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1 Introduction: A Historical Note

In his assessment of the important developments of general equilibrium the-
ory in early fifties, T.C. Koopmans ([20], p.59) observed that “most authors
have ignored the analytical difficulty of formulating a model that ensures the
possibility of survival, blithely admitting any nonnegative rates of consump-
tion as sustainable. Arrow and Debreu face this issue and find it to be a
complicated one...” Koopmans gave a verbal description/interpretation of the
Arrow-Debreu assumptions (see Section 4 of [2]) that guaranteed the existence
of equilibrium, noting that “they assume that each consumer can, if necessary,
survive on the basis of the resources he holds and the direct use of his own la-
bor, without engaging in exchange, and still have something to spare of some
type of labor which is sure to meet with a positive price in any equilibrium. If,
contrary to the authors’ indications, their model were given a stationary state
interpretation, it would be found best suited for describing a society of self-
sufficient farmers who do a little trading on the side. In modern society few
of us can indeed survive without engaging in exchange...” Koopmans felt that
“there is considerable challenge to further research on the survival problem”
and did touch upon some directions and interpretations somewhat informally,
and did also recognize the “inadequacies of any model unable to recognize the
element of uncertainty in individual survival.”

We note that in his celebrated article Nikaido ([26], p.136) assumed that in
his exchange economy the initial endowment vector of each agent was strictly
positive. However, in his subsequent note [27], he recognized that this was a
“rather strict assumption” in his method of proof (relying upon what came
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to be known as the Debreu–Gale–Nikaido lemma and generated a substan-
tial literature) of the existence of Walrasian equilibrium. Nikaido proceeded
to present a crisp and beautiful extension of the existence theorem to the
case where the initial endowment vector was positive (“non-zero, non-negative
bundle”) and the sum of the initial endowment vectors (over all agents) was
strictly positive. Concerned with the application of the model to international
trade theory , he felt (quite justifiably) that this weaker assumption was “rea-
sonable enough.”

For brevity, we touch upon just one more landmark in equilibrium the-
ory. In Debreu’s Theory of Value [9], the word “survival” did not figure at
all, but some remarks relevant for the interpretations and applications of the
Walrasian model are worth recalling. First, he provided a treatment of “uncer-
tainty” in which “the contract for the transfer of a commodity ... specifies,in
addition to its physical properties, its location and its date, an event on the
occurrence of which the transfer is conditional. This .. definition of a com-
modity allows one to obtain a theory of uncertainty free from any probability
concept and formally identical with the theory of certainty...”. This treatment
of “uncertainty” postulating the existence of a complete set of markets for all
“commodities” originated in Arrow’s remarkable paper [1]. With such a def-
inition of “commodities” it is clear that the technology or production set Yj

of producer j and the consumption set Xi of consumer i, are “in general,
contained in a coordinate subspace of Rl with a relatively small number of
dimensions” ([9] p.38 and p.51). Secondly, Debreu (p.50) asserted that the
consumption set Xi of all the possible consumption plans reflected “a priori
constraints (for example, of a physiological nature)” ( a “concrete” example
appears on p.51 with diagrams illustrating consumption sets):

“... the decision for an individual to have during the next year as sole
input one pound of rice and as output one thousand hours of some
type of labor could not be carried out”.

Another example (p.52) concerns consumption at two dates, with a minimal
level of consumption at date 1 which allows the consumer to survive until
date 2. In this example, by choosing xi the consumer “implicitly” chooses
“his life span”. Finally, in his existence theorem on pp.83–84 Debreu assumed
(assumption (c) on p.84) that “there is some x0

i ∈ Xi such that x0
i � ωi”. In

his Notes following the text of Chapter 5 (on pp.88–89), he indicated (refer-
ring to the contributions of Mckenzie and David Gale) how the assumption (c)
could be replaced with other weaker( but, in our view, much less transparent)
assumptions involving the interior of the asymptotic cone of the aggregate pro-
duction possibility set. These assumptions play an essential role in establishing
the continuity of the budget set correspondence which is a step towards get-
ting the upper semicontinuity of the excess demand correspondence to which
the Debreu–Gale–Nikaido lemma is used, and also in ensuring that the wealth
of each agent is positive in equilibrium. Newman [25] has commented on the
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proper interpretation of the consumption possibility set and the difficulties in
handling the survival problem.

It is fair to say that survival was not a serious theme in the subsequent
progress of Walrasian equilibrium analysis. However, the importance of this
problem was stressed in several prominent publications by Amartya Sen, pri-
marily in the context of his study of famines. Sen [32] quoted Koopmans’
remark on the Arrow–Debreu model (that we noted above) and felt that “the
problem that is thus eliminated by assumption in these general equilibrium
models is precisely the one central to a theory of survival and famines.” He
commented further that “ ‘the survival problem’ for general equilibrium mod-
els calls for a solution not in terms of a clever assumption that eliminates it
irrespective of realism, but for a reflection of the real guarantees that actually
prevent starvation deaths in advanced capitalist economies.” The entitlement
approach developed by Sen provided the foundation for modern theoretical
analysis of famines. However, it is difficult to capture the sweep of this ap-
proach by using formal models, particularly when uncertainty has to be ex-
plicitly modeled (see [8] for a deterministic analysis). Sen emphasized that for
a better understanding of the problems of survival, one must recognize: (i)
for a consumer to survive, his wealth at the equilibrium price system must
allow him to obtain the basic necessities, and (ii) “starvation can develop for
a group of people as its endowment vector collapses, and there are indeed
many accounts of such endowment declines on the part of sections of poor
rural population in developing countries... but starvation can also develop
with unchanged asset ownership through movement of exchange entitlement
mapping” ([33], pp.47–48).

Among the themes in the subsequent literature on famines, we note the
following:

(1) famines often occur without substantial decline in aggregate food avail-
ability:

“· · · starvation is a matter of some people not having enough food
to eat, and not a matter of there being not enough food to eat.
While the latter can be a cause of the former, it is clearly one of
many possible influences.” [32]

An example is the Bangladesh famine of 1974, where the availability of
food per head, including food production and net imports, in 1974 was
higher than in any other year during 1971–76 (see [12]). Thus, a partial
equilibrium analysis focusing on the food market may be unable to capture
the complexity of events leading to an entitlement failure, and may render
misleading policy prescriptions.

(2) the impact of famines may differ for distinct groups of population, in par-
ticular, different occupational groups. For example, during the Ethiopian
famine of 1972–74 agricultural community suffered the most, and within
this group nomadic herdsmen were hit the hardest. The famine itself was
initiated by droughts, which resulted in reduced food supply. However,the
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herdsmen “were affected not merely by the drought but also by the growth
of commercial agriculture, displacing some of these communities from
their traditional dry-weather grazing land, thereby vastly heightening the
impact of the drought”[33]. Other occupational categories that were in
the destitution groups included farm servants, rural laborers, craftsmen,
women in service occupations. One can see that the most suffering groups
were the ones who did not have command over food production, and whose
own production or labor, being less essential for survival, was no longer in
demand when food supply dropped.

“The characteristics of exchange relations between the pastoral and
agricultural economies contributed to the starvation of the herds-
men by making price movements reinforce – rather than counteract
– the decline in the livestock quantities. The pastoralist, hit by the
drought, was decimated by the market mechanism.” ([33], p.112)

Another example is the Bangladesh famine of 1974, during which the fam-
ilies of rural laborers suffered the most, even without decline in the aggre-
gate food availability. The reason in this case was the loss of employment
as a result of floods: floods prevented planting of the rice, which “would
reduce the food output later, but its impact on employment was imme-
diate and vicious” [12]. To understand this aspect of famines one has to
either study the economy at a disaggregated level with specialized occupa-
tions/endowments or allow for some commodities to play essential role in
survival;

(3) expectations about future food prices can play a significant role in market
behavior and result in food deprivation of certain groups of population.
According to the study by Ravallion [28], a sudden increase in rice prices
in Bangladesh during the 1974 famine could be explained by “excessive
hoarding” by stockholders, who overestimated the damage to the future
crop from floods, and, subsequently, have over-optimistic price expecta-
tions. To study the role of expectations one needs to turn to dynamic
general equilibrium framework.

A formal approach to the analysis of these themes seems to call for general
equilibrium models with specific structures (or, in Lindbeck’s words, “con-
crete” Walrasian systems) and with an explicit recognition of uncertainty. In
this paper we review some attempts in this direction.

First, using the earlier works of Hildenbrand ([18], [19]) and Bhattacharya
and Majumdar [3] an attempt was made in [4] to define the probability of
survival in the presence of intrinsic uncertainty affecting the endowments. It
is reviewed in Section 2 with an improvement of one of the principal results
on the asymptotic behavior of the equilibrium price as the size of the econ-
omy increases. It is shown (see (16) that “ruin” may occur either as a result
of a collapse of endowments or as a result of an unfavorable movement in
the price system. For the case of a weak correlation in endowments and the
case of dependence in the form of dependency neighborhoods, the asymptotic
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results are similar for the ones for the case of independent agents. The is-
sue of modeling a group of agents exposed to a common shock leads to the
study of exchangeable random variables, and the problem of characterizing
the probability of ruin in a large economy becomes more subtle.

Nest, we turn to the possible role of extrinsic uncertainty (a topic to which
David Cass has made notable contributions) and give an example of ruin
in a sunspot equilibrium. Using a model with overlapping generations and
constant endowments we show that there can exist multiple equilibria with
inter-generational trade, in some of which all agents survive, and in others
old agents are ruined, with all fundamentals being the same. These multiple
equilibria are supported by self-fulfilling beliefs, and the agents co-ordinate
their beliefs using “sunspots” as a co-ordinating device. Next we turn to a
model which links the survival problem to specialization. The main result, in
line with [10], is that in an economy with specialization in production a group
of agents, whose produce is less essential for survival, is more vulnerable to
starvation.

2 The Probability of Survival: Intrinsic Uncertainty in
the Cobb–Douglas–Sen Economy

In this and the next section we introduce a survival problem in the Walrasian
framework. For simplicity of exposition, we assume that the preferences of
the agents can be represented by a Cobb–Douglas utility function. This as-
sumption enables us to compute the Walrasian equilibrium explicitly (see (17):
such a computation can be extended to more than two goods). A more general
treatment, using Hildenbrand’s path-breaking work, of some of the issues can
be found in [4], although the “language” becomes unavoidably technical. Our
exposition focuses on the central economic issues with a rather minimal set
of techniques from probability theory, and, hopefully, has pedagogical value.

In what follows, R++ is the set of positive real numbers, x = (xk) ∈ Rl

is non-negative (written x ≥ 0) if xk ≥ 0 for all k, and x is strictly positive
(written x � 0) if x ∈ R++. Define x > 0 as positive (non-negative and
non-zero).

Consider, first, a deterministic Walrasian exchange economy with two
goods. Assume that an agent i has an initial endowment ei = (ei1, ei2) � 0,
and a Cobb–Douglas utility function

u(xi1, xi2) = xγ
i1x

1−γ
i2 (1)

where 0 < γ < 1 and the pair (xi1, xi2) denotes the quantities of goods 1 and
2 consumed by agent i. Thus an agent i is described by a pair αi = (γ, ei).

Let p > 0 be the price of the first good. In a Walrasian model with two
goods, we can normalize prices so that (p, 1−p) is the vector of prices accepted
by all the agents. The typical agent solves the following maximization problem
(P):
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maximize u(xi1, xi2) (2)

subject to the “budget constraint” defined as

pxi1 + (1 − p)xi2 = wi(p)

where the income or wealth wi of the i-th agent is defined as the value of its
endowment computed at (p, 1− p):

wi(p) = pei1 + (1 − p)ei2. (3)

Solving the problem (P) one obtains the excess demand for the first good as:

ζi1(p, 1 − p) = [(1 − p)/p]γei2 − (1 − γ)ei1 (4)

One can verify that

pζi1(p, 1 − p) + (1 − p)ζi2(p, 1 − p) = 0 (5)

The total excess demand for the first good at the prices (p, 1 − p) in a
Walrasian exchange economy with n agents is given by:

ζ1(p, 1 − p) =
n∑

i=1

ζi1(p, 1 − p) (6)

In view of (5) it also follows that

pζ1(p, 1 − p) + (1 − p)ζ2(p, 1− p) = 0 (7)

The “market clearing” Walrasian equilibrium price system is defined by

ζ1(p∗, 1 − p∗) = ζ2(p∗, 1 − p∗) = 0 (8)

and direct computation gives us the equilibrium price p∗n (we emphasize the
dependence of equilibrium price on the number of agents by writing p∗n) as:

p∗n =

[
n∑

i=1

Xi

]
/

[
n∑

i=1

Xi +
n∑

i=1

Yi

]
(9)

where
Xi = γei2, Yi = (1 − γ)ei1. (10)

To be sure, one can verify directly that demand equals supply in the market
for the second good when the excess demand for the first good is zero.

Finally, let us stress that a Walrasian economy is “informationally decen-
tralized” in the sense that agent i has no information about (ej) for i 6= j.
Thus it is not possible for agent i to compute the equilibrium price p∗n.

One of the suggestions made by Sen ([33], Appendix A) to deal with sur-
vival explicitly is now recalled using our notation. Let Fi be a (nonempty)
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closed subset of R2
++. We interpret Fi as the set of all combinations of the

two goods that enable the i-th agent to survive. Now, given a price system
(p, 1 − p), one can define a function mi(p) as

mi(p) = min
(xi1,xi2)∈Fi

{pxi1 + (1 − p)xi2} (11)

Thus, mi(p) is readily interpreted as the minimum expenditure needed for
survival at prices (p, 1 − p).

Example: Let (ai1, ai2) � 0 be a fixed element of R2
++. Let

Fi = {(xi1, xi2) ∈ R2
++ : xi1 ≥ ai1, xi2 ≥ ai2} (12)

Here mi(p) = pai1 + (1 − p)ai2.
In our approach we do not deal with the set Fi explicitly. Instead, let us

suppose that, in addition to its utility function and endowment vector, each
agent i is characterized by a continuous function mi(p) : [0, 1] → R++, and
say that for an agent to survive at prices (p, 1 − p), its wealth wi(p) (see (3)
must exceed mi(p). Hence, the i-th agent fails to survive (or, is ruined) at
the Walrasian equilibrium (p∗n, 1 − p∗n) if

[p∗nei1 + (1 − p∗n)ei2] ≤ mi(p∗n) (13)

or, using the definition (3)

wi(p∗n) ≤ mi(p∗n) (14)

From (13) and (14) one can see that an agent may face ruin due to (a) a possi-
ble endowment failure or (b) the equilibrium price system adversely affecting
its wealth relative to the minimum expenditure. This issue is linked to the lit-
erature on the “price” and “welfare” effects of a change in the endowment on
a deterministic Walrasian equilibrium (see the review of the transfer problem
by Majumdar and Mitra [22]).

Consider now a case of intrinsic uncertainty : suppose that the endowments
ei of the agents (i = 1, 2, · · ·n) are random variables. In other words, each
ei is a (measurable) mapping from a probability space(Ω,F , P ) into the non-
negative orthant of R2. One interprets Ω as the set of all possible states of
environment, and ei(ω) is the endowment of agent i in the particular state ω.
The distribution of ei(·) is denoted by µi [formally each µi is a probability
measure on the Borel σ field of R2, its support being a nonempty subset of the
strictly positive orthant of R2]. From the expression (9), the “market clearing”
equilibrium price p∗n(ω) is random, i.e., depends on ω:

p∗n(ω) =

[
n∑

i=1

γei2(ω)

]
/

[
n∑

i=1

γei2(ω) +
n∑

i=1

(1 − γ) ei1(ω)

]
(15)

The wealth wi(p∗n(ω)) of agent i at p∗n(ω) is simply p∗n(ω)ei1(ω) + [1 −
p∗n(ω)]ei2(ω). The event
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Ri
n = {ω ∈ Ω : wi(p∗n(ω)) ≤ mi(p∗n(ω))} (16)

is the set of all states of the environment in which agent i does not survive.
Again, from the definition of the event Ri

n it is clear that an agent may be ru-
ined due to a meager endowment vector in a particular state of environment.
In what follows, we shall refer to this situation as a “direct” effect of endow-
ment uncertainty or as an “individual” risk of ruin. But it is also possible
for ruin to occur through an unfavorable movement of the equilibrium prices
(terms of trade) even when there is no change (or perhaps an increase!) in the
endowment vector. A Walrasian equilibrium price system reflects the entire
pattern of endowments that emerges in a particular state of the environment.
Given the role of the price system in determining the wealth of an agent and
the minimum expenditure needed for survival, this possibility of ruin through
adverse terms of trade can be viewed as an “indirect” (“terms of trade”) effect
of endowment uncertainty.

Our first task is to characterize P (Ri
n) when n is large (so that the as-

sumption that an individual agent accepts market prices as given is realistic).
While this task is certainly made easier by the structure of the model that
allows us to compute p∗n(ω) explicitly (15), the convergence arguments are
still somewhat technical, in particular when we attempt to dispense with the
assumption of stochastic independence.

To begin with let us make the following assumptions:

A1. {Xi}, {Yi} are uniformly bounded1: there exists M > 0 such that 0 ≤
Xi < M , 0 ≤ Yi < M for i = 1, 2, · · ·.
A2. {Xi} are uncorrelated, {Yi} are uncorrelated.

A3.

[
(1/n)

∑

i

EXi

]
converges to some π1 > 0,

[
(1/n)

∑

i

EYi

]
converges to

some π2 > 0 as n tends to infinity.
In the special case when the distributions of ei are the same for all i (so that
1/n

∑
i EXi = π1, where π1 is the common expectation of all Xi; similarly

for π2), A3 is satisfied.
Under A1–A3, if the number n of agents increases to infinity, as a con-

sequence of the strong law of large numbers we have the following limiting
property of equilibrium prices p∗n:
Proposition 1. Under A1–A3, as n tends to infinity, p∗n(ω) converges with
probability 1 (almost surely) to the constant

p0 = π1/ [π1 + π2] (17)

For the proof, we apply Corollary 6.2 in Bhattacharya and Waymire [5]

(p.649) to the sequences { 1
n

n∑

i=1

(Xi − E(Xi))} and { 1
n

n∑

i=1

(Yi − E(Yi))} and

1 Recall that Xi and Yi are non-negative by non-negativity assumption on endow-
ments.
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conclude that each of these sequences converges to zero with probability 1.

Therefore, { 1
n

n∑

i=1

Xi} converges with probability 1 to π1, and { 1
n

n∑

i=1

Yi} con-

verges with probability 1 to π2 (see, for example, Rohatgi [31], p. 252, Theorem
13). Next, we consider g(x, y) ≡ x/(x + y), a continuous function of a vector
(x, y) on R++. By definition of almost sure convergence, (Xn, Yn) a.s.→ (X, Y )
implies g(Xn, Yn) a.s.→ g(X, Y ) (see, for example, Ferguson [14], p.9). Therefore,
p∗n

a.s.→ p0. Q.E.D.
Roughly, one interprets (17) as follows: for large values of n, the equilib-

rium price will not vary much from one state of the environment to another,
and will be insensitive to the exact value of n, the number of agents.

In [17] pn(ω) was shown to converge only in probability to p0 under weaker
assumptions. In our context, the boundedness assumption A1 seems quite
innocuous. Since we do not assume stochastic independence, the proof relies
on a relatively recent version of the Strong Law of Large Numbers due to
Etemadi [13] (see [5] for further discussion).

For the constant p0 defined by (17), we have the following characterization
of the probability of ruin in a large Walrasian economy:

Proposition 2. If p0ei1(ω) + (1 − p0)ei2(ω) has a continuous distribution
function,

lim
n→∞

[
P (Ri

n)
]

= P{ω : p0ei1(ω) + (1 − p0)ei2(ω) ≤ mi(p0)} (18)

Remark : The probability on the right side of (18) does not depend on n, and
is determined by µi, a characteristic of agent i, and p0.

2.1 Dependence

Case studies of famines often indicate that a famine is typically confined to a
particular geographic region or affects people belonging to the same occupa-
tion group (see, for example, [11]). To account for this property one needs to
introduce stochastic dependence among the agents in the model. Of course,
the most difficult question is how to model the dependence among agents.
Also, dependence among random variables complicates asymptotic theory,
and, to obtain analytic results, one has to assume a particular structure of
the form of dependence. In this section we consider few examples of stochastic
dependence among agents in which the limiting results can be derived explic-
itly. Results parallel to Proposition 1 were obtained in [4] and [16]. Stated
informally, three interesting models were tractable: a model involving “weak”
correlation among agents ([4], Proposition 1.3); a model with appropriate re-
strictions on the size of the dependency neighborhood (a concept introduced
by Stein [35] and studied by Hashimzade [16] in the present context), and a
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model with exchangeable (conditionally independent) agents. The last model
is particularly important in recognizing that the terms of trade effect may
remain significant even in a large economy. We stress the importance of this
point with a precise statement of the basic result proved in [4].

2.2 Exchangeability (exposure to a common shock)

To capture the probability of exposure to a common shock to endowments in
a simple manner, let us say that µ and ν are two possible probability laws of
{ei(·)}i≥1. Think of Nature conducting an experiment with two outcomes “H”
and “T” with probabilities (θ, 1−θ), 0 < θ < 1. Conditionally, given that “H”
shows up, the sequence {ei(·)}i≥1 is independent and identically distributed
with common distribution µ. On the other hand, conditionally given that “T”
shows up, the sequence {ei(·)}i≥1 is independent and identically distributed
with common distribution ν. Let π1µ and π1ν be the expected values of X1

under µ and ν respectively. Similarly, let π2µ and π2ν be the expected values of
Y1 under µ and ν. It follows that pn(·) converges to p0(·) almost surely, where
p0(·) = π1µ/[π1µ +π2µ] = p0µ with probability θ and p0(·) = π1ν/[π1ν +π2ν ] =
p0ν with probability 1 − θ. We now have a precise characterization of the
probabilities of ruin as n tends to infinity. To state it, write

J = {(u1, u2) ∈ R2
+ : p0µu1 + (1 − p0µ)u2 ≤ mi(p0µ)};

ri(µ) =
∫

J

µ(du1, du2). (19)

Similarly, define ri(ν) obtained on replacing µ by ν in (19).

Proposition 4. Assume that p0ei1(ω) + (1− p0)ei2(ω) had a continuous dis-
tribution function under each distribution µ and ν of ei = (ei1, ei2).

(a) Then, as the number of agents n goes to infinity, the probability of ruin of
the i-th agent converges to ri(µ), with probability θ, when “H” occurs and
to ri(ν), with probability 1 − θ when “T” occurs.

(b) The overall, or unconditional, probability of ruin converges to

θri(µ) + (1 − θ)ri(ν).

Here, the precise limit distribution is slightly more complicated, but the
important distinction from the case of independence (or, “near independence”)
is that the limit depends not just on the individual uncertainties captured by
the distributions µ and ν of an agent’s endowments, but also on θ that retains
an influence on the distribution of prices even with large n.

3 Survival and Extrinsic Uncertainty: An Example with
Overlapping Generations.

We now turn to extrinsic uncertainty: when the uncertainty affects the beliefs
of the agents (for example, the agents believe that market prices depend on
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some “sunspots”) but the fundamentals are the same in all states. Clearly,
with respect to the probability of survival, the extrinsic uncertainty has no
direct effect, because it does not affect the endowments. However, it may have
an indirect effect: self-fulfilling beliefs of the agents regarding market prices
affect their wealth, and some agents may be ruined in one state of environment
and survive in some other state, even though the fundamentals of the economy
are the same in all states. To study the indirect, or the adverse term-of-trade
effect of extrinsic uncertainty on survival we need a dynamic economy.

Consider a discrete time, infinite horizon OLG economy with constant
population. We use Gale’s terminology [15] wherever appropriate. For exposi-
tory simplicity, and without loss of generality we assume that at the beginning
of every time period t = 1, 2, · · · there are two agents: one “young” born in
t, and one “old” born in t − 1. In period t = 1 there is one old agent of
generation 0. There is one (perishable) consumption good in every period.
The agent born in t (generation t) receives an endowment vector et = (ey

t , eo
t )

and consumes a vector ct = (cy
t , co

t ). We consider the Samuelson case 2 and
assume, without loss of generality, et = (1, 0). We assume that the preferences
of the agent of generation t can be represented by expected utility function
Ut(·) = E [U t(ct)] with Bernoulli utility U t(ct), continuously differentiable
and almost everywhere twice continuously differentiable, strictly concave and
strictly monotone in D, compact, convex subset of R2

++. The old agent of
generation 0 is endowed with one unit of fiat money, the only nominal asset
in the economy. In every period the market for the perishable consumption
good is open and accessible to all agents. Denote the nominal price of the
consumption good at time t by pt. Define a price system to be a sequence of
positive numbers, p = {pt}∞t=0, a consumption program to be a sequence of
pairs of positive numbers c = {ct}∞t=0, a feasible program to be a consumption
program that satisfies cy

t + co
t−1 ≤ ey

t + eo
t−1 = 1. The agent of generation t

maximizes his lifetime expected utility in the beginning of period t. In period
1, the young agent gives its saving (sy

1) of the consumption good, to the old
agent in exchange for one unit of money (the exchange rate is determined by
p1). Thus, p1s1 = 1. This unit of money is carried into period 2 (the old age
of agent born in period 1) and is exchanged (at the rate determined by p2) for
the consumption food saved by the young agent born in period 2 (sy

2). The
process is repeated.

3.1 Perfect Foresight Equilibrium

If there is no uncertainty, with perfect foresight the price-taking young agent’s
optimization problem is the following:
2 If a population grows geometrically at the rate γ, so that γt agents is born in pe-

riod t, and there is only one good in each period, the Samuelson case corresponds
to marginal rate of intertemporal substitution of consumption under autarky,
U1(e

y, eo)/U2(e
y, eo), being less than γ. In our case γ = 1.
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maxU(cy
t , co

t )

subject to

cy
t = 1 − sy

t

co
t = pts

y
t /pt+1

(0 ≤ sy
t ≤ 1, t = 1, 2, · · ·).

Here, sy
t ≡ ey

t − cy
t is savings of the young agent (this is the Samuelson

case, in Gale’s definitions [15]). A perfect foresight competitive equilibrium is
defined as a feasible program and a price system such that

(i) the consumption program c̄ = {c̄t} solves optimization problem of each
agent given p̄ = {p̄t} : (c̄y

t , c̄o
t ) ∈ D, c̄y

t = 1 − st and c̄o
t = p̄tst/p̄t+1 with

st = arg max
0≤sy

t ≤1
U

(
(1 − sy

t ) , sy
t

p̄t

p̄t+1

)

and
(ii) the market for consumption good clears in every period:

c̄y
t + c̄o

t−1 = 1 (demand = supply for the consumption good)
p̄tst = 1 (demand = supply for money)

for t = 1, 2, · · ·.

By strict concavity of the utility function U(cy
t , c

o
t ), the young agent’s

optimization problem has a unique solution. Hence, we can express st as a
single-valued function of pt/pt+1, i.e. we write st = st(pt/pt+1). This function
(called savings function) generates an offer curve in the space of net trades,
as price ratios vary. In the perfect foresight equilibrium

st(pt/pt+1) = 1/pt. (20)

The stationary perfect foresight monetary equilibrium is a sequence of
constant prices p and constant consumption programs (1 − s̄, s̄), where s̄ =
s(1).3

3.2 Sunspot equilibrium

Now consider an extrinsic uncertainty in this economy. There is no uncer-
tainty in fundamentals, such as endowments and preferences, but the agents
3 Given our assumptions on preferences and endowments, the stationary perfect

foresight monetary equilibrium exists and is optimal (see, for example, [21], Chap.
8).
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believe that market prices depend on realization of an extrinsic random vari-
able (sunspot). We assume that there is one-to-one mapping from the sunspot
variable to price of the consumption good. Because the agents cannot observe
future sunspots, they maximize expected utility over all possible future real-
ization of the states of nature. We examine the situation with two states of
nature, σ ∈ {α, β}, that follow a first-order Markov process with stationary
transition probabilities,

Π =
[

παα παβ

πβα πββ

]
(21)

where πσσ′
> 0 is the probability of being in state σ′ in the next period given

that current state is σ, and πσα + πσβ = 1. A young agent born in t observes
price pσ

t and solves the following optimization problem:

max
[
πσαU(cy,σ

t , co,α
t ) + πσβU(cy,σ

t , co,β
t )
]

subject to

cy,σ
t = 1 − sσ

t

co,σ′

t = pσ
t sσ

t /pσ′

t+1

(0 ≤ sσ
t ≤ 1, sσ′

t ≥ 0, σ, σ′ ∈ {α, β}).
We restrict our attention to stationary equilibria, in which prices depend

on the current realization of the state of nature σ, and do not depend on the
calendar time nor the history of σ. A stationary sunspot equilibrium, SSE, is
a pair of feasible programs and nominal prices, such that for every σ ∈ {α, β}

(i) the consumption programs solve the agents’ optimization problem:

sσ(pσ/pσ′
) =

arg max
0≤sσ≤1

[πσαU ((1 − sσ) , sσpσ/pα) +

+πσβU
(
(1 − sσ) , sσpσ/pβ

)]
(22)

and

(ii) markets clear in every period, in every state.

cy,σ + co,σ = 1
pσsσ = 1

It is easy to see that a stationary sunspot equilibrium exists when the
equation

pα

pβ
sα

(
pα

pβ

)
− sβ

(
pβ

pα

)
= 0 (23)

has positive solutions for pα/pβ other than 1 . Solution pα/pβ = 1 corresponds
to the equilibrium in which uncertainty does not matter. It can be shown that,
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if sunspot equilibria exist in this economy, there are at least two of them,
with pα/pβ > 1 and pα/pβ < 1 (see, for example, [7], [34]). This means that
in the sunspot equilibrium consumption of old agents is above the certainty
equilibrium consumption of olds in one state of nature and below in the other.
Suppose, we introduce an exogenous minimal subsistence level of consumption
(independent of σ ∈ {α, β}). It may be the case that in one of the states of
nature consumption of old agents falls short of minimal subsistence level:
old agents are ruined. Note that the endowments are not affected by the
uncertainty, and, therefore, there is no direct effect of uncertainty on ruin.
The event of ruin is caused purely by an indirect, or term-of-trade effect: the
equilibrium price system is such that the wealth of old agents does not allow
them to survive. The following numerical example illustrates this possibility
for the case of quadratic utility.

3.3 Ruin in equilibrium.

Let the preferences of the agents be represented by expected utility function
with

U(c) = u(cy, co) − v(co)

u(cy, co) = 2a
√

cyco + q cy + r co − 1
2
b(cy)2 − 1

2
d(co)2

v(co) =
{

θ
2 (A − co)2 , 0 < co ≤ A
0, co > A

where a, b, c, q, r, θ, A are positive constants such that the utility function is
increasing and jointly concave in its arguments in D. v(·) is the disutility of
consuming less than A, the minimal subsistence level.4 As above, agents in
each generation receive identical positive endowments e = 1 of consumption
good when young and zero endowments when old; the initial olds are endowed
with one unit of money.
4 It may seem odd that the disutility from starvation is finite, but this can be

justified by the willingness of the agents to take a risk. Consider the following. In
the continuous time, if the consumption of an old agent is above A, he lives to the
end of the second period. If his consumption is below A, perhaps, he does not die
immediately. Albeit low, the amount consumed allows him to live some time in
the second period, and his lifespan in the second period is the longer, the closer
is his consumption to A. In the discrete time this translates into probability of
survival in the second period as a function of consumption. Thus, the old agent
survives with probability 1 if co ≥ A and with probability less than 1 if co < A.
Suppose, the objective of the agent is to maximize the probability of survival
(or maximize his expected lifespan). Then it can be presented equivalently as
the objective to minimize the disutility from consumption at the level below A.
Clearly, this disutility can be finite, at least in the vicinity of A, if the agent is
willing to take a risk. The authors are indebted to David Easley for this argument.
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Benchmark case: perfect foresight

For the above preferences, savings function st(pt/pt+1) is implicitly defined
by

ρt =
a
√

ρtst/(1 − st)) + q − b (1 − st)
a
√

(1 − st)/(ρtst) + r − d ρtst − v′(ρtst)
, (24)

where ρt ≡ pt/pt+1. The offer curve is described by

(1 − x)
(

a

√
y

x
+ q − b x

)
− y

(
a

√
x

y
+ r − d y − v′(y)

)
= 0 (25)

In the stationary (deterministic) perfect foresight monetary equilibrium
consumption plan of an agent is (x, 1 − x), where x solves

a

(√
x

1 − x
−
√

1 − x

x

)
+ x (b + d) + v′(1 − x) + q − r − b = 0 (26)

Stationary sunspot equilibria

Two states of nature, α and β evolve according to a stationary first-order
Markov process. The states of nature do not affect the endowments. Agents
can trade their real and nominal assets. In a stationary sunspot equilibrium
with trade sα, sβ solve the following system of equations:

πααa
√

sα

1−sα + (1 − παα) a

√
sβ

1−sα + q − b (1 − sα) = (27)

= πααa
(√

1−sα

sα + r − d sα − v′(sα)
)

+ (1 − παα)
(

a
√

1−sα

sβ + r − d sβ − v′(sβ)
)

sβ

sα

and

πββa

√
sβ

1−sβ +
(
1 − πββ

)
a
√

sα

1−sβ + q − b
(
1 − sβ

)
= (28)

= πββa

(√
1−sβ

sβ + r − d sβ − v′(sβ)

)
+
(
1 − πββ

)(
a

√
1−sβ

sα + r − d sα − v′(sα)

)
sα

sβ

It is easy to see that one solution is sα = sβ = 1 − x, where x solves the
equation for the perfect foresight above. This solution does not depend on the
transition probabilities, prices and consumption are not affected by the un-
certainty: sunspots do not matter in this equilibrium. However, there may be
more solutions. For example, for a = 2, b = 0.5, d = 7, q = 0.02, r = 0.6 θ =
0.05 A = 0.3 and παα = πββ = 0.15 there are three stationary monetary
equilibria in the economy: one coinciding with the perfect foresight equilib-
rium and two sunspot equilibria. Prices and consumption programs for these
equilibria are given in the following table.
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State PFE 1st SSE 2nd SSE

α (0.6670; 0.3330; 3.00) (0.5973; 0.4027; 2.48) (0.7518; 0.2482; 4.03)

β (0.6670; 0.3330; 3.00) (0.7518; 0.2482; 4.03) (0.5973; 0.4027; 2.48)

(In every entry, the first number is consumption of young, the second is con-
sumption of old, and the third is nominal price of consumption good.)

The consumption programs in sunspot equilibria are Pareto inferior to
the program in the perfect foresight equilibrium. Furthermore, in two sunspot
equilibria old agents survive in one state of nature and fail to survive in an-
other with the same amount of resources, because equilibrium price is too
high. (We intentionally considered the case where agents survive in the cer-
tainty equilibrium to demonstrate that survival is always feasible. Also, in this
model young agents always survive, – otherwise, the overlapping generations
structure collapses.)

4 Survival and Specialization

The entitlement approach in the study of famines suggests that one has to ex-
plicitly take into account: (1) some goods or services produced in the economy
are less essential for survival than others, and (2) some groups of agents are
involved in production of these “less essential” goods and services and supply
them to the market in exchange for “more essential” ones, and, therefore, are
more vulnerable to starvation. The first observation can be formalized as the
existence of asymmetry in preferences, and the second one – as the existence
of specialization in output (or endowments) among agents.

A model of a static economy with asymmetric preferences and complete
specialization was introduced by Desai in [10]. The idea is the following. In
order to survive an agent needs to consume an essential good (or goods) at or
above some minimum level. Only after attaining the minimum level of con-
sumption of the essential good the agent can derive utility from consumption
of other, non-essential goods. If some agents in the economy are not initially
endowed with the essential good, they have to purchase the essential good
in the market. We modify Desai’s model to incorporate the probability of
survival when the consumption of the essential good falls below the mini-
mum subsistence level5. There are two goods, essential (“food”, labeled x)
and non-essential (“non-food”, labeled y) in consumption, and two agents, a
food producer (agent 1) and a non-food producer (agent 2). The food pro-
ducer is endowed with f > 0 units of good x, and the non-food producer with
5 This formulation eliminates the “degeneracy” of the equilibrium with starvation,

in which an agent enjoys “minus infinity” utility, and, furthermore, prefers one
“minus infinity” level of utility to another “minus infinity”, see [10], p.434.
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e > 0 units of good y. The agents have identical preferences, and each needs
a minimum quantity of food, f∗

i , to survive. The probability P of survival of
agent i is the function of i’s consumption of food:

P [i survives] =





0, xi ≤ x̄i

v(xi), x̄ < xi ≤ f∗
i

1, xi > f∗
i

where v(x) is continuous and strictly increasing 6. Without loss of generality
we further assume x̄i = 0 and f∗

i = f∗ for i = 1, 2. Hence, if xi ∈ (0, f∗), i
starves, and is ruined with probability 1− v(xi) because of starvation. Given
his budget constraint, an agent i, first, maximizes his probability of survival
(or minimizes probability of ruin), and, second, if he survives with probability
one, maximizes his utility of consumption above the survival level:

ui = ui ((x1 − f∗
i ) , x2)

(the survival level of the non-essential good y is zero), where ui(·) is strictly
concave, strictly increasing and twice continuously differentiable. We can for-
mally combine these two consecutive objectives of an agent into one objective
function:

Ui (xi, yi) =





v (xi) , xi ≤ f∗

v (f∗) + u ((xi − f∗) , yi) , xi > f∗

We assume
u(·) = (xi − f∗)αi yβi

i , (29)

xi > f∗, yi > 0, αi, βi ∈ (0, 1), αi + βi ≤ 1. The functional form of v(xi) in a
static model is irrelevant, as long as it is strictly increasing in xi. Let p be the
price of food in terms of non-food consumption good. The market equilibrium
in this economy is the set of consumption vectors {(x1, y1) , (x2, y2)} and price
p such that

(i) given p, agent i maximizes his objective function Ui subject to his budget
constraint:

p xi + yi ≤ p fi + ei

i = 1, 2, (f1, e1) = (f, 0), and (f2, e2) = (0, e).
(ii) markets clear:

x1 + x2 = f,

y1 + y2 = e.

6 More generally, probability function is non-decreasing and right-continuous. We
use stronger assumptions to ensure uniqueness.
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Because of the asymmetric preferences and complete specialization the
non-food producer is more vulnerable to starvation 7. Consider different cases.

Case 1. Absolute scarcity.
Suppose, the harvest is so low that it cannot feed the food producer himself:
f ≤ f∗. The food producer consumes all his endowment and survives with
positive probability. There is no trade, and the non-food producer is ruined
with probability 1.

Case 2. Aggregate scarcity.
If the endowment of the food producer exceeds his minimum subsistence level,
he sells some of good x to the non-food producer in exchange for good y.
However, if the total amount of food is not enough to feed both agents, f∗ <
f < 2f∗, the non-food producer starves and is ruined with positive probability.

Case 3. Aggregate availability.
Suppose now, that the total amount of food is enough to feed both agents,
f > 2f∗. However, as the analysis below shows, this condition is necessary,
but not sufficient to allow the non-food producer to survive with probability
one in the equilibrium. Below we derive the necessary and sufficient condition
of survival of both agents with probability one. We show that this condition
does not involve endowment and preferences of the non-food producer.

Now we proceed to the formal analysis. Case 1 is irrelevant for our purpose,
because there is no trade in that case. In two other cases consumption of agent
1 (food producer) is

(x1, y1) =
(

f∗ +
α1

α1 + β1
(f − f∗) ,

β1

α1 + β1
p (f − f∗)

)
.

At price p the wealth, in terms of food, of agent 2 (non-food producer) is e/p.
If this wealth is below f∗, he sells all his endowment in good y for good x,
and his consumption is then

(x2, y2) =
(

e

p
, 0
)

From the market clearance condition the equilibrium price is

p∗ =
α1 + β1

β1

e

f − f∗ . (30)

Hence, agent 2 starves and is ruined with probability 1 − v
(

β1
α1+β1

(f − f∗)
)

(notice, that this probability depends only on the endowment and preferences
of agent 1). This happens when e/p∗ < f∗ < f , or, using (30),

f∗ < f < f∗
(

2 +
α1

β1

)
. (31)

7 We assume free disposal for good y.
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Clearly, it can happen that the non-food producer starves even when the
amount of food is more than enough to feed both agents, i.e.,

2f∗ < f < f∗
(

2 +
α1

β1

)
.

This is an example of exchange entitlement failure.
If the wealth of agent 2 is above f∗, he survives with probability one, and

his consumption is

(x2, y2) =
(

f∗ +
α2

α2 + β2

(
e

p
− f∗

)
,

β2

α2 + β2
(e − pf∗)

)
.

Equilibrium price in this case is

p∗ =
α2/ (α2 + β2)
β1/ (α1 + β1)

e

f − f∗
(
1 + β2(α1+β1)

β1(α2+β2)

) . (32)

Hence, the non-food producer survives with probability 1 when e ≥ p∗f∗, or,
using (32),

f ≥ f∗
(

2 +
α1

β1

)
. (33)

This is the necessary and sufficient condition for survival of both types. One
can see that, holding the aggregate amount of food fixed, agent 2 is more
likely to starve, the more agent 1 prefers his own good over the other good.
Neither non-food producer’s tastes nor his endowment affect his probability
of survival.

An important policy implication is that under condition (31) increase in
the endowment of the non-food producer will not improve his food purchasing
power. Hence, the famine remedy in this case can be (i) redistribution or
(ii) direct food support. An interesting question in this regard is whether
universal or targeted food support is more efficient. Drèze and Sen provide
an extensive discussion of this issue in [12], Chapter 7. In the context of
this model, the universal support means giving equal amount of food to both
agents, and targeted support means giving the total amount of food aid to
the most vulnerable agent, i.e. to the non-food producer. If the objective
of the relief agency is to maximize the probability of survival of all agents,
then in situation (31), because type 1 survives with probability 1 given his
endowment, the relief agency can do either of the following:

(a) Give food to type 2 only. Type 2 will survive with probability 1 if the

amount of food aid is, at least, fa ≡ f∗ − β1

α1 + β1
(f − f∗);

(b) Give equal amounts of food to both types. If each type receives 1/2fb,
such that 1/2fb < f∗, then type 2 will survive with probability 1 if the
value (in terms of food) of his endowment is at least f∗ − 1/2fb. Simple

calculations render fb = 2
(

f∗ − f

2 + α1/β1

)
.
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It is straightforward to show that fa < fb, i.e. targeted support is more
efficient than universal support (requires less resources, holding cost of dis-
tribution equal), if and only if f∗ < f < f∗ (1 + α1/2β1). In other words,
the model suggests that at relatively high aggregate amount of food in the
economy the food aid from outside should be distributed equally among food-
and non-food producers. At relatively low aggregate amount of food in the
economy the food aid from outside should be directed to the non-food pro-
ducers.

5 Concluding remarks

Joan Robinson ([30], p.189) wrote that “the hidden hand will always do its
work, but it may work by strangulation.” It has of course been an achievement
of high order to spell out the conditions under which the price system can play
an effective role in coordinating decentralized decisions in order to generate a
Pareto efficient allocation of resources. From all indications it appears, sadly
enough, that the strangulation by the invisible hand will haunt millions, es-
pecially in the century of globalization. General equilibrium analysis is very
much relevant in understanding the full implications of economic policy to
improve the probability of survival. But help will not come from models in
which uncertainty has no essential role to play or in which the consumers have
the luxury of “choosing their life spans” explicitly or implicitly. Much remains
to be done in developing models that can throw light on the survival issues.
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