsumi (1965) and von Weisz�acker (1965), and

under this criterion, an optimal path in the undiscounted case can be shown to exist and its properties

can be rigorously studied. Our treatment of time is discrete: the general theory of intertemporal

allocation is developed in the simplest and most elegant way in such a setting (see McKenzie (1986)

for a masterly presentation), and we can work with a reduced form of the RSS model13 in which

the technological possibilities are given by a transition possibility set, and the objective function by

9See Footnotes 1 and 3 on page 608 and the discussion of the \correct" pricing system on page 606 in Stiglitz (1968).
10For some partial attempts at solution, and for a numerical example, see Stiglitz (1973); also see Stiglitz (1968, Footnote

2, p. 608) and Cass-Stiglitz (1969). However, in Khan (2000, p. 15), the situation is expressed as \The loose end remains
loose."
11The relevant papers are Gale (1967), McKenzie (1968) and Brock (1970). In the sequel, when we refer to the \general

theory of optimal intertemporal allocation", we shall be having these papers in mind.
12It is of course not our intention to revisit this debate here { the interested reader may want to see Birner (2002) and

his references.
13We choose to work with the version presented in Stiglitz (1968) rather than that in Solow (1962b) or Srinivasan

(1962a). All of these variants can be viewed as special cases of the models considered in Bruno (1967) or the more general
treatment in Koopmans (1971) and Koopmans-Hansen (1972). We leave the analysis of these papers as a task for future
research; also see the third paragraph of the concluding Section 8 below.
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a (reduced-form) utility function de�ned on this set (that is, de�ned on beginning and end of period

capital stock vectors). We establish the existence of a golden-rule stock, with support prices, and show

that the golden-rule stock is unique. We appeal to the methods of Brock (1970) and McKenzie (1968) to

show the existence of an optimal program, and furthermore, to establish that, starting from an arbitrary

initial stock, it converges asymptotically to a subset of the transition set, the so-called von Neumann

facet, consisting of all plans which have \zero value-loss" at the golden-rule support prices. In the case of

a strictly concave felicity function, the von Neumann facet shrinks to a point, and so we have asymptotic

convergence to the golden-rule stock. These results furnish a complete resolution of the problem of the

long-run choice of technique and thereby illustrate the power and elegance of the general theory.

Since we have a complete resolution of the problem of the long-run choice of technique, the natural

question arises as to the choice of technique in transition to the steady state: a determination of the type

and amounts of machines that are produced and used in the short run. Unfortunately, it is on this hard

problem of transition dynamics that the general theory has little to o�er, with the literature lacking

concrete results of any generality.14 However, Stiglitz' prescriptions as to the choice of techniques can

be identi�ed as a basis for the development of a full-scale theory of transition dynamics { an analytical

marker at which one can aim. It is here that the results yield surprises: even questions once seen as

resolved are now starkly revealed not to be so through simple and compelling counterexamples.

Moving on to positive results, for an economy with a linear felicity function, we o�er a (novel) set

of suÆcient conditions, pertaining only to the parameters of the type of machine � used in the long-run,

under which the Stiglitz program is optimal, and uniquely so. For economies with a general felicity

function, and a fortiori, for an economy with a linear utility function and a minimum consumption con-

straint, we also present suÆcient conditions for the optimality of a Stiglitz production program. These

conditions, in pointing to an interesting distinction between choice of technique that is appropriate in

the short-run from that which is appropriate in the long-run, also connects to the literature of the sixties

on planning in India (and elsewhere)15 that comes as close to stating the problem as precisely as can

be expected in the pre-Pontryagin period.16 However, this literature and earlier work notwithstanding,

it will generally be recognized today that whether we are interested in this issue from a planning per-

spective or from the modern perspective of a representative agent, the problem of an appropriate choice

of technique should really be viewed as part of the general theory of economic growth. A subsidiary

motivation of this paper is to facilitate this re-orientation.17

It is important to appreciate the methodological signi�cance of this reformulation of the RSS

model. In the standard treatment based on Pontryagin's principle,18 as in the work of Stiglitz (1968), Sen

14See the third paragraph of the concluding remarks in Section 8 below.
15In addition to Raj-Sen (1961) and Sen (1960) in particular, also see Dobb (1956, 1960, 1961, 1967), Halevi (1987),

Mirrlees (1962), Naqvi (1963), Solow (1962a); and for an open-economy perspective, Bardhan (1971).
16See Raj-Sen (1961, pp. 48, 51 and concluding section). We remind the reader that an earlier version of the Raj-Sen

paper (with a di�erent title) was published in Arthaniti in 1959, and that Naqvi (1963) is a follow-up to the Raj-Sen paper
as his leading footnote clearly indicates.
17For an early emphasis on this, see Mirrlees (1962) and Srinivasan (1962b); Okishio (1987) represents the alternative

perspective. This point was independently underscored to Khan by Debraj Ray as a comment on Khan (2000).
18Thus Dixit (1990, p. 5) writes, \Nowadays Hamiltonians and phase diagrams are everyday stu� for the typical second-
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(1968) and others, one appeals to the transversality conditions in the study of the di�erential equations

pertaining to the state and auxiliary variables obtained by substituting the values of the controls that

maximize the instantaneous Hamiltonian.19 Thus the relevance of the rest points is established only

towards the end of the analysis. Here, we begin with the rest points, the golden-rule stock and the

golden-rule prices, and use the value-loss function and the so-called average turnpike property of good

programs to yield the optimal program.20 Stiglitz investigates the convergence (turnpike property) of

a path that follows his (derived) policy prescriptions as to the choice of techniques,21 while we need to

investigate whether the optimal path and its turnpike property is sustained by these prescriptions. As

mentioned above, this cannot be established, in general, for either a linear or a strictly concave felicity

function, but only in special (identi�ed) cases of either formulation. Thus, through the introduction of a

new conceptual vocabulary, a diÆcult step in one perspective is rendered straightforward in another.22

In sum, our results exhibit in a dramatic way both the strength and the weakness of the general

theory of intertemporal allocation alluded to earlier, and thereby reveal exactly why the choice of an

appropriate technique is such a diÆcult and multi-facetted problem. The application has the advantage

of illustrating the power and 
exibility of the modern theory: it is ideally suited to deal with this

problem, and the general results of this theory can be readily applied through the use of extremely

elementary methods. As such it is perhaps overdue. However, a secondary bene�t of this application

concerns the theory itself; it o�ers insights into its scope and suggests directions along which it may

�nd fruitful extension.23 It also points clearly to issues to which the general theory has (and by its

very nature, will have) very little to o�er, thereby indicating that even after much theoretical progress

has been made, some of the questions that were asked �fty years ago about the appropriate choice of

technique remain hard unanswered problems that need to be approached case by case.

The remainder of the paper is organized as follows. Sections 2, 3 and 4 present the basic theory

of the RSS model when it is converted to its Gale-McKenzie reduced form. In particular, under a

standing hypothesis on the �nite set of parameters that de�ne the RSS model, we show the existence

and uniqueness of the golden-rule stock, and the existence of a program that is optimal starting from

any given initial stock of machines. With this standard theory (Theorems 1 to 2) as an (indispensable)

background, we can turn to the central results of the paper. In Section 5, we consider the question of the

year graduate student", and quotes Frank Hahn's reference to the \unseemly haste to get down to the Hamiltonian."
19In the context of Stiglitz (1968), see his Footnote 2 both on page 605 and on page 607.
20As the reader will see below, we appeal to McKenzie's (1983, 1986) price-support property only to establish our �nal

result pertaining to transition dynamics in the case of a strictly concave felicity function (Theorem 7 below).
21As alluded to in Footnote 3, we see the Stiglitz policy as the analogue of the Faustmann solution in the economics of

forestry, and it would be interesting to pursue the analytics of this analogy; see the fourth paragraph of the concluding
remarks in Section 8 below.
22Stiglitz (1968, Footnote 2, p. 608) recognizes that the results for the linear utility function might not carry over to

the general concave case, and in a subsequent analysis of the problem, one with a minimum consumption constraint, he
refers to the diÆculty of showing that there is only one type of machine that maximizes p(x; t); see Stiglitz (1973; p. 145).
He also refers in this connection to Bliss (1968) and Cass-Stiglitz (1969). For this scepticism concerning the linear case,
also see Solow (2000) in addition to Robinson (1969).
23Thus, a distinction has to be drawn between applying a theorem from applying its methods of proof. As the reader will

see in the sequel, the hypotheses of Brock's existence theorem and of McKenzie's price-support property are not literally
ful�lled by the RSS model but their methods of proof do apply.
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correct choice of technique for the long-run, and through the identi�cation of the von Neumann facet,

present results for both linear and strictly concave felicity functions. In Section 6, we turn to transition

dynamics through the identi�cation and formalization of the policy prescriptions due to Stiglitz (1968),

and present examples that decisively refute plausible intuitions concerning these prescriptions. In Section

7, we present a suÆcient parameterization under which a Stiglitz program and/or a Stiglitz production

program is optimal. The concluding Section 8 lists the salient results and identi�es problems that remain

open. The technical and computational details of the proofs are collected in an Appendix.

2 The Model and its Reduced Form

We begin with some preliminary notation. Let IN (IN+) be the set of non-negative (positive) integers,

IR (IR+) the set of real (non-negative) numbers. We shall work in �nite-dimensional Euclidean space

IRn with non-negative orthant IRn
+ = fx 2 IRn : xi � 0; i = 1; � � � ; ng: For any x; y in IRn; let the inner

product xy =
Pn

i=1 xiyi; and x >> y; x > y; x � y have their usual meaning. Let e(i); i = 1; � � � ; n; be

the ith unit vector in IRn; and e be an element of IRn
+ all of whose coordinates are unity. For any x 2 IRn;

let kxk denote the Euclidean norm of x: The empty set is denoted by ; and set-theoretic subtraction

between A and B by A=B:

Our choice of IRn is dictated by the consideration of an economy capable of producing a �nite

number n of alternative types of machines. For every i = 1; � � � ; n; one unit of machine of type i requires

ai > 0 units of labor to construct it, and together with one unit of labor, each unit of it can produce

bi > 0 units of a single consumption good. Thus, the production possibilities of the economy can be

represented by an (labor) input-coeÆcients vector, a = (a1; � � � ; an) >> 0 and an output-coeÆcients

vector, b = (b1; :::; bn) >> 0: Without loss of generality24 we shall assume that the types of machines

are numbered such that b1 � b2 � � � � bn:

We shall assume that all machines depreciate at a rate d 2 (0; 1): Thus the e�ective labor cost

of producing a unit of output on a machine of type i is given by (1 + dai)=bi : the direct labor cost

of producing unit output, and the indirect cost of replacing the depreciation of the machine in this

production.25 We shall work with the reciprocal of the e�ective labor cost, the e�ective output that

takes the depreciation into account, and denote26 it by ci for the machine of type i: Throughout this

paper, we shall assume that there is a unique machine type � at which this e�ective labor cost (1+dai)=bi

is minimized, or at which the e�ective output per man bi=(1+dai) is maximized. Thus, we shall assume:

There exists � 2 f1; � � � ; ng such that for all i = 1; � � � ; n; i 6= �; c� > ci: (1)

For each date t 2 IN; let x(t) = (x1(t); � � � ; xn(t)) � 0 denote the amounts of the n types of

machines that are available in time-period t, and let z(t+1) = (z1(t+1); � � � ; zn(t+1)) � 0 be the gross

24Note that Stiglitz (1968) assumes that bi > bj implies that ai > aj ; whereas this is a natural hypothesis, we make no
such assumption.
25See Stiglitz (1968, pp. 608-609) on a \labor theory of value" interpretation.
26As we shall see below, ci is the value of the steady-state consumption per man if only machines of type i are used and

produced, a consideration that governs our choice of notation.
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investments in the n types of machines during period (t+1): Hence, z(t+1) = (x(t+1)�x(t))+ dx(t);

the sum of net investment and of depreciation. Let y(t) = (y1(t); :::; yn(t)) be the amounts of the n

types of machines used for production of the consumption good, by(t); during period (t+ 1):27 Let the

total labor force of the economy be stationary and positive. We shall normalize it to be unity. Clearly,

gross investment, z(t+1) representing the production of new machines of the various types, will require

az(t+1) units of labor in period t: Also, y(t) representing the use of available machines for manufacture

of the consumption good, will require ey(t) units of labor in period t: Thus, the availability of labor

constrains employment in the consumption and investment sectors by az(t+ 1) + ey(t) � 1: Note that

both the 
ow of consumption and of investment (new machines) are in gestation during the period and

available at the end of it. We now give a formal summary of this technological structure.

De�nition 1 A program from xo in IRn
+ is a sequence28 fx(t); y(t)g with (x(t); y(t)) 2 IRn

+ � IRn
+ such

that x(0) = xo; and for all t 2 IN; (i) x(t+1) � (1� d)x(t); (ii) 0 � y(t) � x(t); (iii) a(x(t+1)� (1�

d)x(t)) + ey(t) � 1: A program fx(t); y(t)g is simply a program from x(0):

De�nition 2 Associated with any program fx(t); y(t)g is a gross investment sequence fz(t + 1)g with

z(t+1) 2 IRn
+; and a consumption sequence fby(t)g such that for all t 2 IN; z(t+1) = x(t+1)�(1�d)x(t):

De�nition 3 A program fx(t); y(t)g is called stationary if for all t 2 IN; (x(t); y(t)) = (x(t+1); y(t+1)):

We conclude this subsection with a result on the boundedness property of programs.

Proposition 1 For any program fx(t); y(t)g; there exists m(x(0)) 2 IR+ such that x(t) � m(x(0))e for

any t 2 IN:

Proof: The case t = 0 is a triviality. For t 2 IN+; ax(t) � 1 + (1� d)ax(t� 1) �
Pt�1

�=0(1� d)� + (1�

d)tax(0): Since 0 < d < 1; we obtain ax(t) � (1=d) + ax(0): Let aj = min1�i�n ai: Since ai > 0 for all

i = 1; 2; � � �n; we obtain xi(t) � (1=aj)((1=d) + ax(0)) � m(x(0)) for all i = 1; � � � ; n; and complete the

proof.

The preferences of the planner are represented by a felicity function, w : IR+ �! IR; which is

assumed to be continuous, strictly increasing and concave, and di�erentiable.29 We suppose, as in the

literature taking its lead from Ramsey (1928), that future welfare levels are treated like current ones in

the planner's objective function. The notion of optimality that we use is due to Brock (1970), and the

notion of \overtaking" is due to Atsumi (1965) and von Weisz�acker (1965).30

27The reader may choose to think of the consumption in period t as the scalar c(t+1); with ci reserved for bi=(1+ dai);
we avoid this notation in the text to prevent any ambiguity.
28Note fx(t); y(t)g is an abbreviation of fx(t); y(t)gt2IN; we use it for notational simplicity.
29We leave it to the reader to check that di�erentiability of w is not needed, and derivatives of w can be replaced

uniformly by (for example) the right hand derivative of w: These exist since w is concave and the point of evaluation of
the (right-hand) derivative is always positive.
30Brock (1970) uses the terminology of \weakly maximal" programs for what we call optimal programs. The notion of

optimality in Atsumi and von Weisz�acker is stronger, and creates problems in proving existence of optimal programs in
many reasonable models.
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De�nition 4 A program fx�(t); y�(t)g from xo is called optimal if

lim inf
T!1

TX
t=1

[w(by(t)) � w(by�(t))] � 0

for every program fx(t); y(t)g from xo: It is called a stationary optimal program if it is stationary and

optimal.

Note that the optimality notion can be restated to say that there does not exist any other program

fx(t); y(t)g; x(0) = xo; a number " > 0 and a time period t" such that
PT

t=1[w(by(t)) � w(by�(t))] >

" for all T � t": Thus an optimal program is one in comparison to which no other program from the

same initial stock is eventually signi�cantly better, for any given level of signi�cance.

Following McKenzie (1968), we convert the above model into its \reduced form", and as em-

phasized in the introduction, thereby exploit as far as possible the results of the general theory of

intertemporal allocation for our particular case. De�ne the transition possibility set 
 as a collection

of pairs (x; x0); such that it is possible to obtain the amounts of the n types of machines x0 in the

next period (tomorrow) from the amounts of the n types of machines x available in the current period

(today). Formally,


 = f(x; x0) 2 IRn
+ � IRn

+ : x0 � (1� d)x � 0 and a(x0 � (1� d)x) � 1g:

For any (x; x0) 2 
; one can consider the amounts y of the n types of machines available for the

production of the consumption good. Formally, we have a correspondence � : 
 �! IRn
+ given by

�(x; x0) = fy 2 IRn
+ : 0 � y � x and ey � 1� a(x0 � (1� d)x)g:

For any (x; x0) 2 
; we shall denote the number of machines that are produced in the period (x0�(1�d)x)

by z: Note that z � 0: Finally, the reduced form utility function, u : 
 �! IR+; is de�ned on 
 such

that

u(x; x0) = maxfw(by) : y 2 �(x; x0)g:

We leave it to the reader to check for herself that our assumptions on w imply that the reduced

form utility function, u; is upper semicontinuous31 and concave on 
; and that it is increasing in its

�rst argument and decreasing in its second argument.

Given the description of the transition possibility set 
; and of the reduced form utility function,

u; it is clear that for any program fx(t); y(t)g from xo; (x(t); x(t+1)) 2 
 and y(t) 2 �(x(t); x(t+1)) for

all t 2 IN: Also, for any optimal program fx�(t); y�(t)g from xo; w(by
�(t)) = u(x�(t); x�(t+1)) for all t 2

IN; and for every program fx(t); y(t)g from xo;

lim inf
T!1

TX
t=0

[u(x(t); x(t + 1))� u(x�(t); x�(t+ 1))] � 0:

31It is now well understood that continuity of w does not necessarily imply the continuity of u; see Dutta-Mitra (1989)
for details.
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In summary, the basic data of the model denoted by the triple (w; (ai; bi)
n
i=1; d) summarizing the

felicity function w, the technology (ai; bi)
n
i=1; and the depreciation rate d; is converted to the pair (u;
)

summarizing the reduced-form utility function u and the transition possibility set 
:

3 The Existence and Uniqueness of a Golden-Rule Stock

A stationary optimal program is of special signi�cance, and in this section we take the �rst step in

establishing the existence of such a program. We show the existence and uniqueness of a golden-rule

stock, and simultaneously, provide a \price support" property of such a stock.32 We exploit the concrete

structure of the RSS model to provide a purely constructive proof of our claims. This has the additional

advantage that we can identify the shadow prices in terms of the basic data of the model.

We begin with a de�nition.

De�nition 5 A golden-rule stock is x̂ 2 IRn
+ such that (x̂; x̂) is a solution to the problem: maximize

u(x; x0) subject to (i) x0 � x; (ii) (x; x0) 2 
:

If we limit ourselves to a stationary program in which only a machine of type i is used and

produced, the constraint of labor allows us to maintain the stock33 (1=(1+ dai) and obtain a stationary

consumption stream in the amount bi=(1 + dai) = ci: Since we have assumed (in (1) above) that a

machine of type � is the one that uniquely minimizes e�ective labor costs, we see that it is also the

type that uniquely maximizes the consumption per unit of labor.34 Denote ŷ = (1=(1 + da�))e(�); and

note that if we are in such a stationary state, bŷ = (b�=(1 + da�)) and w0(bŷ) is the marginal utility of

output produced. Furthermore, since the labor cost of a machine of type i is ai; and a unit of labor is

worth ((1 + dai)=bi)
�1 units of output, a machine is worth ai � (bi=(1 + dai) in terms of output, and

w0(bŷ)(ai�(bi=(1+dai))) in terms of utils. We can then identify a stationary price system (q̂ in terms of

the consumption good and p̂ in terms of utils)35 for the various types of machines as q̂i = (aibi=(1+dai))

and p̂i = w0(bŷ)q̂i for each i = 1; � � � ; n:

We can now present a simple but important result.

Lemma 1 w(bŷ) � w(by) + p̂x0 � p̂x for any (x; x0) 2 
; and for any y 2 �(x; x0):

Proof: For any (x; x0) 2 
 and y 2 �(x; x0); we have36

bŷ � by � q̂(x0 � x) = c� � by � q̂(x0 � x)

= c� � by � q̂(x0 � (1� d)x) + dq̂x

= c�(1� ey � az) + c�ey + c�az � by � q̂z + dq̂x

32We show in Section 4 (see Theorem 2) that this golden-rule stock de�nes a stationary optimal program.
33The labor requirements of the consumption sector in the amount (1=(1 + dai) plus those of the investment sector

arising from replacement for depreciation in the amount dai=(1 + dai) add up to the total labor available.
34As alluded to in Footnote 26 above.
35When the felicity function is linear, the magnitudes of p̂ and q̂ are identical, though their units remain di�erent. Note

also the identities q̂i = aici and ci + dq̂i = bi for all i:
36Note that in the derivation of (2) and (3) below, we appeal to the identities referred to in Footnote 35.
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= c�(1� ey � az) +

nX
i=1

(c� � bi)yi +

nX
i=1

(c� � ci)aizi + dq̂x (2)

= c�(1� ey � az) +

nX
i=1

(c� � ci)yi +

nX
i=1

(c� � ci)aizi + dq̂(x� y) (3)

Since (x; x0) 2 
; z � 0: Since y 2 �(x; x0); x � y and 1 � ey � az � 0: We can now appeal to our

standing hypothesis as described in (1) to assert that

by � bŷ � q̂x� q̂x0: (4)

Given our hypotheses on the felicity function w; we obtain as a consequence of (4),

w(by)� w(bŷ) � w0(bŷ)(by � bŷ) � w0(bŷ)(q̂x� q̂x0) = (p̂x� p̂x0)

A simple transposition of terms completes the proof.

We can now state the principal result of this section.37

Theorem 1 There exists a unique golden-rule stock x̂ = (1=(1 + da�))e(�):

Proof: Let ŷ = x̂ = (1=(1 + da�))e(�); and check that (x̂; x̂) 2 
; and ŷ 2 �(x̂; x̂): Next, appeal to

Lemma 1 to assert that (x̂; x̂) is a solution to the problem speci�ed in De�nition 5, and hence that x̂ is

a golden-rule stock.

We can also show that it is a unique solution to this problem. Suppose to the contrary that

(~x; ~x0) is another solution with a corresponding ~y 2 �(~x; ~x0) and ~z0 = ~x0� (1� d)~x: Since w(�) is strictly

increasing, b~y = bŷ = c� : On substituting ~x; ~y and ~z for x; y and z in (3) above, we obtain the fact that

the right hand side of (3) equals zero, which implies that each of its four terms is zero. This implies

that ~yi = 0 = ~zi for i 6= �; that ~xi = ~yi for all i; and that ~y� + a�~z� = 1: Coupling the �rst assertion

with the equality b~y = c� ; we obtain that ~y� = 1=(1 + da�); and hence from the third assertion that

~x = 1=(1 + da�)e(�): From the last assertion we can then obtain that ~z� = d=(1 + da�) and hence that

~x0 = ~z � (1 � d)~x = (d=(1 + da�) + (1 � d)=(1 + da�))e(�) = (1=(1 + da�))e(�): The demonstration is

complete.

4 The Existence of an Optimal Program

In this section, we prove the existence of an optimal program from an arbitrarily given initial stock.

We follow the methods of Brock (1970) which in turn build on those of Gale (1967) { this methodology

relies on the concept of a good program and then exploits the assumption of a unique golden-rule stock

to deduce the average turnpike property of such a program. We follow the same conceptual benchmarks

in the context of the RSS model and present a uni�ed treatment both to highlight certain steps that

are crucial for subsequent argumentation and to avoid possibly confusing cross-referencing.38

37We remind the reader of our standing hypothesis as expressed in (1).
38Note that we cannot directly apply the relevant theorems in Gale, Brock (1970) or McKenzie (1968, 1987) since

the assumptions of these theorems are not directly satis�ed; instead, the concrete structure of the RSS model allows a
simpli�cation of the arguments.
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De�nition 6 A program fx(t); y(t)g is called good if there exists G 2 IR such that
PT

t=0(w(by(t)) �

w(bŷ)) � G for all T 2 IN: A program is called bad if limT!1

PT

t=0(w(by(t)) � w(bŷ)) = �1:

Proposition 2 There exists a good program from any arbitrary initial stock xo 2 IRn
+:

Proof: For each t 2 IN; let z(t+ 1) = dx̂: De�ne y(0) = 0; and y(t+ 1) = (1 � d)y(t) + dx̂ for t 2 IN:

Then, y(t) is monotonically non-decreasing, and converges to x̂ as t ! 1: Given an arbitrary initial

stock, xo; de�ne x(0) = xo, and for each t 2 IN; x(t + 1) = (1 � d)x(t) + z(t + 1): Then, it is easy

to check that fx(t); y(t)g is a program from xo: Given the de�nition of the sequence fy(t)g, we have

(by(t)� bx̂) = (1� d)t(by(1)� bx̂) for t � 2; and by(t) � dbx̂ for t 2 IN+: Thus, we have for t 2 IN+;

[w(bx̂)� w(by(t))] � w0(by(t))(bx̂� by(t)) � w0(dbx̂)(bx̂� by(1))(1� d)t�1:

Thus, the sequence fw(bx̂)� w(by(t))g is summable, and so fx(t); y(t))g is a good program from xo:

Proposition 3 For any program fx(t); y(t)g; there exists M(x(0)) 2 IR+ such that for any t1 2 IN; and

any integer t2 � t1;
Pt2

t=t1
(w(by(t)) � w(bŷ)) �M(x(0)):

Proof: From Lemma 1, for any t2 � t1;
Pt2

t=t1
w(by(t)) � w(bŷ) � p̂(x(t1) � x(t2 + 1)) � p̂x(t1) �

m(x(0))
Pn

j=1 p̂j : Let M(x(0)) = m(x(0))w0(b�=1 + da�)
Pn

j=1 aibi=(1 + dai) to complete the proof.

Proposition 4 Any program that is not good is bad.

Proof: For any program fx(t); y(t)g that is not good, and for any N 2 IR; there exists TN such

that
PTN

�=0(w(by(�)) � w(bŷ)) � N �M(x(0)); M(x(0)) the real number whose existence is asserted

in Proposition 3. By choosing t1 = TN + 1 and t2 = t > TN + 1 in Proposition 3, we obtain thatPt

�=TN+1(w(by(�))�w(bŷ)) �M(x(0)) for all t > TN +1: On adding these two expressions, we obtain

that
Pt

�=0(w(by(�)) � w(bŷ)) � N for all t > TN ; and complete the proof.

De�nition 7 A program fx(t); y(t)g exhibits the average turnpike property if limT!1(�x(T ); �y(T ))

= (x̂; ŷ); where �x(T ) = (1=T )
PT�1

t=0 x(t) and �y(T ) = (1=T )
PT�1

t=0 y(t) for all T 2 IN+:

The proofs of Propositions 5, 8 and 9 are technical, and we relegate them to the Appendix.

Proposition 5 Every good program exhibits the average turnpike property.

For any y 2 �(x; x0) and any (x; x0) 2 
; let

Æ(x̂;p̂)(x; x
0) = w(bŷ)� w(by)� p̂(x0 � x) = p̂(x� x0)� (w(by) � w(bŷ)): (5)

Whenever there is no possibility of confusion, we shall abbreviate Æ(x̂;p̂)(x(t); x(t + 1)) by Æ(t) for any

program fx(t); y(t)g: We shall refer to fÆ(t)g as the value-loss sequence associated with the program

fx(t); y(t)g:
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Proposition 6 The value-loss sequence fÆ(t)gt2IN of any program fx(t); y(t)g is non-negative, and

TX
t=0

(w(by(t)) � w(bŷ)) = p̂(x(0) � x(T + 1))�
TX
t=0

Æ(t) for all T 2 IN:

Proof: For each t 2 IN; let Æ(t) = p̂(x(t)�x(t+1))� (w(by(t))�w(bŷ)): Since fx(t); y(t)g is a program,

we can appeal to Lemma 1 to assert that Æ(t) � 0 for all t 2 IN: On summing over t; and rearranging,

we complete the proof of the assertion.

We now de�ne the aggregate value-loss associated with any program as

�(xo) = inff
1X
t=0

Æ(t) : fx(t); y(t)g is a program from xog:

Our next two results assert that this in�mum is a �nite number and that it can be attained.

Proposition 7 The value-loss sequence fÆ(t)gt2IN of any program fx(t); y(t)g is summable if and only

if it is good. Hence limt!1 Æ(t) = 0 for any good program.

Proof: For any good program, Proposition 6 allows us to assert the existence of G 2 IR such that for

all t 2 IN;

TX
t=0

Æ(t) = p̂(x(0)� x(T + 1))�
TX
t=0

(w(by(t))� w(bŷ))

� p̂(x(0)� x(T + 1))�G � p̂(x(0)) �G:

Since
P1

t=0 Æ(t) is a �nite number, certainly limt!1 Æ(t) = 0: On the other hand, the �rst equality and

Proposition 1 allows us to assert that a program with a summable value-loss sequence is good.

Proposition 8 There exists a program fx0(t); y0(t)g from an arbitrary initial stock xo such that its

associated value-loss sequence fÆ0(t)g satis�es
P1

t=0 Æ
0(t) = �(xo) where 0 � �(xo) <1:

Proposition 9 A program fx(t); y(t)g whose associated value-loss sequence fÆ(t)g satis�es
P1

t=0 Æ(t) =

�(x(0)) is optimal.

Theorem 2 For any arbitrary initial stock, xo 2 IRn
+; there exists an optimal program from xo: If the

initial stock xo equals x̂ = ŷ = (1=(1 + da�))e(�); then the stationary program fx̂; ŷg is an optimal

program from xo:

Proof: Proposition 9 guarantees that the program whose existence is asserted in Proposition 8 is

optimal. For the second claim, simply note that the aggregate value-loss of the stationary program is

(trivially) zero and that an appeal to Proposition 9 completes the argument.
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5 Choice of Techniques in the Long-Run

We are now in a position to describe what the economy looks like in the long-run. Towards this end, we

begin with a characterization of the von Neumann facet as described in McKenzie (1968, 1986). It is of

interest that under our standing hypothesis as described in (1), this reduces to a line in the Euclidean

space of dimension 2n:

Lemma 2 The von Neumann facet f(x; x0) 2 
 : Æ(p̂;x̂)(x; x
0) = 0g is a subset of f(x; x0) 2 
 : x0i =

xi = 0; i 6= �; x0� = (1=a�)+ ��x�g; �� = 1�d� (1=a�); with equality if the felicity function w is linear.

If the felicity function is strictly concave, the facet is the singleton f(x̂; x̂)g:

Proof: Pick (~x; ~x0) 2 
 and ~y 2 �(~x; ~x0) such that Æ(x̂;p̂)(~x; ~x
0) = 0: From (5) we obtain w(b~y)�w(bŷ)+

p̂(~x0 � ~x) = 0: On appealing to the concavity of w(�); this reduces to

w(b~y)� w(bŷ) � w0(bŷ)(b~y � bŷ) =) bŷ � b~y � q(~x0 � ~x) � 0: (6)

This combined with (4) and (3) yields

c�(1� e~y � a~z) +

nX
i=1

(c� � ci)~yi +

nX
i=1

(c� � ci)ai~zi + dq(~x� ~y) = 0:

This implies that ~zi = 0 = ~yi = ~xi = ~x0i for all i 6= �: Furthermore, that ~y� = ~x� and that

~y� � a�~z� = 1 =) ~x� + a�(~x
0
� � (1� d)~x�) = 1 =) ~x0� = (1=a�) + �� ~x� :

Now suppose that w(�) is strictly concave and that b~y 6= bŷ: We then obtain a strict inequality in

(6) and thereby contradict (4). Thus b~y = bŷ = c�: On appealing to the computations above, we obtain

that ~y� = 1=(1 + da�) = ~x� ; and hence that ~x0� = (1=a�) + �� ~x� = 1=(1 + da�):

For the reverse implication in the linear case, pick (x; x0) 2 
 such that x0� = (1=a�) + ��x� ;

x0i = xi = 0; i 6= �; and y� = x� : On substituting these values in the left hand side of (3), we see that

it is equal to zero. But that is precisely Æ(x̂;p̂)(x; x) in the linear case.

Before we present the principal result of this section, we record the following observation.

Proposition 10 Any optimal program is good.

Proof: Let fx(t); y(t)g be an optimal program, and suppose it is not good. By Proposition 2, there

exists a good program fx0(t); y0(t)g starting from x(0): Hence there exists G 2 IR such that for all

T 2 IN+;
PT

t=0(w(by
0(t)) � w(bŷ)) � G: Pick any " > 0; and appeal to Proposition 4 to guarantee the

existence of t" such that
PT

t=0(w(by(t))� w(bŷ)) < G� " for all T � t": Putting these two expressions

together, we obtain that
PT

t=0(w(by
0(t)) � w(by(t))) > " for all T � t"; and hence a contradiction to

the fact that f(x(t); y(t)g is an optimal program.

We can now present
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Theorem 3 Any optimal program fx(t); y(t)g converges to the von Neumann facet, and thus

limt!1 xi(t) = limt!1 yi(t) = limt!1 zi(t) = 0 for all i 6= �: If the felicity function w(�) is strictly

concave, limt!1 x(t) = limt!1 y(t) = (1=1 + da�)e(�) and limt!1 z(t) = (da�=1 + da�)e(�):

Proof: Suppose that there exists " > 0 such that for all k 2 IN+; there exists t(k) � k such thatP
i 6=� kx(t(k))k > ": We can then assert that for the value-loss sequence fÆ(t(k))gk2IN+

; there exists

Æo > 0 and ko 2 IN+ such that for all k � ko; Æ(t(k)) � Æo: If the assertion is valid, we obtain a

contradiction to Proposition 7 and complete the proof of the �rst claim. Thus, suppose that the assertion

is false. Then we can manufacture a sequence of integers fkigi2IN+
such that limi!1 Æ(t(ki)) = 0:

Now consider the sequence f(x(t(ki)); x(t(ki) + 1))gi2IN+
and appeal to Proposition 1 to guarantee the

existence of a subsequence that converges to a point (~x; ~x0): Since 
 is closed, and w(�) is continuous,

Æ(p̂;x̂)(~x; ~x
0) = 0: We now appeal to Lemma 2 to obtain a contradiction to our initial hypothesis.

For the case of a strictly concave felicity function, repeat the argument above but with kx(t(k))�

x̂k+ kx(t(k + 1)) � x̂k > ": In this case, (~x; ~x0) = (x̂; x̂); and we again appeal to Lemma 2 to obtain a

contradiction to our initial hypothesis.

6 Choice of Techniques in Transition

In this section, we turn to the question of which machines are optimally used and produced { the choice

of techniques { not only in the long-run, but also in the medium- to short-run. Our discussion revolves

around the identi�cation and formalization of a policy prescribed in Stiglitz (1968). Thus, for the case

of a linear felicity function, we present simple examples of economies, consisting of only a single type of

machine and thereby posing no issue as to the choice of technique in production,39 in which consumption

and capital stock exhibit a two-period cycle along an optimal program or a four-period cycle along a

Stiglitz program, which is thereby shown to be bad. The �rst shows the optimality of periodic over-

building and over-consuming relative to the golden-rule levels, and the second, the non-optimality of a no

excess-capacity policy { phenomena that Stiglitz (1968) apparently does not encounter in his continuous-

time formulation of the model.40 Leaving aside questions relating to the utilization of machines, and

focussing only on their production, we also present an example of an economy consisting of two types

of machines in which a machine other than the golden-rule machine is produced in the very �rst period

along an optimal program. For a non-linear felicity function, this establishes the non-optimality of a

Stiglitz production program (De�nition 9 below), and gives an aÆrmative answer to the question as to

whether there is a compelling reason to ever produce a type of machine which we know would eventually

be depreciated to zero?41

39The question of the choice of technique in terms of use of course remains: should all of the stocks of the machine be
utilized until production is undertaken? This question is investigated in Section 6.3 below.
40It is worth re-emphasizing in this connection that Brock's 1970 results were not available to Stiglitz in 1968.
41Stiglitz (1973, pp. 146-148) has an example of a four machine economy where such a phenomenon can occur, but it

is with discounting and a minimum consumption constraint. In this work, Stiglitz is primarily interested in what he calls
the phenomena of \recurrence" { a situation when a machine once in service is put out of service to be brought back into
service again.
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6.1 Stiglitz' Policy Prescriptions

We present Stiglitz' policy prescriptions in the form of particular programs. Towards this end, let

D = fi 2 f1; � � � ; n) : bi � c� = b�=(1 + da�)g be the set of machine-types whose output per unit labor

ratios are not less than the e�ective output per unit labor ratio of machines of type �:42 We shall refer to

such types as desirable and to those not in D as undesirable. Under a Stiglitz policy, labor is allocated in

each time period to a set of available desirable machines with a higher type of machine having a priority

over a lower one,43 and any remaining labor allocated towards producing only one type of machine, that

delineated by �. More formally,

De�nition 8 A program fx(t); y(t)g with an associated gross investment sequence fz(t+1)g is said to

be a Stiglitz program if for any t 2 IN the following policy prescriptions are followed.

(i) If 0 �
P

i2D xi(t) � 1; let yi(t) = xi(t) for all i 2 D; yi(t) = 0 for all i 62 D; and z(t + 1) =

((1�
P

i2D xi(t))=a�)e(�):

(ii) If
P

i2D xi(t) > 1 and x1(t) � 1; let y(t) = e(1) and z(t+ 1) = 0:

(iii) If
P

i2D xi(t) > 1 and x1(t) < 1; let yi(t) = xi(t) for all i = 1; � � � ; io�1; yio(t) = 1�
Pio�1

i=1 xi(t);

where io 2 D such that
Pio�1

i=1 xi(t) < 1 and
Pio

i=1 xi(t) � 1; and z(t+ 1) = 0:

It is perhaps uncontroversial that the crucial aspect of the issue of choice of technique relates to

production rather than the utilization of the \correct" type of machine. In keeping with this, we are

also interested in the following kind of programs which contain, as a strict subset, the set of Stiglitz

programs.

De�nition 9 A program fx(t); y(t)g with an associated gross investment sequence fz(t+1)g is said to

be a Stiglitz production program if for any t 2 IN; zi(t+ 1) = 0 for all i 6= �:

In a continuous-time framework of our model, with a linear felicity function, Stiglitz (1968) has

argued that an optimal program must follow the policy prescriptions described above. This result turns

out to be invalid in our framework, and we provide three examples in the next three subsections to

illustrate this observation. In Section 7, we provide alternate sets of suÆcient conditions under which

the Stiglitz' assertion is valid in our framework.

6.2 Non-Monotonicity of an Optimal Program

Stiglitz (1968, p.607) notes that an implication of his policy prescriptions is that employment and output

in the consumption good sector increases monotonically, if the economy is initially capital poor. Our

�rst example shows that such a monotonicity property is invalid in general in our framework.

42See Footnote 26 and the associated text. Note that � 2 D:
43Recall that without any loss of generality, the machine types have been numbered so that bi � bi+1 for all i = 1; � � � ; n:
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We present an example of an economy with a linear felicity function in which the optimal path

cycles around the golden rule stock. The economy has available to it only one type of machine whose

(labor) input and output coeÆcients (a1; b1) are given by (2=3; 1); the depreciation rate d by 1=2; and

the felicity function by w(by) = y: The reduced form of the economy is given by:


 = f(x; x0) 2 IR2
+ : (1=2)x+ (3=2) � x0 � (1=2)xg;

�(x; x0) = fy 2 IR+ : y � x and y � 1 + (1=3)(x� 2x0)g = fy 2 IR+ : y � min[1 + (1=3)(x� 2x0); x]g;

u(x; x0) = maxfw(by) : y 2 �(x; x0); (x; x0) 2 
g = min[1 + (1=3)(x� 2x0); x]:

Consider the program fx(t); y(t)g given by x(t) = y(t) = 3=4; with a gross investment of z(t+1) =

x(t+1)� (1� d)x(t) = 3=4� (1=2)(3=4) = 3=8; for all t 2 N: We claim that this is a stationary optimal

program from x(0) = 3=4: Towards this end, we show that (3=4; 3=4) is the unique solution to the

problem delineated in De�nition 5, and hence that 3=4 is the unique golden-rule stock.

First observe that u(3=4; 3=4) = min[1 � (1=3)(3=4); 3=4] = 3=4; and that u(x; x0) = min[1 �

(1=3)x � (2=3)(x0 � x); x]: Now if 0 � x < 3=4; u(x; x0) < (3=4): And if x > 3=4; then x0 � x implies

1� (1=3)x� (2=3)(x0�x) � 1� (1=3)x < 3=4: Hence, u(x; x0) < (3=4) = u(3=4; 3=4); and the argument

is complete.

Next, consider a program such that y(t) = x(t) for all t 2 IN; x(t) = 1=2 for all even t 2 IN; and

x(t) = 1 for all odd t 2 IN: It easy to check that this is a program that starts from 1=2 and oscillates

around 3=4: All that we need to show is that it is an optimal program starting from 1=2: Towards this

end, we note that p̂ = q̂ = 1=2; and that this program makes a zero value-loss in each period at these

prices:

Æ(t) =

�
(1=2) + (1=2)� (1=2)(1=2)� 3=4 = 0 for t = 0; 2; � � �
1 + (1=2)(1=2)� (1=2)� 3=4 = 0 for t = 1; 3; � � �

An appeal to Proposition 9 then completes the argument.

6.3 Non-Optimality of a Stiglitz Program

It can be easily checked in the example of the previous subsection that the cyclic optimal program is a

Stiglitz program. In this subsection, we ask whether the set of optimal programs is identical to the set

of Stiglitz programs, and perhaps surprisingly discover this to be decisively not the case. We present

an example of a simple economy with a linear felicity function in which at a particular initial stock, the

unique Stiglitz program is bad, leave alone optimal.

The economy has available to it only one type of machine whose (labor) input and output coeÆ-

cients (a1; b1) are given by (2=5; 1); the depreciation rate d by 1=2; and the felicity function by w(by) = y:

The reduced form of the economy is given by:


 = f(x; x0) 2 IR2
+ : (1=2)x+ (5=2) � x0 � (1=2)xg;

15



�(x; x0) = fy 2 IR+ : y � x and y � 1 + (1=5)(x� 2x0)g = fy 2 IR+ : y � min[1 + (1=5)(x� 2x0); x]g;

u(x; x0) = maxfw(by) : y 2 �(x; x0); (x; x0) 2 
g = min[1 + (1=5)(x� 2x0); x]:

Consider the program fx(t); y(t)g given by x(t) = y(t) = 5=6; with a gross investment of z(t+1) =

x(t+1)� (1�d)x(t) = 5=6� (1=2)(5=6) = 5=12; for all t 2 N:We claim that this is a stationary optimal

program from x(0) = 5=6: Towards this end, we show that (5=6; 5=6) is the unique solution to the

problem delineated in De�nition 5, and hence that 5=6 is the unique golden-rule stock.

First observe that u(5=6; 5=6) = min[1 � (1=5)(5=6); 5=6] = 5=6; and that u(x; x0) = min[1 �

(1=5)x � (2=5)(x0 � x); x]: Now if 0 � x < 5=6; u(x; x0) < (5=6): And if x > 5=6; then x0 � x implies

1� (1=5)x� (2=5)(x0�x) � 1� (1=5)x < 5=6: Hence, u(x; x0) < (5=6) = u(5=6; 5=6); and the argument

is complete.

Next, consider a program such that for all t 2 IN; x(4t) = 1 = y(4t); x(4t + 1) = 1=2 =

y(4t + 1); x(4t + 2) = 3=2; y(4t+ 2) = 1; x(4t + 3) = 3=4 = y(4t + 3): It easy to check that this is a

program that starts from 1 and returns to it after four periods. It is also easy to see that it is a unique

Stiglitz program starting from 1. In terms of De�nition 8, D = f1g; and in three of the four periods of

the 4-period cycle, condition (ii) applies and usage and production levels are uniquely set to maintain

full employment and no excess capacity. In other words, in these periods, all of the desirable machines

are utilized, and all of the remaining labor (none in one of the 3 periods) is allocated to the production

of new machines. In the one remaining period, 4t+2; there is full employment but also excess capacity.

It is easy to check that u(1; 1=2) = 1; u(1=2; 3=2) = 1=2; u(3=2; 3=4) = 1; and u(3=4; 1) = 3=4:

Hence for all n 2 IN+;
P4n

t=0[u(x(t); x(t + 1))� (5=6)] = �(1=12)n; so that the Stiglitz program is bad.

From Proposition 10, we can then conclude that the Stiglitz program is not optimal.

Since there is a unique Stiglitz program starting from x(0) = 1; the optimal program from

x(0) = 1; which exists by virtue of Theorem 2, is not a Stiglitz program.

6.4 Non-Optimality of a Stiglitz Production Program

We know from the example presented in the previous subsection that an optimal program is not in

general a Stiglitz program. In this section, we ask whether every optimal program is at least a Stiglitz

production program. Note that in an economy with only one type of machine (as in the examples of

the previous two subsections) an optimal program is trivially a Stiglitz production program. Thus, we

need to consider economies with at least two types of machines for the question to be non-trivial. We

present an example of an economy with two types of machines and a piece-wise linear felicity function

in which the machine di�erent from the golden-rule machine is produced in transition along an optimal

program.

Consider an economy in which there are two types of machines (n = 2) with input coeÆcients

vector given by a = (2; 3); output coeÆcients vector by b = (4; 5) and the depreciation rate, d; by 0.45
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(m � (1� d) = 0:55): Note that

b1
a1

= 2 > (5=3) =
b2
a2

and
b1

(1 + da1)
� 2:1052 < 2:1276 �

b2
(1 + da2)

;

and thus � = 2 : machines of type 2 constitute the golden-rule stock. The social welfare function, w; is

de�ned as follows:

w(y) =

�
y � 2 for y � 2
1000(y� 2) for 0 � y < 2

The initial stock of machines is speci�ed as xo = (0:5; 0):

We know from the analysis of Section 5 that in the long-run only machines of type 2 will be

produced and used along an optimal program. We are interested in demonstrating that machines of

type 1 will nevertheless be produced in some time period along an optimal program from xo: Our

method of demonstrating this is to suppose, on the contrary, that machines of type 1 are not produced

in period 1 along an optimal program. We show that a consequence of this is that an optimal program

will su�er a large disutility (negative utility, large in absolute value) in either the �rst or the second

period of consumption, which results in a large disutility even in the long-run. We construct a program

from xo which produces machines of type 1 initially, and reaches the golden-rule stock in a �nite number

(speci�cally, eight) of periods; it has non-negative utility in all periods, and, of course, (positive) golden-

rule utility from period nine onwards. This shows that our hypothesis that machines of type 1 are not

produced on the optimal program in period 1 must be false, and completes the demonstration. We

relegate the computational details to the Appendix.

In conclusion to this section, note that the felicity w used in the above example is non-linear,

but not strictly concave. We can check that all the calculations shown in the Appendix below remain

valid with a strictly concave w de�ned as follows:

w(y) =

�
(53=47)2(y� 2)=(y � 1) for y � 2
1000(y� 2)� 0:5(y � 2)2 for 0 � y < 2

7 SuÆcient Conditions for the Optimality of the Stiglitz Policy

The three examples presented in Section 6 show that an optimal program in our framework does not

always follow the policy prescriptions of Stiglitz (1968). However, we can provide suÆcient conditions

under which it does. This section is devoted to presenting results along this line. In the �rst subsection

we consider a linear felicity function, and in a subsequent section, turn to the general case.

7.1 The Case of a Linear Felicity Function

The point to be noted about the two examples presented above (in subsections 6.2 and 6.3) is the

particular value of the parameter 1�d� (1=a1): We have already referred to this parameter in Section 5

as �1; and it takes the value -1 in the example in Section 6.2, and the value -2 in the example in Section
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6.3. The suÆcient condition for the optimal choice of technique that we present in this section then44

requires that �� � �1:

Theorem 4 With a linear felicity function w; and with 1 > �� � �1; any Stiglitz program is an optimal

program.45

This theorem is a consequence of the following lemma.

Lemma 3 With a linear felicity function w; and with 1 > �� � �1; the aggregate value-losses of any

Stiglitz program starting from x(0) equal �(x(0)):

The proof of Lemma 3 relies crucially on the sources of value-loss already identi�ed in the proof

of Lemma 1. On rewriting (2), we obtain

Æ(t) = bŷ � by(t)� q̂(x(t + 1)� x(t))

= c�(1� ey(t)� az(t+ 1)) +

nX
i=1

(c� � bi)yi(t) +

nX
i=1

(c� � ci)aizi(t+ 1) + dqx(t)

= �(t) +
X
i2D

(c� � bi)yi(t) +
X
i62D

(c� � bi)yi(t) +

nX
i=1

(c� � ci)aizi(t+ 1) + dqx(t) (7)

where �(t) = c�(1 � ey(t) � az(t + 1)) is the value-loss from unemployment.46 This is a �ve-fold

decomposition47 of the value-loss at any time-period: the other four terms concern value losses from

incorrect usage and incorrect investment. The proof can now be executed by the comparison, period by

period, of the magnitudes of the value-losses of the Stiglitz program and those of any other candidate

program. We relegate the details to the Appendix, and turn to a

Proof of Theorem 4: Let fxs(t); ys(t)g; with an associated value-loss sequence fÆs(t)g; be a Stiglitz

program. Since only one type of machine � is constructed under a Stiglitz' policy, and since �� � �1;

we can appeal to Lemma 3 to assert that the Stiglitz program is a good program, and (by Proposition

5) exhibits the average turnpike property. In order to complete the proof, we need to establish that the

hypotheses of Proposition 9 are satis�ed, which is to say that fÆs(t)g satis�es
P1

t=0 Æ
s(t) = �(x(0)):

An appeal to Lemma 3 then completes the proof.

Next we ask whether, under the conditions identi�ed in Theorem 4, a Stiglitz program is uniquely

optimal. Towards this end, we can present

Theorem 5 With a linear felicity function w; and with �1 < �� < 1; any optimal program fx(t); y(t)g

is a Stiglitz program.

44Note that by default D = f1g = f�g in each of the one-machine examples considered above.
45Note that �� < 1:
46Introduced only for the typographical reason of reducing the length of the expression below.
47For a general discussion of the importance of decomposition principles across time in problems of intertemporal

resource allocation, see Bliss (1975, Chapter 6).
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Before considering the proof of this theorem, we draw the reader's attention to the fact that

unlike Theorem 4, Theorem 5 does not cover the case �� = �1: Indeed, Theorem 5 is false for this case.

For the economy discussed in Section 6.2, there exists an optimal program (not discussed in subsection

6.2) which is not a Stiglitz program.48 Thus, we need to rule out the case when the optimal program

stays in the von Neumann facet but does not converge to the golden-rule values. Towards this end

we can present a result which strengthens the conclusions of Theorem 3 in the case of a linear felicity

function and also shows them to hold for a Stiglitz program.

Proposition 11 With a linear felicity function w; and with �1 < �� < 1; for a program fx(t); y(t)g

that is either an optimal or a Stiglitz program, limt!1 yi(t) = limt!1 zi(t) = 0 for all i 6= �; and

limt!1 y�(t) = limt!1 x�(t) = x̂� = 1=(1 + da�); limt!1 z�(t) = d=(1 + da�):

We relegate the computational details to the Appendix, and turn to a sharpening of Lemma 3.

Lemma 4 In a setting with a linear felicity function w; and �1 � �� < 1; let fÆ(t)g be the value-

loss sequence of a program that is not a Stiglitz program and fÆs(t)g the value-loss sequence of a Stiglitz

program starting from the same initial stock. Then there exists " > 0 such that
P1

t=0 Æ(t)�
P1

t=0 Æ
s(t) >

":

We indicate in the Appendix how the proof of Lemma 4 is a straightforward modi�cation of the com-

putations presented in the proof of Lemma 3. We can now present

Proof of Theorem 5: Suppose to the contrary that there exists an optimal program fx(t); y(t)g with

an associated value-loss sequence fÆ(t)g that is not a Stiglitz' program. Let fxs(t); ys(t)g be a Stiglitz

program starting from x(0) and with an associated value-loss sequence fÆs(t)g: An appeal to Lemma 4

and to Proposition 6 yields for all T 2 IN+;

TX
t=0

(by(t)� bys(t)) = p̂(xs(T + 1)� x(T + 1)) +
TX
t=0

Æs(t)�
TX
t=0

Æ(t)

< p̂(xs(T + 1)� x(T + 1))� ":

Using Proposition 11, we can assert that lim supT!1

PT

t=0(by(t) � bys(t)) � (�"): Thus, we obtain

lim infT!1

PT

t=0(by
s(t) � by(t)) = � lim supT!1

PT

t=0(by(t) � bys(t)) � "; a contradiction to the

optimality of fx(t); y(t)g: This veri�es the truth of the initial claim, and completes the argument that

any optimal program is a Stiglitz program.

48A detailed veri�cation of this claim would lead us outside the scope of an already long paper; see Khan-Mitra (2002)
for details.
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7.2 The Case of a General Felicity Function

In the previous subsection, we considered optimal programs in the context of both the long and the

short run when the felicity function is linear; which is to say a situation when a ceteris paribus transfer

of a unit of consumption from a lower consumption level period to the higher one will de�nitely reduce

social welfare. In the �rst subsection, we present a price-support property and some of its implications

that have independent interest, and in a subsequent subsection, use these results to o�er a suÆcient

condition under which an optimal program is a Stiglitz production program.

7.2.1 The Price-Support Property and its Implications

So far we have worked only with the golden-rule price system, and in this subsection we present McKen-

zie's price support property as Theorem 6 below. Since we do not exclude the situation where the

economy has no stock of machines, xo = 0; the result is a direct consequence of methods available in

McKenzie (1986; Proof of Lemma 1), rather than a corollary. We relegate to an Appendix the (straight-

forward) details of how McKenzie's interiority assumptions are ful�lled in our context, and allow his

proof to work.

Theorem 6 Let fx(t); y(t)g be an optimal program starting from an arbitrary initial stock, xo 2 IRn
+:

Then there exists a sequence fp(t)g1t=0; p(t) 2 IRn
+; such that for all (x; x0) 2 
 and y 2 �(x; x0);

w(by(t)) + p(t+ 1)x(t+ 1)� p(t)x(t) � w(by) + p(t+ 1)x0 � p(t)x:

Next, or the convenience of the reader, we simply state in words the consequences of Theorem

6, leaving their precise statement and proof to the Appendix. We can show that along an optimal

program, investment in the machine of type � never ceases (Proposition 12), that there is investment

in machines of this type only if they are valuable today (Proposition 14), and as a consequence, they

are always valuable (Proposition 15), that machines types which are valuable today were valuable in

the past ((Proposition 13) and that the prices are bounded (Proposition 17). We can use these results

to establish expressions for the relative prices of produced machines (Proposition 18), and under the

suÆcient condition to be discussed below, an expression for the evolution of relative prices (Proposition

19). These results do not rely on linearity or strict concavity of the felicity function, and simply exploit

the average-turnpike property of good programs, and as such rely on the uniqueness of the golden-rule

stock. Thus the standing hypothesis presented as (1) above continues to be the driving force.

7.2.2 A SuÆcient Condition

The scenario in which there can be a di�erence in the choice of techniques is one where the short-

run consumption requirements are quite di�erent from the long-run consumption requirements on an

optimal program. As we have seen in Section 5, the unique golden-rule type of machine, �, is the best

machine to use for meeting the long-run consumption requirements, regardless of whether the social

welfare function is linear or strictly concave. In the short-run, however, the important question is which
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machine built today will provide the most consumption tomorrow, given an available amount of labor for

new machine production today, and without taking into account the fact that the machine depreciates.

This is clearly qualitatively di�erent from the long-run (golden-rule) problem and points to bi=ai rather

than to bi=(1 + dai): When the orderings of these two magnitudes di�er, as they do in the example of

Section 6.4, one machine is best for the short-run problem and another machine is best for the long-

run problem. This seems to suggest that if the orderings coincide, then the machine that is best for

the long-run remains best for the short-run, and only the golden-rule machine is produced and used.

We assume that a unique type of machine � is best irrespective of the time horizon under which the

planning exercise is being conducted, and furthermore, that it requires for its production more labor

than a machine of any other type.

Assumption 1 (b�=a�) > maxi6=�(bi=ai) and a� > maxi6=� ai:

We can now show that under this congruence, the golden-rule machine � is the only type that is

produced.

Theorem 7 Under Assumption 1, an optimal program is a Stiglitz production program.

The proof of Theorem 7 is relegated to the Appendix; while the basic intuition is clear, it requires

the use of all of the consequences of the price-support property that we mentioned above, and which

constitute Propositions 12-19 of the Appendix.

8 Concluding Remarks

If we leave aside the methodological reformulation of the RSS model in the vocabulary of the Gale-

McKenzie reduced form, we see the principal contribution of this work: a complete resolution of the

choice of technique problem in the long-run, and the identi�cation and formalization of the Stiglitz policy

as a cornerstone for the theory of transition dynamics. As regards the latter, three simple examples are

of decisive importance, and they may also be of independent interest for future investigations of related

issues that remain open. In conclusion, we brie
y mention four of these.

Throughout this paper, we have emphasized the sharp and surprising di�erences that arise be-

tween our results and those of Stiglitz: in particular, the parameters �i do not appear in his paper. It

is of some importance to settle the issue as to whether this is a consequence of the di�erent treatment

of time in the two papers, discrete versus continuous, or to the methods that Stiglitz had to work with

in 1968.49

In his retrospective, Stiglitz (1990, p. 61) observes the \greatest challenge facing growth theory":

We now need to understand better the relationship between the short-run behavior of the

economy { in which imperfect information and imperfect competition in �nancial, labor, and

product markets will play a central role { and its long-run dynamics.
49See Footnotes 9 and 40 above, and for preliminary work on this question, Khan-Mitra (2003).
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It is interesting that this remains a challenge even for a planning framework without uncertainty and

the stark simplicity of the speci�cations of the RSS model, technological and otherwise. The complete

characterization of the optimal path in the short-run remains an open problem when the planners'

felicity function is linear but �� < �1; and when it is strictly concave.

We have drawn attention to the conceptual similarities between our work and that of Mitra-Wan

(1987) on the economics of forestry.50 It would be of interest if the analogy is analytically explored in a

synthesis based on the multi-sectoral setting of Koopmans (1971) and Koopmans-Hansen (1972). This

work also gives a singular prominence to Kuhn-Tucker theory.

Finally, the results reported in this paper are a testimony to the strength of the standing hy-

pothesis that there is a unique type of machine that minimizes e�ective labor costs and simultaneously

maximizes the steady state consumption; see (1) above. It would be of interest to examine how the

results are modi�ed without this hypothesis.

9 Appendix

We begin with the proofs of three propositions in Section 4.

Proof of Proposition 5: For any program fx(t); y(t)g; Proposition 1, and the fact that y(t) � x(t) for all
t 2 IN; guarantee that the sequence f�x(T ); �y(T )g has at least one convergent subsequence. Let (x1; y1) be the
limit of one such subsequence. We leave it to the reader to check that (x1; x1) 2 
 and that y1 2 �(x1; x1):

Since fx(t); y(t)g is a good program, there exists G 2 IR such that for all T 2 IN+;

G=T � (1=T )

T�1X
t=0

(w(by(t))� w(bŷ)) � w(b�y(T ))� w(bŷ);

where the second assertion is a consequence of the concavity of w(�): On taking limits as T !1 along the chosen
subsequence, and on appealing to the continuity of w; we obtain w(by1) � w(bŷ): Hence x1 is a golden-rule
stock. Since the golden rule stock is unique, x1 = x̂; and since w is strictly increasing, y1 = ŷ: Since we worked
with an arbitrary convergent subsequence, the argument is complete.

Proof of Proposition 8: Proposition 2 guarantees that there exists a good program fx(t); y(t)g from xo;
and hence from Proposition 6, we obtain that �(xo) < 1: Since fÆ(t)g is a non-negative sequence, certainly
0 � �(xo):

For any � 2 IN+; there exists a program fx�(t); y�(t)g from xo such that its associated value-loss sequence
fÆ�(t)g satis�es

1X
t=0

Æ�(t) � �(xo) + (1=�): (8)

From Proposition 1, the sequence fx�(t)g1�=1 is bounded independently of � (and of t but not of xo). Since
y�(t) � x�(t); the same is true of the sequence fym(t)g1m=1: We can now appeal to a diagonalization argument
(see Rudin (1967; Theorem 7.23) to extract a subsequence indexed by �k; k 2 IN+; that converges for all t 2 IN:
Let fx0(t); y0(t)g be the limit of this subsequence. Let Æ0(t) = p̂(x0(t)� x0(t+ 1)) � (w(by0(t))� w(bŷ)) for all
t 2 IN: Since w(�) is a continuous function, Æ�k(t) �! Æ0(t) for all t 2 IN:

It is easy to check that fx0(t); y0(t)g is a program from xo: Since fÆ
0(t)g is its associated value-loss

sequence, certainly
P1

t=0
Æ0(t) � �(xo): If we now consider the set of natural numbers IN as a measure space

50See Footnotes 3 and 21.
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equipped with a counting measure, we can appeal to Fatou's lemma (see Rudin (1967; Theorem 11.31) via (8)
to assert

�(xo) � lim
k!1

1X
t=0

Æ�k(t) �

1X
t=0

lim inf
k!1

Æ�k (t) =

1X
t=0

Æ0(t):

This completes the proof of our claim.51

Proof of Proposition 9: We know from Proposition 7 that the program fx(t); y(t)g is good. Now suppose that
it is not optimal. Then there exists a program fx0(t); y0(t)g; x0(0) = x(0); a number " > 0 and a time period

t" such that
PT

t=1
[w(by0(t))� w(by(t))] > " for all T � t": Since fx(t); y(t)g is good, fx

0(t); y0(t)g is good, and
by Proposition 5 both programs satisfy the average turnpike property. Let fÆ0(t)g be the value-loss sequence
associated with the latter program. We can now appeal to Proposition 6 to assert that for all T � t";

" <

TX
t=0

(w(by0(t))� w(by(t))) = p̂(x(T + 1)� x0(T + 1)) +

TX
t=0

Æ(t)�

TX
t=0

Æ0(t):

From the minimality of
P1

t=0
Æ(t); there exists t0" such that for all T � t0"; ("=2) < p̂(�x(T + 1) � �x0(T + 1)) =

p̂(�x(T + 1)� x̂+ x̂� �x0(T + 1)): On taking limits with respect to T; we obtain a contradiction.

Next, we turn to the Example in Subsection 6.4

Computations for the example in Subsection 6.4: First we de�ne a program fx(t); z(t)g from xo which
reaches the golden-rule stock in a �nite number of periods.

x(0) = (0:5; 0) = y(0); az(1) = (0:2 + 0:3); z(1) = (0:1; 0:1);

x(1) = (0:375; 0:1) = y(1); az(2) = (0:09 + 0:435); z(2) = (0:045; 0:145);

x(2) = (0:25125; 0:2) � (�; 0:2) = y(2); az(3) = (0:54); z(3) = (0; 0:18);

x(3) = (m�; 0:29); y(3) = (0:1375; 0:29); az(4) = (0:57); z(4) = (0; 0:19);

x(4) = (m�2; 0:3495); y(4) = (0:075; 0:34); az(5) = (0:57); z(4) = (0; 0:19);

x(5) = (m�3; 0:382225); y(5) = (0:04; 0:38); az(6) = (0:579); z(6) = (0; 0:193);

x(6) = (m�4; 0:40322375) = (m�4; b); y(6) = (0; 0:4); az(7) = (0:6); z(7) = (0; 0:2);

x(7) = (m�5;mb+ 0:2); y(7) = (0; 0:4); az(8) = (0:6); z(8) = (0; 0:2);

x(8) = (m�6; 1=2:35) � (m�6; �); y(8) = (0; �); az(9) = (1� �); z(9) = (0; 0:45�);

and for all t � 9;

x(t) = (m�t�2; 1=2:35); y(t) = (0; 1=2:35); az(t+ 1) = (1:35=2:35); z(t+ 1) = (0; 0:45=2:35):

It can be checked (although it is tedious to do so) that the above sequence de�nes a program from xo:
Note that for all t 2 IN; the consumption in period (t+ 1) is given by(t): Hence by(0) = 2; by(1) = 2; by(2) =
2:005; by(3) = 2; by(4) = 2; by(5) = 2:06; by(6) = 2; by(7) = 2; by(t) = 5=2:35 � 2:1276 for all t � 8: Thus,
the utility along this program is non-negative at all dates, and u(x(t); x(t+1)) = u(x̂; x̂) > 0 for all t � 8: Using
this, we have for all T � 8;

TX
t=0

[u(x(t); x(t+ 1))� u(x̂; x̂)] � �8u(x̂; x̂) � �8: (9)

Now, consider the optimal program fx0(t); x0(t+ 1)g from xo; and suppose that machines of type 1 are
not produced at all in period 1; that is, z01(1) = 0: Denote y01(0) by �, and note that � � 0:5: We split up our
analysis into two cases: (i) � � 0:49; (ii) � > 0:49:

51For a direct argument that does not appeal to integration and to Fatou's lemma, see Brock (1970, p. 278).
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In case (i), c0(1) = by0(0) = 4� � 1:96; so that u(x0(0); x0(1)) � �40: We also have az0(1) � (0; 1); and
z0(1) � (0; 1=3): Thus, y0(1) � x0(1) � (0:275; 1=3); and c(1) = by0(1) < 3; so that u(x0(1); x0(2)) < 1: Thus, in
this case, we have:

1X
t=0

[u(x0(t); x0(t+ 1))� u(x̂; x̂)] � �39: (10)

In case (ii), c0(1) = by0(0) � 4(0:5) = 2; so that u(x0(0); x0(1)) � 0: We also have az0(1) � (0; 0:51); and
so z0(1) � (0; 0:17): Thus, y0(1) � x0(1) � (0:275; 0:17); and c0(1) = by0(1) � 1:95; so that u(x0(1); x0(2)) � �50:
Thus, in this case, we have:

1X
t=0

[u(x0(t); x0(t+ 1))� u(x̂; x̂)] � �50: (11)

We now obtain a bound for the sum of utilities (minus the golden rule utility) on this program from time
period 2 onwards. Towards this end, appeal to Lemma 1 to obtain for T � 2;

TX
t=2

[u(x0(t); x0(t+ 1))� u(x̂; x̂)] � p̂x0(2) + p̂x̂: (12)

From the labor constraint, we know that ax0(2) � 1 + (1 � d)ax0(1); and in both cases (i) and (ii), we have
(1 + (1 � d)ax0(1)) � 1:8525 < 2; so that ax0(2) < 2; and x0(2) � (1; 2=3): Also, p̂ � (5; 7); so p̂x0 � 10, and
p̂x̂ � 3: Using this in (12), we obtain

TX
t=2

[u(x0(t); x0(t+ 1))� u(x̂; x̂)] � 13: (13)

Using (10) and (13) in case (i), and (11) and (13) in case (ii), we obtain in either case for T � 2

TX
t=0

[u(x0(t); x0(t+ 1))� u(x̂; x̂)] � �26: (14)

Using (9) and (14), we get for T � 8 (in both cases):

TX
t=0

[u(x(t); x(t+ 1))� u(x0(t); x0(t+ 1))] � 18;

which contradicts the optimality of fx0(t); y0(t)g from xo: This establishes that z
0
1(1) > 0; that is, some machines

of type 1 are produced in period 1 along the optimal program.

Next, we turn to the results in Subsection 7.1.

Proof of Lemma 3: Let fxs(t); ys(t)g be a Stiglitz program with an associated gross investment sequence
fzs(t + 1)g and an associated value-loss sequence fÆs(t)g: We shall denote corresponding values of any other
(candidate) program starting from xs(0) by fx(t); y(t)g; fz(t+1)g; and fÆ(t)g: We shall consider three di�erent
ranges for the value of �� and make repeated use of (7) and of De�nition 8.

Case (i) 0 < �� < 1 :
Suppose that for any t 2 IN; 0 �

P
i2D

xsi (t) � 1: In this case, we see from (i) of De�nition 8 that

ysi (t) = xsi (t) for all i 2 D; ysi (t) = 0 for all i 62 D; and zs(t+ 1) = (1=a�)
�
1�
P

i2D
xsi (t)

�
e(�): We leave it to

the reader to check that (xs(t); xs(t+ 1)) 2 
 and that ys(t) 2 �(xs(t); xs(t+ 1)): On substituting these values
in (7), we obtain that52

Æs(t) =
X
i2D

(c� � bi)x
s
i (t) + dqxs(t) =

X
i2D

(c� � bi + dqi)x
s
i (t) + d

X
i62D

qix
s
i (t)

52Note that in the third equality we use the identity referred to in Footnote 35 above. We shall not draw attention to
this in the sequel.
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=
X
i2D

(c� � ci)x
s
i (t) + d

X
i62D

qix
s
i (t):

Again from (7) we obtain53

Æ(t) �
X
i2D

(c� � bi)yi(t) + dqx(t) �
X
i2D

(c� � bi)xi(t) + dqx(t)

=
X
i2D

(c� � bi + dqi)xi(t) + d
X
i62D

qixi(t) =
X
i2D

(c� � ci)xi(t) + d
X
i62D

qixi(t):

Next, we claim that for all t 2 IN; xi(t) � xsi (t) for all i 6= �: Since the candidate program starts from
the same initial stock as the Stiglitz program, the claim holds for t = 0: Suppose it to be true for any t 2 IN; in
keeping with the induction hypothesis. Then

xsi (t+ 1) = (1� d)xsi (t) � (1� d)xi(t) � (1� d)xi(t) + zi(t+ 1) = xi(t+ 1):

Given the standing hypothesis, it is clear that for all t 2 IN; Æs(t) � Æ(t): Thus, we need only to verify
that the Stiglitz program is feasible in the sense that once in the range 0 �

P
i2D

xsi (t) � 1; the program always
remains in it. We proceed by induction. For any t 2 IN; note that

xsi (t+ 1) =

�
(1� d)xsi (t) for all i 6= �

(1� d)xs�(t) + (1=a�)
�
1�

P
i2D

xsi (t)
�

for i = �
(15)

Since 0 �
P

i2D
xsi (t) � 1; we obtain from (15) that z�(t+ 1) = xs�(t+ 1)� (1� d)xs�(t) � 0; and that

X
i2D

xsi (t+ 1) = (1� d)
X
i2D

xsi (t) +
1

a�

 
1�
X
i2D

xsi (t)

!

=
�
1� d�

1

a�

�X
i2D

xsi (t) +
1

a�
= ��

X
i2D

xsi (t) +
1

a�
: (16)

Given the possible values of ��; we obtain 0 <
P

i2D
xsi (t+ 1) < 1:

We can now collect these steps to assert that for all t 2 IN; Æs(t) � Æ(t); and hence that
P1

t=0
Æs(t) =

�(xs(0)):
Next we turn to the case when for any t 2 IN;

P
i2D

xsi (t) > 1; xs1(t) < 1: In this case, we see from

(iii) of De�nition 8 that ysi (t) = xsi (t) for all i < io; ysio(t) = 1 �
Pio�1

i=1
xsi (t); ysi (t) = 0 for all i > io;

and that zsi (t + 1) = 0 for all i: We leave it to the reader to check that (xs(t); xs(t + 1)) 2 
 and that
ys(t) 2 �(xs(t); xs(t+ 1)): On substituting these values in (7), we obtain that

Æs(t) =

io�1X
i=1

(c� � bi)x
s
i (t) + (c� � bio)(1�

io�1X
i=1

xsi (t)) + dqxs(t)

=

io�1X
i=1

(c� � ci)x
s
i (t) + (c� � bio)(1�

io�1X
i=1

xsi (t)) + d
X
i�io

qix
s
i (t);

and for any other (candidate) program with Do = D=f1; � � � ; iog that

Æ(t) �

io�1X
i=1

(c� � bi)yi(t) + (c� � bio)yio(t) +
X
i2Do

(c� � bi)yi(t) + dqx(t)

�

io�1X
i=1

(c� � bi)xi(t) + (c� � bio)yio(t) +
X
i2Do

(c� � bi)yi(t) + dqx(t)

=

io�1X
i=1

(c� � ci)xi(t) + (c� � bio)yio(t) +
X
i2Do

(c� � bi)yi(t) + d
X
i�io

qixi(t):

53We rely on the standing hypothesis (1) and on the de�nition of desirable machines, in addition to the feasibility of
the program.
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Now by hypothesis, for all i 2 Do; bi � bio so that:
P

i2Do
(c� � bi)yi(t) � (c� � bio)

P
i2Do

yi(t): Hence we
obtain

(c� � bio)yio(t) +
X
i2Do

(c� � bi)yi(t)) � (c� � bio)
X

i2Do[io

yi(t) � (c� � bi0)
X

i2Do[io

xi(t):

Also, by de�nition of fxs(t); ys(t)g; we have
P

i2Do[io
xi(t) �

P
i2Do[io

xsi (t) � (1 �
Pio�1

i=1
xsi (t)): NowP

i2D
xsi (0) > 1 implies that there exists a �rst t1 2 T such that

P
i2D

xsi (t1) � 1: For the Stiglitz pro-
gram, we know that for all t 2 IN; t < t1; zsi (t + 1) = 0 for all i; and hence that xs(t) � x(t): In particular,
xs1(t) < 1 for all t 2 IN; t < t1: This implies that for all t 2 IN; t < t1; Æ

s(t) � Æ(t): [Note that io may vary with t;
but given our period-by-period veri�cation, it is of no consequence.] But for t � t1; we are in the case considered
earlier, and hence we can assert that for all t 2 IN; Æs(t) � Æ(t); and hence that

P1

t=0
Æs(t) = �(xs(0)):

Next we turn to the case when for any t 2 IN;
P

i2D
xsi (t) > 1; xs1(t) > 1: In this case, we see from (ii)

of De�nition 8 that ys1(t) = 1; ysi (t) = 0 for all i 6= 1; and that zsi (t+1) = 0 for all i: We leave it to the reader to
check that (xs(t); xs(t+1)) 2 
 and that ys(t) 2 �(xs(t); xs(t+1)):On substituting these values in (7), we obtain
that Æs(t) = (c�� b1)+dqxs(t); and for any other (candidate) program that Æ(t) �

P
i2D

(c�� bi)yi(t)+dqx(t):

Now by hypothesis, bi � b1; so that:
P

i2D
(c� � bi)yi(t) � (c� � b1)

P
i2D

yi(t): Since
P

i2D
yi(t) � 1 by

de�nition of a program, and since (c�� b1) � 0;
P

i2D
(c�� bi)yi(t) � (c�� b1): Since both programs start from

the same initial stock and xs1(t) > 1 implies xsi (t� r) > 1 for all r = 0; � � � ; t� 1; xi(t) � xsi (t) for all i: Hence
Æs(t) � Æ(t):

It is clear that if xs1(0) > 1; there exists t1 2 T such that xs1(t1) � 1:We have already seen that Æs(t) � Æ(t)
for all t < t1: Now either

P
i2D

xsi (t1) � 1; in which case we appeal to the �rst case, or
P

i2D
xsi (t1) > 1; in

which case we appeal to the second case and complete the demonstration that for all t 2 IN; Æs(t) � Æ(t): HenceP1

t=0
Æs(t) = �(xs(0)):

Case (ii) 0 > �� � �1 :
Suppose that for any t 2 IN; (1 � d) �

P
i2D

xsi (t) � 1: On examining the argument for this subcase
within case (i) above, we see that the value of �� is used only to verify the feasibility of the Stiglitz program in
equation (16). However, with 0 > �� � �1;

P
i2D

xsi (t) � 1 implies ��
P

i2D
xsi (t) � ��; and thereforeX

i2D

xsi (t+ 1) = ��
X
i2D

xsi (t) + (1=a�) � �� + (1=a�) = (1� d):

Furthermore,
P

i2D
xsi (t) � (1� d) implies ��

P
i2D

xsi (t) � ��(1� d); and thereforeX
i2D

xsi (t+ 1) = ��
X
i2D

xsi (t) + (1=a�) � ��(1� d) + (1=a�) = (1� d)2 + (d=a�):

Since �� = 1 � d � (1=a�) � �1; (1=a�) � 2 � d; which implies that (d=a�) � (2 � d)d and hence that
(1�d)2+(d=a�) � (1�d)2+(2�d)d = 1: We have thus shown that once in the range (1�d) �

P
i2D

xsi (t) � 1;
the program always remains in it.

For the other two subcases in the argument within case (i) above, we note that �� plays no role and that
everything hinges on the value of d: Thus the only remaining case to be considered is when 0 �

P
i2D

xsi (t) <

(1 � d): Here there are two possibilities: either
P

i2D
xsi (t + 1) � 1 or

P
i2D

xsi (t + 1) > 1: Since we have

already shown that
P

i2D
xsi (t + 1) � (1 � d); there is nothing further to be shown under the �rst possibility.

Under the second, there exists a �rst t1 2 IN; t1 > t such that
P

i2D
xsi (t1) � 1: Since

P
i2D

xsi (t1) =

(1� d)
P

i2D
xsi (t1 � 1) > (1� d); we are in the case analyzed above, and the demonstration is complete.

Case (iii) �� = 0 :
This is a trivial case where (1=a�) = 1=(1 + da�) = x̂: Suppose that for any t 2 IN; 0 �

P
i2D

xsi (t) � 1:

Then we see from Equation (16) that
P

i2D
xsi (t) = 1=a�: For the other subcases, the argument is identical to

that presented under case (i).
We have now covered all possible cases, and the proof of the lemma is complete.

Proof of Proposition 11: We shall prove the proposition for an optimal program; identical computations hold
for a Stiglitz program. By virtue of Theorem 3, we know that eventually machines of type other than � are
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never built in any optimal program, and hence for all i 6= �; limt!1 xi(t) = 0: Since yi(t) � xi(t); the proof of
the �rst claim is complete. In the case of machines of type �; we appeal to Lemma 2 to characterize the behavior
of paths on the von Neumann facet. A subsequent appeal to Theorem 3 then proves the second claim. Towards
the �rst requirement, note that

x�(t+ 1) = (1� d)x�(t) + z�(t+ 1) = (1� d)x�(t) + (1=a�)(1�
X
i2D

xi(t))

= ��x�(t)� (1=a�)(1�
X

i2D=f�g

xi(t)) = ��x�(t)� (1=a�)(1� (1� d)t
X

i2D=f�g

xi(0)):

Let g(t) denote (1=a�)(1 � (1� d)t
P

i2D=f�g
xi(0)): We can then appeal to Elaydi (1999; p.4) to obtain

x�(t) = �t�x�(0) +

t�1X
�=0

�t���1� g(� ) = �t�x�(0) + (1=a�)

t�1X
�=0

�t���1� (1� (1� d)�
X
i2D=�

xi(0))

= (1=a�)

t�1X
�=0

��� + �t�x�(0)� (1=a�)

t�1X
�=0

�t���1� (1� d)�
X

i2D=f�g

xi(0)):

Since �1 < �� < 1; this yields limt!1 x�(t) = 1=(1 + da�); and hence that limt!1 y�(t) = 1=(1 + da�) and
limt!1 z�(t) = da�=(1 + da�):

Proof of Lemma 4: Since the program f(x(t); y(t)g starts from the same initial stock as a Stiglitz program,
and there exists a �rst time period t1 2 IN; at which it departs from the Stiglitz program, we can appeal to the
computations of Æ(t1) and Æs(t1) in each of the relevant cases delineated in the proof of Lemma 3 to show that
they will hold with strict inequality. This furnishes a proof of the claim.

Proof of Theorem 6: The result is (part of) the assertion of Lemma 1 of McKenzie (1986). McKenzie works
with a general setting in which the transition possibility set and the reduced form utility function are allowed to
change over time. He utilizes assumptions I, II and III to derive his assertions. Assumption I is a requirement
that u(�; �) is concave and closed and that 
 is convex. Assumption II is the requirement that there exists
�o 2 IR+ such that for all (x; x0) 2 
; x < �o; there exists � 2 IR+ such that x0 < �: The speci�cations on u and
on 
 presented in Section 2.4 and Proposition 1 above guarantee that I and II are ful�lled in our setting.

Assumption III is also a hypothesis on what McKenzie terms the \maximal path of capital accumulation"
and on what we are referring to here as an optimal program. He works with the sets Pt and Kt for all t 2 IN: In
our stationary setting these sets are independent of t: Pt concerns only 
 and in our setting, it is IRn

+ for all t 2 IN:
Kt concerns also the optimal program, and since Theorem 2 above guarantees that there is an optimal program
from any initial stock, it is also IRn

+ for all t 2 IN: Now Assumption III requires that for any optimal program
fx(t); y(t)g; x(t) is in the relative interior of IRn

+ for all t 2 IN: If x(0) > 0; this assumption is ful�lled for any
program, leave alone an optimal one. However, x(0) = 0 is not in the relative interior of IRn

+; and Assumption III
is not ful�lled. The relevant observation here is to apply McKenzie's Lemma 1 for the case x(0) > 0; and then
to observe that for any optimal path starting from 0; u(0; x(1)) = 0; and hence that V (x(0)) = V (x(1)): (Note
that McKenzie's V (kt) is independent of the value of the golden-rule stock and is de�ned solely with respect to
the optimal program.) It is clear that x(1) > 0 by the optimality of the program. The price-support for V (x(1))
also works for V (x(0)); and allows the induction to proceed. The demonstration is then complete.

We now turn towards the proof of Theorem 7, and develop the implications of the price-support property
informally described in Subsection 7.2.1. In their precise statements to follow, Propositions 12-19, the hypotheses
of Theorem 7 are in force. This is to say that fx(t); y(t)g is an optimal program, and fp(t)g its associated price-
support.

Proposition 12 There exists a sequence ftigi2IN+ such that z�(ti) > 0 for all i 2 IN+:

Proof: Suppose this not to be the case. Then there exists T 2 IN such that for all t � T; z�(t) = 0: Since
all machines depreciate at the rate d 2 (0; 1), this implies that x�(t) ! 0 as t ! 1; and therefore that the
time-average of x�(t); �x�(t) ! 0 as t ! 1: An appeal to Propositions 5 and 10 furnishes a contradiction and
completes the argument.
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Proposition 13 For any t 2 IN; and any i = 1; � � � ; n; (i) (1 � d)pi(t + 1) � pi(t); and (ii) pi(t + 1) > 0 =)
pi(t) > 0:

Proof: For any time-period t and any machine of type i; let x = x(t)+e(i)"; z = z(t+1); x0 = (1�d)x+z; y =
y(t) where " > 0: Then, (x; x0) 2 
, and y 2 �(x; x0): Using Theorem 6, we have pi(t+ 1)(1� d)"� pi(t)" � 0;
which yields result (i). In particular, if for some t 2 IN; and i = (1; � � � ; n); pi(t + 1) > 0; then we must have
pi(t) > 0:

Proposition 14 For any t 2 IN; z�(t+ 1) > 0 implies p�(t) > 0:

Proof: Suppose that for some time-period t; z�(t + 1) > 0 and p�(t) = 0: Then Proposition 13 implies that
p�(t+1) = 0: Pick " such that 0 < " < a�z�(t+1); and de�ne x = x(t)+"e(�); x0 = x(t+1)+((1�d)x��x�(t+
1))e(�); and y = y(t)+"e(�): Then ey = ey(t)+" and a(x0� (1�d)x) = a(x(t+1)� (1�d)x(t))�a�z�(t+1) <
az(t+ 1)� ": Thus (x; x0) 2 
; and y 2 �(x; x0); and from Theorem 6, w(by(t)) + p(t+ 1)x(t+ 1)� p(t)x(t) �
w(by(t) + b�") + p(t+ 1)x0 � p(t)x: This yields w(by(t)) � w(by(t) + b�"); a contradiction to the fact that w is
strictly increasing.

Proposition 15 For any t 2 IN; p�(t) > 0:

Proof: Suppose that there exists t 2 IN such that p�(t) = 0: From Proposition 12, there exists a time-period
ti > t such that z�(ti) > 0: From Proposition 14, this implies that p�(ti � 1) > 0: If ti = t + 1; we obtain a
contradiction. If ti > t + 1; we make as many (�nite) appeals to Proposition 13 as is necessary to obtain a
contradiction.

Proposition 16 For any t 2 IN; and any i 2 1; � � � ; n; xi(t) > yi(t) =) pi(t+ 1)(1� d) = pi(t):

Proof: Let " = xi(t)� yi(t) > 0; and de�ne x = x(t)� "ei; y = y(t); and x0 = x(t+ 1)� (1� d)"e(i). Then, it
can be easily checked that (x; x0) 2 
, and y 2 �(x; x0): Using Theorem 6, we obtain (1� d)pi(t+ 1)" � pi(t)":
We can now complete the proof of the claim by using Proposition 13.

Proposition 17 lim inft!1 jjp(t)jj <1:

Proof: For any t 2 IN; and any i = 1; � � � ; n; de�ne x = x(t); z = z(t+1)+(ey(t)=ai)e(i); x
0 = z+(1�d)x; y = 0:

Then az + ey = az(t + 1) + ey(t); and hence (x; x0) 2 
 and y 2 �(x; x0): We can now appeal to Theorem 6
to obtain pi(t + 1)(ey(t)=ai) � w(by(t)) � w(0) � w(be) � w(0): Thus, there is M > 0 such that for all
t 2 IN; jj p(t+ 1)jj(ey(t)) � M: If lim inft!1 jj p(t)jj = 1, then we must have ey(t) ! 0 as t ! 1: But, then,
the optimal program cannot be good, a contradiction to Proposition 10 that establishes the claim.

Proposition 18 For any i 2 1; � � � ; n; zi(t+ 1) > 0 =) pi(t+ 1)=p�(t+ 1) � ai=a�:

Proof: Suppose that for any t 2 IN; and any i = 1; � � � ; n; zi(t + 1) > 0: De�ne x = x(t); y = y(t); z =
z(t+1)�zi(t+1)e(i)+(zi(t+1)(ai=a�))e(�); x

0 = (1�d)x+z: Since az+ey = az(t+1)+ey(t) � 1; (x; x0) 2 

and y 2 �(x; x0): We can now appeal to Theorem 6 to obtain pi(t+1)zi(t+1) � p�(t+1)zi(t+1)(ai=a�): Since
zi(t+ 1) > 0; the proof of the claim is complete.

Proposition 19 Under Assumption 1, for any time-period t 2 IN; and any i 2 1; � � � ; n;

xi(t) > 0 =) (1� d)[(bi=b�)p�(t+ 1) � pi(t+ 1)] � [(bi=b�)p�(t)� pi(t)]:

Proof: We consider two cases: (i) yi(t) < xi(t); and (ii) yi(t) = xi(t):
Under case (i), let " = xi(t) � yi(t); x = x(t) + "e(i); z = z(t + 1); y = y(t) and x0 = (1 � d)x + z: An

appeal to Proposition 16 yields (1�d)pi(t+1) = pi(t): Also, by Proposition 13, we have (1�d)p�(t+1) � p�(t);
and so

(bi=b�)[(1� d)p�(t+ 1)� p�(t)] � 0 = [(1� d)pi(t+ 1)� pi(t)]:

Next, consider case (ii) where yi(t) = xi(t) > 0: Let 0 < " < xi(t); � = (bi=b�)"; and note that
from Assumption 1 that (bi=b�) � (ai=a�) � 1; which implies that � � ": De�ne x = x(t)� "e(i) + �e(�); y =
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y(t)�"e(i)+�e(�); z = z(t+1); x0 = (1�d)x+z; and note that ey � ey(t); az = az(t+1) and 0 � y � x: Thus,
(x; x0) 2 
, and y 2 �(x; x0): Then from Theorem 6, we obtain p�(t+1)(1�d)��pi(t+1)(1�d)"�p�(t)�+pi(t)" �
0: This establishes the claim after transposing terms.

Proof of Theorem 7: Suppose that for some time-period T; and any i = 1; � � � ; n; zi(T + 1) > 0: Then by
Proposition 18 and Assumption 1, we obtain

pi(T + 1) � p�(T + 1)(ai=a�) > p�(T + 1)(bi=b�):

Also, we must have xi(t + 1) > 0 for all t � T: Then, iterating on the result presented as Proposition 19, we
obtain pi(t+ 1)!1 as t!1; a contradiction to Proposition 17.
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